Fluorescent multi-component polymer sensors for sensitive and selective detection of Hg$^{2+}$/Hg$^+$ ions via fluorescence and colorimetry dual mode

Kaiqi Liua, Luminita Marinb, Li Xiaoa, and Xinjian Chenga*

aSchool of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China, 430073

b“Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania

*Corresponding author: Dr. Cheng, chxj606@163.com.
Figure S1. 1H NMR spectra of small molecule compounds (a) O1, (b) BO1, (c) O2, and (d) BO2

Figure S2. (a) 1H NMR spectra of small molecule compounds PD (b) Mass spectra of PD
Figure S3. ^1H NMR spectra of small molecule compounds (a) IBO1 and (b) IBO2

Figure S4. ^1H NMR spectra of polymer probes (a) MCP1, (b) MCP2, (c) MCP3, and (d) MCP4
Figure S5. ESI-HRMS spectrum of (a) O1 and (b) BO1

Figure S6. ESI-HRMS spectrum of (a) O2 and (b) BO2

Figure S7. ESI-HRMS spectrum of (a) IBO1 and (b) IBO2
Figure S8. FTIR spectra of (a) O1, BO1, IBO1, MCP1 and MCP2 and (b) O2, BO2, IBO2, MCP3 and MCP4

Figure S9. The mechanism of PET
Figure S10. (a) photograph of MCP1 with heavy metal ion in EtOH/H$_2$O under UV light. (b) photograph of MCP1 with heavy metal ion in EtOH/H$_2$O under natural light.

Figure S11. Fluorescence emission spectra of macromolecular probes (1 μM) in EtOH/H$_2$O (1:1, rt) (a) MCP1 and MCP2 (λ_{ex} = 440 nm), (b) MCP3 and MCP4 (λ_{ex} = 440 nm).
Figure S12. (a) photograph of MCP3 with heavy metal ion in water under natural light. (b) photograph of MCP4 with heavy metal ion in water under natural light.
Figure S13. (a) photograph of MCP1 with different concentrations of Hg\(^+\) in EtOH/H\(_2\)O under UV light. (b) photograph of MCP1 with different concentrations of Hg\(^+\) in EtOH/H\(_2\)O under natural light. (c) photograph of MCP1 with different concentrations of Hg\(^{2+}\) in EtOH/H\(_2\)O under UV light. (d) photograph of MCP1 with different concentrations of Hg\(^{2+}\) in EtOH/H\(_2\)O under natural light. (e) photograph of MCP2 with different concentrations of Hg\(^+\) in EtOH/H\(_2\)O under UV light. (f) photograph of MCP2 with different concentrations of Hg\(^+\) in EtOH/H\(_2\)O under natural light. (g) photograph of MCP2 with different concentrations of Hg\(^{2+}\) in EtOH/H\(_2\)O under UV light. (h) photograph of MCP2 with different concentrations of Hg\(^{2+}\) in EtOH/H\(_2\)O under natural light.
Figure S14. (a) Concentration effect of MCP3 on Hg$^{+}$. (b) Concentration effect of MCP3 on Hg$^{2+}$.

(c) Concentration-dependent fluorescence signaling of a Hg$^{+}$ by MCP3, and (d) Hg$^{2+}$ by MCP3.
Figure S15. (a) photograph of MCP3 with different concentrations of Hg$^+$ in water under natural light. (b) photograph of MCP3 with different concentrations of Hg$^{2+}$ in water under natural light.

Figure S16. (a) photograph of MCP4 with different concentrations of Hg$^+$ in water under natural light. (b) photograph of MCP4 with different concentrations of Hg$^{2+}$ in water under natural light.

Table S1. Comparison of the basic properties of the reported probe and the probe synthesized in
<table>
<thead>
<tr>
<th>Sensor</th>
<th>Selectivity</th>
<th>LOD</th>
<th>Analytical applications</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-CN</td>
<td>Good (Hg$^{2+}$)</td>
<td>0.8μM</td>
<td>Cell image</td>
<td>[1]</td>
</tr>
<tr>
<td>9AnPD</td>
<td>Effective (Hg$^{2+}$)</td>
<td>5μM</td>
<td>--</td>
<td>[2]</td>
</tr>
<tr>
<td>BAN</td>
<td>Remarkable (Hg$^{2+}$)</td>
<td>0.00173 μM</td>
<td>Living HeLa cells</td>
<td>[3]</td>
</tr>
<tr>
<td>probe 1</td>
<td>Sensitive (Hg$^{2+}$)</td>
<td>0.2μM</td>
<td>Living cells</td>
<td>[4]</td>
</tr>
<tr>
<td>L</td>
<td>High (Hg$^{2+}$)</td>
<td>1.1μM</td>
<td>Living cell imaging</td>
<td>[5]</td>
</tr>
<tr>
<td>PTS</td>
<td>Sensitive (Hg$^{2+}$)</td>
<td>0.23μM</td>
<td>--</td>
<td>[6]</td>
</tr>
<tr>
<td>RFP3</td>
<td>Excellent (Hg$^{2+}$/Cu$^{2+}$)</td>
<td>0.012μM</td>
<td>HL-7702 cells</td>
<td>[7]</td>
</tr>
<tr>
<td>P-3</td>
<td>High (Hg$^{2+}$)</td>
<td>4.8μM</td>
<td>--</td>
<td>[8]</td>
</tr>
<tr>
<td>MCP2</td>
<td>Sensitive (Hg$^{2+}$/Hg$^+$)</td>
<td>0.32/0.42μM</td>
<td>Lake water</td>
<td>This work</td>
</tr>
</tbody>
</table>
Figure S17. Benesi–Hilderbrand plot of (a) MCP1+Hg$^+$, (b) MCP1+Hg$^{2+}$, (c) MCP2+Hg$^+$, and (d) MCP2+Hg$^{2+}$

Figure S18. Benesi–Hilderbrand plot of (a) MCP3+Hg$^+$, (b) MCP3+Hg$^{2+}$, (c)
The fluorescence intensity of the polymer solution changes with the concentration of Hg$^{2+}$/Hg$^+$ (a) MCP1+Hg$^+$ (1 μM, pH = 7.0, rt); (b) MCP1+Hg$^{2+}$ (1 μM, pH = 7.0, rt); (c) MCP2+Hg$^+$ (1 μM, pH = 7.0, rt); (d) MCP2+Hg$^{2+}$ (1 μM, pH = 7.0, rt)
Figure S20. Absorbance of probes (10 μM) with other metal ions (100 μM) and albumin (3.6 mg/mL) in aqueous solution. The black bars represent the addition of different ions to the solution of correspond sensor. The red bars represent the subsequent addition of Hg²⁺/Hg⁺ to the solution.
Figure S21. The fluorescence emission spectrum of sensor in EtOH/H$_2$O and EtOH/natural lake water. (a) MCP1, (b) MCP2. UV absorption spectra of sensor in water and natural lake water. (c) MCP3, (d) MCP4

Figure S22. (a) 1H NMR of MCP1 in DMSO-d$_6$, (b) 1H NMR of MCP1 and equimolar amount of Hg$^+$ in DMSO-d$_6$. (c) 1H NMR of MCP1 and equimolar amount of Hg$^{2+}$ in DMSO-d$_6$.
References

