Supporting information

Irradiation regulates the size of Pt nanoparticles on Au@MnO₂ nanosheets for electrocatalytic hydrogen evolution

Ting Li^{a, b, c}, Yidan Liu^{a, b}, Rongrong Jia^b, Muhammad Yaseen^d, Liyi Shi^b and Lei Huang^{b*}

^a School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China.

^b Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.

^c Jiangxi Province Key Laboratory of Polymer Preparation and Processing, Shangrao Normal University, Shangrao 334001, P. R. China.

^d Institute of Chemical Sciences, University of Peshawar, 25120, KP, Pakistan

*Corresponding authors. Fax: +86-21-66137426; Tel: +86-21-66137426.

E-mail addresses: leihuang@shu.edu.cn (L. Huang)

Fig. S1. TEM images of Au nanoparticles.

Fig. S2. TEM images of Au@MnO₂ nanosheets.

Fig. S3. UV-vis absorption spectra of Au NPs and Au@MnO₂ nanosheets.

Fig. S4. UV-vis absorption spectra of Ag-520/Au@MnO₂.

Fig. S5. UV-vis absorption spectra of Pt-Xe/Au@MnO₂.

Fig. S6. UV-vis absorption spectra of Pt-400/Au@MnO₂.

Fig. S7. Au 4f (a), Mn 2p (b) and Pt 4f (c) XPS spectra of Pt-400/Au@MnO₂.

Fig. S8. Au 4f (a), Mn 2p (b) and Pt 4f (c) XPS spectra of Pt-Xe/Au@MnO₂.

Fig. S9. Electrochemical impedance spectroscopy (EIS) curves of Pt-400/Au@MnO₂, Pt-520/Au@MnO₂.

Fig. S10. Durability test of the Pt-520/Au@MnO₂.

Fig. S11. TEM images of carbon powder supported $Pt-520/Au@MnO_2$ catalyst before and after chronoamperometry measurement for 12 h.

Catalyst	Electrolyte	η (mV) @ 10	Mass activity	Tafel	Referenc
		mA ⋅cm ⁻²	$(\mathbf{A} \cdot \mathbf{mg}_{\mathbf{Pt}}^{-1})$	(mV dec ⁻¹)	e
Pt-520/Au@MnO ₂	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	36	17.5	19	This work
			$(\eta = 50 \text{ mV})$		
20 Wt.% Pt/C	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	41	1.33	34	This work
			$(\eta = 50 \text{ mV})$		
PtAC-MnO ₂	1 M PBS	41	0.8	67	1
			$(\eta = 50 \text{ mV})$		
Pt ₁ /NCNS	$0.5 \text{ M H}_2\text{SO}_4$	40	7.1	-	2
			$(\eta = 50 \text{ mV})$		
Pt/rGO/GCE	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	30	-	33	3
Pt-NiS ₂ @CC	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	60	-	28.9	4
Pt/NPSSF	$0.5 \mathrm{~M~H_2SO_4}$	73	-	49.85	5
Pt-MoS ₂	$0.5 \mathrm{~M~H_2SO_4}$	55	-	41	6
Pt@MoS ₂	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	88.34	-	55.69	7
Pt-MoS ₂	$0.5 \mathrm{~M~H_2SO_4}$	103	-	56	8
1Pt/VS ₂ /CP	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	77	9.81	40.13	9
			$(\eta = 50 \text{ mV})$		
Pt ₅ /HMCS-5.08%	$0.5 \mathrm{~M~H_2SO_4}$	20.7	12.8	28.3	10
			$(\eta = 30 \text{ mV})$		
K ₂ PtCl ₄ @NC-M	$0.5 \mathrm{~M~H_2SO_4}$	11	5.6	21	11
			$(\eta = 20 \text{ mV})$		
MoS _x /CNTs/Pt	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	25	-	27	12
Pt/Ru/VC	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	23	2.3	30.6	13
			$(\eta = 40 \text{ mV})$		
Pt1/OLC	0.5 M H ₂ SO ₄	38	7.4	36	14
			$(\eta = 38 \text{ mV})$		
Pt@NOMC-A	0.5 M H ₂ SO ₄	8	1.637	43	15
			$(\eta = 50 \text{ mV})$		
Pt/G5-(MoS2)5	0.5 M H₂SO₄	33	-	23	16
Pt _{1.8} MoS ₂	0.5 M H ₂ SO ₄	80	-	48	17
Pt/MoS ₂ -80	0.5 M H ₂ SO ₄	31	-	52	18

Table S1. Comparison of HER performance of the Pt-based catalysts.

- 1. J.-X. Wei, M.-Z. Cao, K. Xiao, X.-P. Guo, S.-Y. Ye and Z.-Q. Liu, *Small Struct.*, 2021, **2**, 2100047.
- 2. J. Li, M. N. Banis, Z. Ren, K. R. Adair, K. Doyle-Davis, D. M. Meira, Y. Z. Finfrock, L. Zhang, F. Kong, T. K. Sham, R. Li, J. Luo and X. Sun, *Small*, 2021, **17**, e2007245.
- 3. S. Ghasemi, S. R. Hosseini and S. Nabipour, J. Iran. Chem. Soc., 2018, 16, 101-109.
- 4. K. Li, J. Xu, C. Chen, Z. Xie, D. Liu, D. Qu, H. Tang, Q. Wei, Q. Deng, J. Li and N. Hu, *J. Colloid Interface Sci.*, 2021, **582**, 591-597.
- 5. Y. Tan, Y. Wei, K. Liang, L. Wang and S. Zhang, Int. J. Hydrogen Energy, 2021, 46,

26340-26346.

- L. Mei, X. Gao, Z. Gao, Q. Zhang, X. Yu, A. L. Rogach and Z. Zeng, *Chem. Commun.*, 2021, 57, 2879-2882.
- Y. Li, Q. Gu, B. Johannessen, Z. Zheng, C. Li, Y. Luo, Z. Zhang, Q. Zhang, H. Fan, W. Luo, B. Liu, S. Dou and H. Liu, *Nano Energy*, 2021, 84.
- 8. M. Li, Y.-C. Kuo, X. Chu, D. Chu and J. Yi, *Emergent Mater.*, 2021, 4, 579-587.
- J. Zhu, L. Cai, X. Yin, Z. Wang, L. Zhang, H. Ma, Y. Ke, Y. Du, S. Xi, A. T. S. Wee, Y. Chai and W. Zhang, *ACS Nano*, 2020, 14, 5600-5608.
- 10. X. K. Wan, H. B. Wu, B. Y. Guan, D. Luan and X. W. D. Lou, *Adv. Mater.*, 2020, **32**, e1901349.
- 11. H. Jin, S. Sultan, M. Ha, J. N. Tiwari, M. G. Kim and K. S. Kim, *Adv. Funct. Mater.*, 2020, **30**.
- Y. Zhan, Y. Li, Z. Yang, X. Wu, M. Ge, X. Zhou, J. Hou, X. Zheng, Y. Lai, R. Pang, H. Duan, X. Chen, H. Nie and S. Huang, *Adv. Sci.*, 2019, 6, 1801663.
- W. Luo, J. Gan, Z. Huang, W. Chen, G. Qian, X. Zhou and X. Duan, *Front. Mater.*, 2019,
 6.
- D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y. A. Haleem, S. Duan, J. Lu, B. Ge, P. M. Ajayan, Y. Luo, J. Jiang and L. Song, *Nat. Energy*, 2019, 4, 512-518.
- 15. Y. Yin, T. Liu, D. Liu, Z. Wang, Q. Deng, D. Qu, Z. Xie, H. Tang and J. Li, *J. Colloid Interface Sci.*, 2018, **530**, 595-602.
- Z. Gao, M. Li, J. Wang, J. Zhu, X. Zhao, H. Huang, J. Zhang, Y. Wu, Y. Fu and X. Wang, *Carbon*, 2018, **139**, 369-377.
- 17. X. Chia, N. A. A. Sutrisnoh and M. Pumera, ACS Appl. Mater. Interfaces, 2018, 10, 8702-8711.
- 18. W. Ren, H. Zhang and C. Cheng, *Electrochim. Acta*, 2017, **241**, 316-322.