Electronic Supplementarya Materiale (ESI) for New dournal of Chemistry. This journalis @ The Royal Society of Chemistry and the Centre National 2021

Supplementary material for

Tuning the Cu⁺ species of Cu-based catalysts for direct

synthesis of ethanol from syngas

Jiaqian Yang,^{a,b} Nana Gong,^{a,b} Liyan Wang,^{a,b} Yingquan Wu,^{*a} Tao Zhang,^a Hongjuan Xie,^a Guohui Yang^a and Yisheng Tan^{*a,c}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c National Engineering Research Center for Coal-Based Synthesis, Institute of Coal

Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

Contents

Fig. S1. XRD patterns of the spent catalysts.

Fig. S2. Deconvoluted XPS spectra of Cu $2p_{3/2}$ of the reduced catalysts.

Fig. S3. The catalytic performance of xCu/yCuPS catalysts as a function of $Cu^+/(Cu^++Cu^0)$.

Fig. S4. CO conversion and alcohol distribution as a function of time-of-stream of the 0.33Cu/0.67CuPS catalyst at 300 °C and 5 MPa.

Fig. S1. XRD patterns of the spent catalysts.

Fig. S2. Deconvoluted XPS spectra of Cu $2p_{3/2}$ of the reduced catalysts.

Fig. S3. The catalytic performance of xCu/yCuPS catalysts as a function of $Cu^+/(Cu^++Cu^0)$.

Fig. S4. CO conversion and alcohol distribution as a function of time on stream of the 0.33Cu/0.67CuPS catalyst at 300 °C and 5 MPa.