Electronic Supplementary Information for manuscript:

X-Ray characterization, Hirshfeld surface analysis, DFT calculations, in vitro and in silico lipoxygenase inhibition (LOX) studies of dichlorophenyl substituted 3-hydroxy-chromenones

Muhammad Naeem Ahmed,*a Mehreen Ghias ${ }^{\text {b }}$, Syed Wadood Ali Shah ${ }^{\text {b }}$, Mohammad Shoaib ${ }^{\text {b }}$, Muhammad Nawaz Tahirc ${ }^{\text {, Muhammad Ashfaq }}$, Mahmoud A. A. Ibrahim ${ }^{\text {d }}$, Hina Andleeb, ${ }^{\text {e }}$ Diego M. Gilf and Antonio Frontera*g

Table of contents:

Page 2

Description of the X-ray packing in 2:
Page 4

Description of the X-ray packing in 3:
Page 8

Description of the X-ray packing of compound 1

In 1 (Fig. S1), 3-hydroxychroman-4-one moiety A (C1-C9/O1-O3) and 1,3-dichlorobenzene ring B (C10-C15/C6CL1/CL2) are roughly planar with root mean square (r.m.s) deviation of 0.0207 and 0.0271 Å, respectively. Dihedral angle among mean plane of moiety A and ring B is $59.92(3)^{\circ}$. Selected bond lengths and bond angles are specified in Table S1. The molecular configuration of $\mathbf{1}$ is stabilized by intramolecular O-H...O bonding to form $\mathrm{S}(5)$ as displayed in Fig. S2. The molecules are interlinked in the form of dimers by strong $\mathrm{O}-\mathrm{H} . . \mathrm{O}$ bonding to form $R_{2}^{2}(10)$ loop in which carbonyl O -atom acts as H -bond acceptor. The dimers are connected with each other through weak non-covalent interaction of type C-O... π with O... π distance ranges from $3.405 \AA$ to $3.962 \AA$ A carbonyl O-atom is involved in this interaction. The molecules are further interlinked by off-set π... π stacking interaction between aromatic rings with inter-centroid separation rages from 3.993 Å to 4.192 Å with ring off-set range from 1.918 Å to $2.410 \AA$. A zigzag chain of molecules is formed along [001] due to this interaction as displayed in Fig. S3. The crystal packing is further stabilized by weak C-H... π interaction with H... π distance ranges from $2.80 \AA$ to 2.88 Å that connect the molecules along [100] direction to form infinite chain as displayed in Fig. S 4.

Fig. S1 ORTEP diagram of OF5 drawn at probability level of 50%. H -atoms are shown by small circle of arbitrary radii.

Fig. S2 Packing diagram of 1 showing dimerization of molecules through $\mathrm{O}-\mathrm{H} . . . \mathrm{O}$ bonding. Selected H -atoms are shown for clarity.

Fig. S3 Graphical representation of off-set $\pi \ldots \pi$ stacking interaction in $\mathbf{1}$ that links the molecules along [001] direction. H -atoms are not shown for clarity. Distances are measured in \AA.

Fig.: S4 Graphical representation of C-H.... $\boldsymbol{\pi}$ interaction for 1. Selected H-atoms are shown for clarity. Distances are measured in Å.

Description of the X-ray packing in compound 2

In 2 (Fig. S5), 3-hydroxychroman-4-one moiety A (C1-C9/O1-O3) and 1,2-dichlorobenzene ring B (C10-C15/CL1/CL2) are roughly planar with root mean square (r.m.s) deviation of 0.0164 and 0.0048 Å, respectively. Dihedral angle among mean plane of moiety A and ring B is 69.64 (3) ${ }^{\circ}$. Selected bond lengths and bond angles are specified in Table S2. The molecular configuration of $\mathbf{2}$ is stabilized by intra-molecular O-H...O bonding to form $\mathrm{S}(5)$ loop. The molecules are interlinked in the form of dimers by strong O-H...O bonding to form $R_{2}^{2}(10)$ loop in which carbonyl O -atom acts as H -bond acceptor. The dimers are interlinked through comparatively weak C-H...O bonding to form $R_{2}^{2}(16)$ loop in which O -atom of hydroxyl group acts as H -bond acceptor as displayed in Fig. S6 and specified in Table S2. C11 zigzag chain is formed by the combination of $\mathrm{O}-\mathrm{H} . . . \mathrm{O}$ and $\mathrm{C}-\mathrm{H} . . . \mathrm{O}$ bonding that runs along a crystallographic axis as displayed in Fig. S7. The molecules related by inversion symmetry ($-x, 1-y,-z$) are involved in C-O... π interaction in which carbonyl group of one molecule is connected with phenyl ring (C11-C16) of other molecule with O... π distance of 3.83 Å as displayed in Fig.s S8 and S9. The crystal packing is further stabilized by another non-covalent interaction of type off-set $\pi \ldots \pi$ interaction. For this
interaction, centroid to centroid separation ranges from 3.56 Å to 4.11 Å and ring off-set ranges from $0.97 \AA$ to $2.26 \AA$. Overall 2D network is formed by the molecules through O-H...O bonding C-O... π and off-set $\pi \ldots \pi$ stacking interaction in the plane (100) with base vectors [001] and [010].

Fig. S5 ORTEP diagram of $\mathbf{2}$ drawn at probability level of 50%. H -atoms are shown by small circle of arbitrary radii.

Fig. S6 First view of packing diagram of $\mathbf{2}$ indicating dimerization of molecules through H bonding.

Fig. S7 Second view of packing diagram of 2, selected H-atoms are shown for clarity.

Fig. $\mathbf{S 8}$ Graphical representation of off-set $\pi \ldots \pi$ stacking interaction in $\mathbf{2}$. \mathbf{H}-atoms are not shown for clarity. Distances are measured in \AA.

Fig. $\mathbf{S 9}$ Graphical representation of C-O... $\boldsymbol{\pi}$ interaction in OF6. H -atoms are not shown for clarity. Distances are measured in Å.

Description of the X-ray packing in compound 3

In 3 (Fig. S10), 3-hydroxychroman-4-one moiety A (C1-C9/O1-O3) and 1,5-dichlorobenzene ring B (C10-C15/CL1/CL2) are roughly planar with root mean square (r.m.s) deviation of 0.0061 and $0.0143 \AA$ A , respectively. Dihedral angle among mean plane of moiety A and ring B is $84.95(3)^{\circ}$ indicating that moiety A and ring B are almost perpendicular to each other. Selected bond lengths and bond angles are specified in Table S1. The molecular configuration of $\mathbf{3}$ is stabilized by intramolecular O-H...O bonding to form S (5) loop. The molecules are interlinked in the form of dimers
by strong O-H...O bonding to form $R_{2}^{2}(10)$ loop in which carbonyl O-atom acts as H-bond acceptor. The dimers are interlinked through comparatively weak C-H...O bonding to form $R_{2}^{2}(16)$ loop in which O-atom of hydroxyl group acts as H -bond acceptor as displayed in Fig. S11 and specified in Table S2. C11 zigzag chain is formed by the combination of O-H...O and C-H...O bonding that runs along b crystallographic axis. Crystal packing is further stabilized by off-set $\pi \ldots \pi$ stacking interaction between aromatic rings of molecules with inter-centroid separation ranges from 3.81 Å to 4.36 Å that result in the formation of zigzag infinite chain along b crystallographic axis as displayed in Fig. S12. Ring off-set for this interaction ranges from $1.670 \AA ̊$ to 2.851 Å. Noncovalent interactions of type $\mathrm{C}-\mathrm{Cl} . . . \pi$ and $\mathrm{C}-\mathrm{O} \ldots \pi$ is also found that helps in further stabilization of crystal packing.

Fig. S10 ORTEP diagram of $\mathbf{3}$ drawn at probability level of 50%. H -atoms are shown by small circle of arbitrary radii.

Fig. S11 packing diagram of $\mathbf{3}$ showing dimerization of molecules through H -bonding. Selected H -atoms are shown for clarity.

Fig. S12 Graphical representation of off-set $\pi \ldots . . \pi$ stacking interaction in 3. H-atoms are not shown for clarity. Distances are measured in Å.

Table S1 Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$ in 1, 2, 3

Bond lengths	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
O1-C1	$1.361(2)$	$1.368(2)$	$1.370(2)$
O1-C9	$1.368(2)$	$1.366(2)$	$1.362(2)$
O2-C7	$1.235(2)$	$1.236(2)$	$1.235(2)$
O3-C8	$1.352(2)$	$1.352(2)$	$1.345(2)$
Cl1-C11	$1.733(2)$	$1.719(2)$	$1.734(2)$
Cl2-C12	-	$1.729(2)$	-
Cl2-C13	$1.735(2)$	-	-
Cl2-C15	-	-	$1.731(2)$
Bond angles	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
C1-O1-C9	$119.3(1)$	$119.3(1)$	$118.8(1)$
O1-C9-C8	$122.7(1)$	$122.3(1)$	$123.0(1)$
C9-C8-O3	$119.1(1)$	$118.9(2)$	$118.5(1)$
C8-C7-O2	$122.0(1)$	$121.5(2)$	$121.3(1)$
O2-C7-C6	$122.9(2)$	$123.6(2)$	$123.9(1)$
C10-C11-Cl1	$120.5(1)$	$120.1(1)$	$119.0(1)$
C12-C13-Cl2	$118.5(1)$	-	-
C12-C11-Cl2	-	$120.3(2)$	-
C10-C15-Cl2	-	-	$119.6(1)$

Table S2: Hydrogen-bond geometric features with symmetry codes for compounds 1, 2 and 3

Compound	$D-H \cdots A$	D-H	H \cdots A	D...A	D-H \cdots A
1	O3-H3A‥02	0.82	2.36	2.7715 (15)	112
	O3-H3A $\cdots 2^{\text {i }}$ (i) $-x+3,-y+1,-z$	0.82	1.94	2.6820 (14)	150
2	O3-H3A \cdots O2ii ${ }^{\text {(ii) }}$ - $-x,-y+1,-z+1$	0.82	1.94	2.6973 (18)	154
	C13-H13..OO3ií (iii) $-x+1,-y+1,-z+1$	0.93	2.47	3.247 (2)	141
3	O3-H3A…02	0.82	2.35	2.7690 (17)	112
	O3-H3A‥O2 ${ }^{\text {iv (iv) }-x,-y,-z ~}$	0.82	1.98	2.6846 (16)	144
	C13-H13 $\cdots{ }^{\text {O }}$ (v) $-\mathrm{x},-\mathrm{y}+1,-z$	0.93	2.48	3.181 (2)	132

