Supporting Information

Efficient removal of methylene blue dye from an aqueous solution using silica nanoparticle crosslinked acrylamide hybrid hydrogels

M. Maria Rahman,^{a,b} Jannat Al Foisal,^a Hirotaka Ihara^{a,c} and Makoto Takafuji ^{a*}

- ^a Department of Applied Chemistry and Biochemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, Japan.
- ^b Department of Chemistry, Faculty of Science, Jagannath University, Dhaka-1100, Bangladesh.
- ^c Okinawa College, National Institute of Technology, 905 Henoko, Nago, Okinawa, 905-2192, Japan.

Corresponding author Email: takafuji@kumamoto-u.ac.jp

Scheme S1

Scheme S1 Schematic representation of the copolymerization reaction of M and A with S by free radical polymerization.

Fig. S2 FT-IR spectra of *p*MS-Si and *p*AS-Si before and after adsorption of MB dye.

Fig. S3. TEM images and DLS of (a) pMS(5)-Si(5) and (b) pSA(5)-Si(5) hydrogels and (c) Si (5) only.

Fig. S4 Equilibrium swelling behavior of *p*MS-Si and *p*AS-Si hydrogels ratio (5:10-5:15) in water at 20 °C.

Fig.S5. Swelling behaviour of *p*MS-Si and *p*AS-Si hydrogels (a) in water and (b) in MB solution at 20 $^{\circ}$ C.

Fig S6 Plot of swelling kinetic models Fikian diffusion model (a) in water and (b) in aq. MB solution and Schott's second-order model for *p*MS-Si and *p*AS-Si hydrogels (c) in water and (d) in MB solution at 20 $^{\circ}$ C.

Table S1

Hydrogels	Fickian diffusion model				Schott's second-order kinetic model			
	n	k x 10 ⁻²	$\frac{D \times 10^{-4}}{(cm^2 s^{-1})}$	R ²	$\frac{\text{ESR}_{\text{exp}}^{a}}{(\text{g g}^{-1})}$	$\frac{\text{ESR}_{\text{cal}}^{b}}{(\text{g g}^{-1})}$	k x 10 ⁻⁴ (g g ⁻¹ min ⁻¹)	R ²
<i>p</i> MS-Si (in water)	0.35	1.86	2.91	0.961	53.18	56.17	2.86	0.998
<i>p</i> AS-Si (in water)	0.43	1.57	3.03	0.958	59.75	60.97	4.98	0.996
<i>p</i> MS-Si (in MB aq.)	0.28	1.02	1.87	0.989	28.45	28.49	9.33	0.999
<i>p</i> AS-Si (in MB aq.)	0.12	1.17	1.35	0.978	31.94	32.57	9.25	0.999

Table S1Swelling kinetic parameters of pMS-Si and pAS-Si hydrogels in water and aqueous solution
of MB dye

^a Experimental equilibrium swelling capacity

^bCalculated equilibrium swelling capacity

Fig. S7 Influence of temperature on adsorption of MB dye onto *p*MS-Si and *p*AS-Si hydrogels. (Initial MB concentration = 50 mg L^{-1} , Adsorbent amount = 80 mg m L^{-1} , pH = 9, Temperature = 25 °C).

Fig. S8 Pseudo-first-order kinetic model for adsorbing MB dye onto *p*MS-Si and *p*AS-Si hydrogels. (Initial MB concentration = 50 mg L^{-1} , Adsorbent amount = 80 mg m L^{-1} , pH = 9, Temperature = 25 °C).

Fig. S9 Desorption studies of *p*MS-Si and *p*AS-Si hydrogels at different cycles.

Fig. S10 Effect of contact time for adsorption of MB dye on Si. (MB concentration 50 mgL⁻¹, amount of Si 80 mg mL⁻¹, pH 9 and contact time 120 min, 25 $^{\circ}$ C).

Figure S10