Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

TiO₂/g-C₃N₄ heterojunction hollow porous nanofibers as superior visible-light photocatalysts

for H₂ evolution and dye degradation

Jing Liu,^a Dianming Li,^a Xiaofeng Liu,^b Jie Zhou,^a Hong Zhao,^c Nü Wang,^a Zhimin Cui,^{*a} Jie Bai,^b

and Yong Zhao*a

a. Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of

Education, Beijing Key Laboratory of Bioinspired Energy Materials and Devices, School of

Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University,

Beijing, 100191 (P. R. China). E-mail: zhaoyong@buaa.edu.cn; cuizhm@buaa.edu.cn

Inner Mongolia Key Laboratory of Industrial Catalysis, Chemical Engineering College. Inner
Mongolia University of Technology, Hohhot, 010051 (P. R. China).

c. Beijing University of Chemical Technology, Beijing 100029 (P. R. China).

Fig. S1 a) SEM image of C-NPs. b) SEM image of pristine TBOT/C-NPs/PVP nanofibers. The inset is high magnification micrograph. c) TEM image of HP-TiO₂ nanofibers.

Fig. S2 a) SEM image of HP-TiO₂ nanofibers. b) Diameter distribution of HP-TiO₂ nanofibers. The

average diameter is 1.37 µm.

Fig. S3 SEM images of a) P-TiO₂ nanofibers and c) P-TiO₂/C₃N₄-50% composite nanofibers. b, d)

The magnified SEM images of image a and b.

Fig. S4 a) HR-TEM image of P-TiO₂/C₃N₄-50% nanofibers. b) EDS element mapping images for

P-TiO₂/C₃N₄-50% nanofibers, indicating the existence of Ti, O, N. Scale bars are 500 nm.

Fig. S5 Optical images of HP-TiO₂, HP-TiO₂/C₃N₄ nanofibers decorated with different content of $g-C_3N_4$ (10%, 30%, 50% and 70%) and pristine $g-C_3N_4$.

In order to investigate the effect of g-C₃N₄ content in the heterojunction catalysts. Different concentration of CY solution was used to synthesis HP-TiO₂/C₃N₄ nanofibers. The as prepared HP-TiO₂/C₃N₄ nanofibers are labelled as HP-TiO₂/C₃N₄-x (x=10%, 30%, 50%, 70%), where x indicates the volume concentration of CY aqueous solution. Meanwhile, bare HP-TiO₂ nanofibers and g-C₃N₄ were also fabricated by the same processes as above. Pristine g-C₃N₄ presents typical faint yellow. HP-TiO₂ nanofibers show purely white, while composite nanofibers reveal diverse yellows from light to dark, resulting from different content of g-C₃N₄ coated on the TiO₂ substrate. As the

concentration of CY aqueous solution increases, the color of composite photocatalyst gets darker (Figure S5). Pure S-TiO₂ nanofibers without adding C nanoparticles in the precursor, exhibit relative smooth surface (Fig. S6a). Bare HP-TiO₂ nanofibers exhibit hollow and porous structure (Fig. S6b). Morphologies of HP-TiO₂/C₃N₄-x nanofibers are shown in Fig. S6c-e. It is obvious that in the low concentration of 30% CY, g-C₃N₄ roots into the mesoporous nanofibers and form a uniform layer attached to the nanofiber tightly. With the concentration of CY solution increasing to 50%, g-C₃N₄ nanosheets aggregate on the surface of nanofibers and form a thin layer around the TiO₂ nanofiber substrate and form some bubbles on parts of the nanofibers. When the concentration adds to 70%, the nanosheets aggregate closely both on the outer and inner spaces of HP-TiO₂ nanofibers. It is obviously that clusters of g-C₃N₄ nanosheets block the hollow space of HP-TiO₂ nanofibers. As a contrast, S-TiO₂/C₃N₄-50% was observed that the g-C₃N₄ nanosheets gather independently from S-TiO₂ nanofibers with only small part contacting to the substrate (Fig. S6f). It confirms that the g-C₃N₄ nanosheets are in situ grown on both outside and inside of HP-TiO₂ nanofibers due to the hollow porous structure of substrate.

Fig. S6 SEM images of a) S-TiO₂ nanofibers, b) HP-TiO₂ nanofibers, c-e) HP-TiO₂/C₃N₄-30%, HP-TiO₂/C₃N₄-50% and HP-TiO₂/C₃N₄-70%, f) S-TiO₂/C₃N₄-50% nanofibers. Insets show cross section images of HP-TiO₂, HP-TiO₂/C₃N₄-30%~70% and S-TiO₂/C₃N₄-50% nanofibers. Scale bars are 500 nm.

Fig. S7 a, b) XRD patterns and FTIR images of TiO₂, HP-TiO₂/C₃N₄-10%~70% and g-C₃N₄.

Fig. S8 The average weight of P-TiO₂/C₃N₄-50% and HP-TiO₂/C₃N₄-50% derived by immersing 50

mg P-TiO₂ and HP-TiO₂ in 50% CY solution followed by calcination.

Fig. S9. Cyclic runs for the photocatalytic H₂ production over HPTCN-50%.

Fig. S10 The morphology and elemental mapping images of HP-TiO₂/C₃N₄-50% after four cycling tests. a, b) SEM images of HP-TiO₂/C₃N₄-50% nanofibers. c-d) Elemental mapping images for HP-TiO₂/C₃N₄-50% nanofibers indicating the existence of Ti, O, N.

Fig. S11 a) Reactive species trapping during RhB photodegradation over HP-TiO₂/C₃N₄-50% under visible irradiation for 20 min. b) Photocatalytic curves of HP-TiO₂/C₃N₄-50% for degradation of RhB and MB solution under visible light.

Fig. S12. Cyclic runs for the photocatalytic RhB degradation over HPTCN- 50%.

Samples	BET Surface Area (cm ³ ·g ⁻¹)	Pore Volume (cm ³ ·g ⁻¹)
S-TiO ₂	38.02	0.10
HP-TiO ₂	50.18	0.20
HP-TiO ₂ /C ₃ N ₄ -50%	22.36	0.09
g-C ₃ N ₄	13.20	0.05

Tab. S1 S_{BET} and pore volume of samples

	Cocatalyst	Size	Light Condition	H ₂ Production	Ref.
Photocatalyst				$(\mu mol \cdot g^{-1} \cdot h^{-1})$	
TiO ₂ /g-C ₃ N ₄	1	~150 nm	300W Xe lamp	63.7	[1]
nanowire	I Wt% Pt		(λ>420 nm)		
$TiO_2/g-C_3N_4$		~150 nm	300W Xe lamp	64.0	[2]
nanosphere	1 wt% Pt		(λ>400 nm)		
TiO ₂ /g-C ₃ N ₄	1 0 (D)	~250 nm	300W Xe lamp	80.4	[3]
nanoparticle	1 wt% Pt		(λ>420 nm)		
TiO ₂ /g-C ₃ N ₄		-	350W Xe lamp	210.0	[4]
nanosheet	unknown		(λ>420 nm)		
TiO_2/g - C_3N_4		~10 µm	300W Xe lamp	250.0	[5]
microsphere	0.5 wt% Pt		(λ>420 nm)		
TiO ₂ /g-C ₃ N ₄		0 50	300W Xe lamp	195.0	[6]
hollow nanosphere	unknown	~250 nm	(AM 1.5)		
TiO ₂ /g-C ₃ N ₄		~1.41 µm	300W Xe lamp	189.8	our
nanofiber	1 wt% Pt		(λ>420 nm)		work
TiO ₂ /g-C ₃ N ₄	1 wt% Pt	~1.37	300W Xe lamp		our
hollow nanofiber		μm	(λ>420 nm)	257.8	work

Tab. S2 Visible light performance of TiO_2/g -C₃N₄ photocatalyst with different structures

In comparation with other TiO_2/C_3N_4 photocatalyst, hollow porous TiO_2/C_3N_4 nanofiber structure exhibits high performance, with about 4 times higher than the nanowire and nanosphere structure, 3.2 times the nanoparticle structure and 1.2 times the nanosheet structure. When compared with solid nanofiber (prepared in the same method by ourselves) and hollow nanosphere, HP- TiO_2/C_3N_4 improves H₂ evolution performance by a further 35.8% and 31.8%.

References

- [1] H. Chen, Y. Xie, X. Sun, M. Lv, F. Wu, L. Zhang, L. Li, X. Xu, Efficient charge separation based on type-II g-C₃N₄/TiO₂-B nanowire/tube heterostructure photocatalysts, Dalton Trans., 44 (2015) 13030-13039. https://doi.org/10.1039/c5dt01757b
- [2] X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, Y. Liu, Facile in situ synthesis of plasmonic nanoparticles-decorated g-C₃N₄/TiO₂ heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution, Nanoscale, 8 (2016) 11034-11043. https://doi.org/10.1039/c6nr01491g
- [3] C. Li, Z. Lou, Y. Yang, Y. Wang, Y. Lu, Z. Ye, L. Zhu, Hollowsphere Nanoheterojunction of g-C₃N₄@TiO₂ with High Visible Light Photocatalytic Property, Langmuir, 35 (2019) 779-786. https://doi.org/10.1021/acs.langmuir.8b03867
- [4] Y. Li, X. Feng, Z. Lu, H. Yin, F. Liu, Q. Xiang, Enhanced photocatalytic H₂-production activity of C-dots modified g-C₃N₄/TiO₂ nanosheets composites, J Colloid Interface Sci, 513 (2018) 866-876. https://doi.org/10.1016/j.jcis.2017.12.002
- [5] J. Ma, X. Tan, T. Yu, X. Li, Fabrication of g-C₃N₄/TiO₂ hierarchical spheres with reactive {001} TiO₂ crystal facets and its visible-light photocatalytic activity, Int. J. Hydrogen. Energ, 41 (2016) 3877-3887. https://doi.org/10.1016/j.ijhydene.2015.12.191
- [6] N. Guo, Y. Zeng, H. Li, X. Xu, H. Yu, X. Han, Novel mesoporous TiO₂@g-C₃N₄ hollow core@shell heterojunction with enhanced photocatalytic activity for water treatment and H₂ production under simulated sunlight, J. Hazard. Mater., 353 (2018) 80-88. https://doi.org/10.1016/j.jhazmat.2018.03.044