Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Metal Free Oxidative Decarbonylative Halogenation of Fused imidazoles

Davinder Singh,^{a,b} Javeed Ahmad Tali,^{a,b} Gulshan Kumar,^{a,b} Ravi Shankar^{a,b}*

^aNatural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

Table of Contents

1. General information	S2
2. General experimental procedure for the synthesis of starting compounds	S2
3. Typical experimental procedure for the synthesis of final compounds (2, 6, 8 and 3)	S4
4. ¹ H, ¹³ C NMR and mass spectra of the products	S11
5. References	S48

1. General information.

All reactions were carried out using pre-dried reaction tube. Commercially available chemicals were purchased from Sigma-Aldrich and Alfa Aesar Pvt. Ltd., India. These chemicals were used without further purification. Progress of the reactions was monitored by thin-layer chromatography (TLC) plates visualized by UV light, I2 and by treating the plates with dragendorff reagent followed by heating. Silica-gel column chromatography (100–200 mesh) was used for purification.1H and 13C NMR spectra were recorded on Brucker-Avance DPX FT-NMR 500 and 400 MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl3: 7.26 ppm). Carbon nuclear magnetic resonance spectra (13C NMR solvent CDCl3:77.0 ppm) were recorded at 125 MHz or 100 MHz. Signal multiplicity is expressed as follows: s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet). J values are given in hertz (Hz). Mass spectra were obtained using Q-TOF-HR/MS spectrometer using electron spray ionization.

2. General experimental procedure for the synthesis of starting compounds

2.1 Synthetic scheme and procedure for the synthesis of 2-Phenylimidazo[1,2-*a*]pyridine-3-carbaldehyde (1)

Fig.1. Synthesis of 2-phenylimidazo[1,2-a]pyridine-3-carbaldehyde

2-Phenylimidazo[1,2-a]pyridine^[1]: 2-aminopyridine (10 mmol) and phenacyl bromide (10 mmol) were dissolved in 20 mL ethanol after in a 50 mL round bottom flask. After that sodium bicarbonate (12 mmol) was added to the above solution with

stirring. The reaction mixture was continued stirred at room temperature for 8-10 h, and the progress of reaction was monitored by TLC. After completion of the reaction, ethanol was evaporated by rotavapor. The resulting mixture was quenched by adding 10 mL water and extracted with CH_2Cl_2 (3 × 20 mL) and combined organic layers were washed with brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, 5% methanol in methylene chloride] to yield desired product (1.746 g, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 6.7 Hz, 1H), 7.96 (d, *J* = 7.3 Hz, 2H), 7.86 (s, 1H), 7.64 (d, *J* = 9.1 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.19 – 7.13 (m, 1H), 6.79-6.77 (m, *J* = 6.6 Hz, 1H).

2-Phenylimidazo[1,2-a]pyridine-3-carbaldehyde^[2]: In a stirred solution of 2-phenylimidazo [1, 2-a]pyridine (5 mmol) in 5 mL DMF at 0°C, POCl₃ (0.92 mL, 10 mmol) was added dropwise. The reaction mixture was kept at 0 °C for half an hour and then the reaction mixture heated at 60 °C for 3 h. Completion of the reaction was

monitored by TLC. After completion, the reaction mixture was cooled and quenched with ice. The reaction mixture was extracted with EtOAc (3 x 20 mL), combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, EtOAc in hexane) to obtain the pure product (0.984g, 86% yield). ¹H NMR (400

MHz, CDCl₃) δ 10.08 (s, 1H), 9.67 (d, J = 6.8 Hz, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 2H), 7.62 – 7.56 (m, 1H), 7.54 (d, J = 6.9 Hz, 3H), 7.14 (t, J = 6.7 Hz, 1H).

2.2. Synthetic scheme and procedure for the synthesis of 2-phenylbenzo[d]imidazo[2,1-b]thiazole-3-carbaldehyde (5)

Fig.2. Synthesis of 2-phenylbenzo[d]imidazo[2,1-b]thiazole-3-carbaldehyde

2-Phenylbenzo[d]imidazo[2,1-b]thiazole^[3]:

In a 50 mL round bottom flask, 2-aminobenzothiazole (1g, 6.7 mmol, 1.0 equiv.) and 2-bromo acetophenone (1.592g, 8.3 mmol, 1.2 equiv.) were dissolved into 20 mL of ethanol. The reaction mixture was stirred at 60° C. After completion of the reaction as monitored by TLC, the reaction mixture was cooled, concentrated

under reduced pressure and extracted with EtOAc (3 x 25 mL). The combined organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography using silica gel, EtOAc in hexane to obtain pure benzo[d]imidazo[2,1-b]thiazole in (1.507 g, 90% yield).

2-Phenylbenzo[d]imidazo[2,1-b]thiazole-3-carbaldehyde^[4]:

To a stirred solution of 2-phenylbenzo[d]imidazo[2,1-b]thiazole (1.1g, 4.4 mmol) in 5 mL DMF at 0 °C in 50 mL two-neck round bottom flask, POCl₃ (0.820 mL, 8.8 mmol) was added dropwise. Initially, the reaction mixture was stirred at 0°C for 15 minutes and then heated at 60 °C for 4 h. After completion

of reaction (completion of the reaction was monitored by TLC), the reaction mixture was cooled, quenched with ice and extracted with EtOAc (3 x 20 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, EtOAc in hexane) to obtain the pure product (0.978g, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 9.22 – 9.18 (m, 1H), 7.78 – 7.71 (m, 3H), 7.56 – 7.50 (m, 4H), 7.45 – 7.40 (m, 1H).

2.3. Synthetic scheme and procedure for the synthesis of N-protected benzimidazole-2-carbaldehyde (7)

Fig. 3. Synthesis of N-protected benzimidazole-2-carbaldehyde

2-Methyl-1H-benzo[d]imidazole^[5]:

In an oven dried sealed tube, a mixture of 1,2-phenylenediamine (500 mg, 4.6 mmol) and malonic acid (2.4 g, 23 mmol) was dissolved in 10 ml of 1,4-dioxane and heated at 120°C on magnetic stirrer for 10 hours. On completion of reaction as monitored by TLC,

the reaction mixture was neutralised using saturated sodium bicarbonate solution (20 mL) and organic part was

extracted with ethyl acetate (3 x 20 mL). The combined organic layer was washed with brine solution, dried over Na_2SO_4 and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, 0-5% methanol in DCM) to obtain 2-methyl-1H-benzimidazole as white solid (460 mg, 75% yield). NMR data of the product was compared with literature.

1-Methyl-2-methyl-1*H*-benzo[d]imidazole^[6]:

To a solution of 2-methyl-1*H*-benzo[d]imidazole (400 mg, 3.0 mmol) in THF (5 mL) at
CHO 0°C, sodium hydride (180 mg, 4.5 mmol) was added portion wise. After stirring for 15 minutes, methyl iodide solution (2.0 M in tert-butyl methyl ether, 521 mg, 3.69 mmol)

was slowly added. The reaction was allowed to warm up to rt and stirred until the completion of reaction as monitored by depletion of starting benzimidazole (2–3 hours). The reaction was then quenched with water, extracted with EtOAc (3 x 15 mL) and dried over Na₂SO4. The combined organic layer was concentrated under reduced pressure and purified using silica gel chromatography (0-5% methanol in DCM as eluent) to afford the corresponding alkylated benzimidazole (350 mg, 79% yield).

1-Methyl-1*H*-benzo[d]imidazole-2-carbaldehyde:

1-methyl-2-methyl-1*H*-benzo[d]imidazole (350 mg, 2.39 mmol), selenium dioxide (527 mg, 4.79 mmol) was stirred at 85° C in a 50 mL round bottom flask. After 8 hr (reaction progress was monitored by TLC), the reaction mixture was filtered through a small bed of Celite and concentrated under reduced pressure. The crude product is purified through column chromatography using silica gel, methanol in DCM to afford pure product (205 mg, 53% yield); ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.49 (d, J = 4.3 Hz, 2H), 7.41 (ddd, J = 8.1, 5.2, 3.0 Hz, 1H), 4.17 (s, 3H).

3. Typical experimental procedure for the synthesis of final compounds

3.1. Typical procedure for the synthesis of 3-iodo-2-phenylimidazo[1,2-a]pyridine (2a) :

To a stirred solution of 2-phenylimidazo[1,2-a]pyridine-3-carbaldehyde **1a** (111 mg, 0.5 mmol) in acetonitrile (3 mL), TBHP (70 % in water, 192 μ L, 1.5 mmol) and molecular iodine (127 mg, 0.5 mmol) were added. The mixture was heated at 60°C for 3 h (monitored by TLC). After completion, the reaction mixture was cooled to

room temperature and saturated sodium thiosulfate solution was added. The organic layer was extracted with EtOAc (10×3 ml), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (EtOAc/n-hexane = 1:9) to afford compound **2a** as an off white solid (131 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 6.7 Hz, 1H), 8.07 (d, *J* = 7.4 Hz, 2H), 7.68 (d, *J* = 8.9 Hz, 1H), 7.51-7.48 (m, 2H), 7.43 – 7.39 (m, 1H), 7.32 – 7.28 (m, 1H), 6.98-6.95 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 147.93, 147.77, 133.22 , 128.58, 128.50, 128.43, 126.62, 125.92, 117.53, 113.42, 59.65; ESI-LCMS (*m/z*): calcd for C₁₃H₁₀IN₂ [M + H]⁺, 320.98; found, 321.03.

3-Iodo-6-methyl-2-phenylimidazo[1,2-a]pyridine (2b): Yield (142 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.2 Hz, 2H), 8.01 (s, 1H), 7.55 (d, J = 9.1 Hz, 1H), 7.50-7.46 (m, J = 7.5 Hz, 2H), 7.41-7.37 (m, J = 7.4 Hz, 1H), 7.13 (d, J = 9.1 Hz, 1H), 2.42 (s, 3H);¹³C NMR (126 MHz, CDCl₃) δ 147.59, 147.06,

133.54, 128.89, 128.50, 128.36, 128.29, 124.33, 123.14, 116.88, 59.11, 18.39. ESI-HRMS (m/z): calcd for $C_{14}H_{12}IN_2 [M + H]^+$, 335.0045; found, 335.0048.

8-Iodo-5-methyl-2-phenylimidazo[1,2-a]pyridine (2c): Yield (116 mg, 69%); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 6.8 Hz, 1H), 8.06 (d, J = 7.4 Hz, 2H), 7.50-7.46 (m, 2H), 7.41 (d, J = 13.4 Hz, 2H), 6.78 (d, J = 7.0 Hz, 1H), 2.46 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 148.43, 147.76, 136.69, 133.71, 128.45, 128.35, 128.23, 125.64, 116.01, 115.77, 58.25, 21.31. ESI-HRMS (*m/z*): calcd for C₁₄H₁₂IN₂ [M + H]⁺, 335.0045; found, 335.0048.

6-Chloro-3-iodo-2-phenylimidazo[1,2-a]pyridine (2d): Yield (120 mg, 68%);¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 8.05 (d, J = 7.3 Hz, 2H), 7.66 (d, J = 9.4 Hz, 1H), 7.52-7.48 (m, 3H), 7.44 (d, J = 7.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ

148.74, 146.30, 132.82, 128.77, 128.54, 128.50, 128.49, 127.35, 124.66, 121.90, 117.87, 60.41. ESI-HRMS (*m*/*z*): calcd for $C_{13}H_9 ClN_2 [M + H]^+$, 354.9499; found, 354.9503.

6-Bromo-3-iodo-2-phenylimidazo[1,2-a]pyridine (2e): Yield (160 mg, 80%);¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.04 (d, J = 7.1 Hz, 2H), 7.52 – 7.47 (m, 3H), 7.42 (d, J = 7.3 Hz, 1H), 7.33 (dd, J = 9.4, 1.8 Hz, 1H); ¹³C NMR (126 MHz,

CDCl₃) δ 148.86, 146.66, 133.11, 129.08, 128.64, 128.50, 128.46, 126.76, 118.20, 108.06, 59.87; ESI-HRMS (*m*/*z*): calcd for C₁₃H₉BrN₂ [M + H]⁺, 398.8994; found, 398.8998.

3-Iodo-2-(3-methoxyphenyl)imidazo[1,2-a]pyridine (2f): Yield (126 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 6.9 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 8.7 Hz, 2H), 7.41-7.37 (m, J = 7.9 Hz, 1H), 7.27 (d, J = 6.8 Hz, 1H), 6.98 - 6.90 (m, 2H), 3.90 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.59, 148.02, 147.83,

134.80, 129.42, 126.59, 125.73, 121.05, 117.60, 114.68, 113.53, 113.31, 59.82, 55.42. ESI-HRMS (*m/z*): calcd for C₁₄H₁₂IN₂O [M + H]⁺, 350.9994; found, 350.9998.

3-Iodo-2-phenylimidazo[**1,2-a**]**pyridine-7-carbonitrile (2g)**: Yield (92 mg, 54%); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, *J* = 7.1, 0.9 Hz, 1H), 8.06 (t, *J* = 1.8 Hz, 1H), 8.05 – 8.04 (m, 1H), 8.01 (dd, *J* = 1.6, 0.9 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.48 –

7.43 (m, 1H), 7.09 (dd, J = 7.1, 1.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.16, 146.04, 132.48, 129.19, 128.63, 127.36, 123.25, 117.40, 113.48, 108.23, 63.85. ESI-HRMS (*m*/*z*): calcd for C₁₄H₉IN₃ [M + H]⁺, 345.9841; found, 345.9952.

3-Bromo-2-phenylimidazo[1,2-a]pyridine (2h): Yield (83 mg, 61%); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 6.9 Hz, 1H), 8.13 (d, J = 7.3 Hz, 2H), 7.65 (d, J = 9.1 Hz, 1H), 7.48 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 4.4 Hz, 1H), 6.94 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 4.4 Hz, 1H), 6.94 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 4.4 Hz, 1H), 6.94 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 4.4 Hz, 1H), 6.94 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H)

 $J = 6.5 \text{ Hz}, 1\text{H}; {}^{13}\text{C NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 145.48, 142.74 , 132.77, 128.79, 128.45, 128.31, 127.94, 125.10, 123.97, 117.66, 113.07; ESI-HRMS ($ *m/z*): calcd for C₁₃H₁₀BrN₂ [M + H]⁺, 273.0027; found, 273.0029.

3-Bromo-6-methyl-2-phenylimidazo[1,2-a]pyridine (2i): Yield (95 mg, 66%); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.3 Hz, 2H), 7.96 (s, 1H), 7.54 (d, J = 9.2 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.38 (d, J = 7.3 Hz, 1H), 7.11 (d, J = 9.1 Hz, 1H), 2.40

(s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 144.43, 142.25, 128.79, 128.50, 128.46, 128.24, 127.85, 127.30, 123.08, 121.71, 116.88, 18.39. ESI-HRMS (*m/z*): calcd for C₁₄H₁₂BrN₂ [M + H]⁺, 287.0184; found, 287.0182.

3-Bromo-7-methyl-2-phenylimidazo[1,2-a]pyridine (2j): Yield (84 mg, 59%)¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, J = 8.3, 1.2 Hz, 2H), 8.04 (d, J = 7.0 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.40 – 7.35 (m, 2H), 6.75 (dd, J = 7.0, 1.5 Hz, 1H), 2.43 (s,

3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.84, 142.32, 136.21, 133.04, 128.45, 128.16, 127.81, 123.15, 116.03, 115.69, 90.83, 21.37. ESI-HRMS (*m/z*): calcd for C₁₄H₁₂BrN₂ [M + H]⁺, 287.0184; found, 287.0182.

3-Chloro-2-phenylimidazo[1,2-a]pyridine (2k): Yield (43 mg, 38%); ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 8.11 (m, 3H), 7.71 (d, J = 9.1 Hz, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.40 (d, J = 7.4 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 6.95 (t, J = 6.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 143.71, 139.70, 133.01, 128.59, 128.35, 127.60, 125.11, 122.71,

117.62, 113.09, 105.82; ESI-HRMS (m/z): calcd for C₁₃H₁₀ClN₂ [M + H]⁺, 229.0533; found, 229.0536.

3-Chloro-6-methyl-2-phenylimidazo[1,2-a]pyridine (2l): Yield (56 mg, 46%); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 8.3, 1.2 Hz, 2H), 7.84 (s, 1H), 7.53 – 7.44 (m, 3H), 7.36 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 9.2 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (101

MHz, CDCl₃) δ 142.79, 139.47, 132.71, 128.53, 128.10, 128.07, 127.79, 127.37, 122.77, 120.33, 116.91, 105.26, 18.38. ESI-HRMS (*m/z*): calcd for C₁₄H₁₂ClN₂ [M + H]⁺, 243.0689; found, 243.0692.

3-Chloro-7-methyl-2-phenylimidazo[1,2-a]pyridine (2m): Yield (59 mg, 49%); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.2 Hz, 2H), 7.99 (d, J = 7.0 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.38 (dd, J = 13.3, 6.0 Hz, 2H), 6.77 (d, J = 7.0 Hz, 1H), 2.43 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 144.12, 139.34, 136.09, 132.62, 128.54, 128.13, 127.43, 121.91, 116.01, 115.62, 105.04, 21.42; ESI-HRMS (m/z): calcd for C₁₄H₁₂ClN₂ [M + H]⁺, 243.0689; found, 243.0695.

3.2. Typical procedure for the synthesis of 3-iodo-2-phenylbenzo[d]imidazo[2,1-b]thiazole (6a):

2-phenylbenzo[d]imidazo[2,1-b]thiazole-3-carbaldehyde **5a** (127 mg, 0.5 mmol) dissolved in acetonitrile (3 mL) was mixed with aq. TBHP (70 % in water, 192μ L, 1.5 mmol) and molecular iodine (127 mg, 0.5 mmol). The reaction was stirred at 60°C for

6h and monitored by TLC for completion. The mixture was cooled to rt, quenched with saturated sodium thiosulfate and extracted with EtOAc (10×3 ml). The combined organic layer was dried over Na₂SO₄, concentrated using rotary evaporator and purified by column chromatography on silica gel using n-hexane/ethyl acetate (1:9) as an eluent to obtain compound **6a** as white solid (128 mg, 68 % yield). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.2 Hz, 1H), 8.04 (dd, J = 8.2, 1.0 Hz, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.48-7.44 (m, 3H), 7.40 – 7.34 (m, 2H).¹³C NMR (126 MHz, CDCl₃) δ 146.19 (C), 141.27 (C), 132.63 (C), 132.53 (C), 130.10 (C), 128.53 (CH), 127.80 (CH), 126.71(CH), 126.13 (CH), 125.20 (CH), 124.23 (CH), 113.53 (CH), 108.46 (C). ESI-HRMS (*m/z*): calcd for C₁₅H₁₀IN₂S [M + H]⁺, 376.9609; found, 376.9613.

3-Iodo-2-(p-tolyl)benzo[d]imidazo[2,1-b]thiazole (6b): Yield (142 mg, 73%); ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 2H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.22 (s, 2H),

2.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.62, 137.95, 133.80, 130.60, 130.52, 129.83, 129.05, 128.02, 127.55, 125.46, 125.24, 124.31, 113.89, 53.77, 21.39 . ESI-HRMS (*m/z*): calcd for C₁₆H₁₂IN₂S [M+ H]⁺, 390.9766; found, 390.9774.

3-Iodo-2-(4-isobutylphenyl)benzo[d]imidazo[2,1-b]-thiazole (6c): Yield (150 mg, 70%); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 7.9 Hz, 2H), 7.74 (d, J = 8.0 Hz, 1H), 7.53-7.49 (m, 1H), 7.45-7.41 (m, 1H), 7.28 (d, J = 3.8 Hz, 2H), 2.56 (d, J = 7.1 Hz, 2H), 1.95 (dt, J = 13.4, 6.7 Hz, 1H),

0.97 (d, J = 6.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 150.98, 150.45, 141.75, 133.81, 130.83, 130.51, 129.10, 127.81, 125.44, 125.22, 124.30, 113.89, 53.88, 45.30, 30.26, 22.45. ESI-HRMS (m/z): calcd for C₁₉H₁₈IN₂S [M+ H]⁺, 433.0235; found, 433.0238.

2-(2-Chlorophenyl)-3-iodobenzo[d]imidazo[2,1-b]thiazole (6d): ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 8.2 Hz, 1H), 7.74 (d, J = 7.9 Hz, 1H), 7.50 (dd, J = 11.1, 7.0 Hz, 3H), 7.43 (d, J = 7.8 Hz, 1H), 7.39 – 7.34 (m, 2H). 13 C NMR (101 MHz,

CDCl₃+ CH₃OD) δ 150.49, 149.05, 134.18, 133.31, 132.54, 132.26, 132.02, 130.30, 130.24, 129.84, 126.62, 125.71, 124.38 , 113.87 , 59.35; LCMS (ESI-TOF): m/z: [M+H]+ calctd for $C_{15}H_9CIIN_2S$, 410.92; found, 411.10.

3-Bromo-2-phenylbenzo[d]imidazo[2,1-b]thiazole (6e): Yield (92 mg, 53%); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 7.3 Hz, 2H), 7.70 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.4 Hz, 3H), 7.37 (d, J = 6.8 Hz, 2H); ¹³C NMR (101

MHz, CDCl₃) δ 148.14, 144.40, 132.84, 130.26, 128.43, 127.93, 127.28, 125.90, 125.23, 124.24, 113.73, 113.52, 91.88; ESI-HRMS (*m/z*): calcd for C₁₅H₁₀BrN₂S [M+ H]⁺, 328.9748; found, 328.9747.

3-Bromo-2-(4-fluorophenyl)benzo[d]imidazo[2,1-b]thiazole (6f): Yield (81 mg, 49%); 1H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.1 Hz, 1H), 8.00 (s, 2H), 7.71 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.40 (d, J = 7.5 Hz, 1H), 7.14 (t, J =

8.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl3) δ 133.08 (s), 130.25 (s), 129.13 (d, J = 8.4 Hz), 128.58 (d, J = 8.0 Hz), 126.18 (s), 125.95 (s), 125.32 (s), 125.27 (s), 124.27 (s), 115.53 (d, J = 9.4 Hz), 115.31 (d, J = 9.3 Hz), 113.70 (s), 113.50 (s); found, 346.9660.

3-Chloro-2-phenylbenzo[d]imidazo[2,1-b]thiazole (6g): Yield (49 mg, 35%); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.2 Hz, 1H), 8.05 – 8.01 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.49 - 7.42 (m, 3H), 7.39 - 7.32 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 146.13, 141.20, 132.55, 132.49, 130.03, 128.50, 127.76, 126.66, 126.08, 125.14, 124.17, 113.46, 108.42; ESI-

HRMS (*m*/*z*): calcd for C₁₅H₁₀ClN₂S [M+ H]⁺, 285.0253; found, 285.0262.

3-Chloro-2-(4-methoxyphenyl)benzo[d]imidazo[2,1-b]thiazole (6h): Yield (65 mg, 42%); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.2 Hz, 1H), 7.97 – 7.93 (m, 2H), 7.67 (d, J = 7.9 Hz, 1H), 7.45 - 7.40 (m, 1H), 7.36 - 7.31 (m, 1H), 7.01 - 6.97 (m,

2H), 3.85 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.24, 145.94, 141.17, 132.69, 132.63, 129.97, 128.54, 128.02, 126.07, 125.01, 124.17, 113.93, 113.36, 107.42, 55.33; ESI-HRMS (m/z): calcd for C₁₆H₁₂ClN₂OS [M+ H]⁺, 315.0359; found, 315.0367.

3.3. Typical procedure for the 2-iodo-1-methyl-1H-benzo[d]imidazole (8a):

A mixture of 1-methyl-1*H*-benzo[d]imidazole-2-carbaldehyde **7a** (80 mg, 0.5 mmol), TBHP (70 % in water, 192µL, 1.5 mmol) and molecular iodine (127 mg, 0.5 mmol) in acetonitrile (3 mL) was refluxed at 90°C for 5h and reaction progress was monitored by TLC. The reaction mixture was cooled to room temperature and unreacted iodine was quenched with saturated sodium thiosulphate solution. The resulting mixture was extracted with EtOAc (10×3 ml), dried over Na₂SO₄ and concentrated using rotary evaporator. The residue was purified by column chromatography on silica gel using nhexane/ethyl acetate as an eluent to obtain **8a** as yellow solid (70 mg, 54%yield); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.70 (m, 1H), 7.35 – 7.32 (m, 1H), 7.25 – 7.19 (m, 2H), 3.77 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.45 (C), 136.33 (C), 123.08 (CH), 122.27 (CH), 119.24 (CH), 109.37 (CH), 104.27 (C), 33.73 (CH₃). ESI-HRMS (*m/z*): calcd for C₈H₈IN₂ [M+ H]⁺, 258.9732; found, 258.9729.

1-Ethyl-2-iodo-1H-benzo[d]imidazole (8b): Yield (78 mg, 57%); ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.73 (m, 1H), 7.39 (d, J = 6.9 Hz, 1H), 7.31 – 7.24 (m, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.81, 135.25, 123.00, 122.22, 119.37, 109.30, 102.83, 42.26, 14.87; ESI-HRMS (*m/z*): calcd for C₉H₁₀IN₂ [M+ H],⁺

272.9889; found, 272.9896.

1-Benzyl-2-iodo-1H-benzo[d]imidazole (8c): Yield (114 mg, 68%); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.5 Hz, 2H), 7.23 (d, J = 2.2 Hz, 1H), 7.21 (d, J = 1.3 Hz, 1H), 7.19 (dd, J = 3.5, 1.5 Hz, 1H), 7.16 (d, J = 1.0 Hz, 1H), 7.13 (d, J = 6.2 Hz, 2H), 5.37 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 145.73, 135.81, 135.15, 128.99, 128.14, 126.73,

123.33, 122.52, 119.35, 109.98, 104.20, 50.66 . ESI-HRMS (m/z): calcd for C₁₄H₁₂IN₂ [M+ H],⁺ 335.0045; found, 335.0054.

2-Iodo-4,5-dimethylthiazole (8e): Yield (66 mg, 56%); ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 151.01, 132.85, 94.87, 14.52, 11.07; LCMS (ESI-TOF): m/z: [M+H]+ calctd for C₅H₇INS, 239.93; found, 239.98.

Typical procedure for the synthesis of N-(pyridin-2-yl)benzamide (3a)

To a 25 mL round bottom flask was added 2-phenylimidazo[1,2-*a*]pyridine-3carbaldehyde **1a** (111 mg, 0.5 mmol), acetonitrile (3 mL) and TBHP (70 % in water, 192 μ L, 1.5 mmol). The reaction mixture was then stirred under air atmosphere at 80°C for 15 h. The reaction progress was monitored by TLC and was allowed to cool down after completion. The solvent was removed under reduced pressure and residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as an eluent to provide the desired product **3a** (74 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.28 (dd, J = 4.9, 1.0 Hz, 1H), 7.94 (d, J = 7.1 Hz, 2H), 7.80 – 7.74 (m, 1H), 7.58 (t, J = 7.3 Hz, 1H), 7.51 (t, J = 7.4 Hz, 2H), 7.08 (ddd, J = 7.3, 4.9, 1.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.02, 151.70, 147.47, 138.80, 134.22, 132.27, 128.79, 127.43, 119.92, 114.56. ESI-HRMS (*m/z*): calcd for C₁₂H₁₁N₂O [M+ H],⁺ 199.0871; found, 199.0873.

N-(5-Methylpyridin-2-yl)benzamide (3b): Yield (76 mg, 71%); 1H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.34 (d, J = 8.6 Hz, 1H), 8.11 (d, J = 2.3 Hz, 1H), 8.00 (d, J = 1.2 Hz, 1H), 7.98 (d, J = 1.5 Hz, 1H), 7.59 (dd, J = 11.3, 6.4, 2.6, 1.0

Hz, 2H), 7.51 (ddd, J = 8.3, 2.5, 1.0 Hz, 2H), 2.33 (s, 3H); 13C NMR (101 MHz, CDCl₃) δ 165.91, 149.48, 147.12, 139.50, 132.18, 129.95, 128.35, 127.42, 114.16, 17.73. ESI-HRMS (*m/z*): calcd for C₁₃H₁₃N₂O [M+H],+ 213.1028; found, 213.1031.

N-(4-Methylpyridin-2-yl)benzamide (3c): Yield (72 mg, 68%); ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.26 (s, 1H), 8.12 (d, J = 5.1 Hz, 1H), 7.94 (d, J = 7.3 Hz, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H), 6.90 (d, J = 5.0 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.57, 150.27, 147.25, 134.30, 132.24, 129.91, 128.83, 128.32, 127.28, 121.17, 114.82. 21.51; ESI-HRMS (*m/z*): calcd for C₁₃H₁₃N₂O [M+ H], + 213.1028; found, 213.1031.

N-(5-Chloropyridin-2-yl)benzamide (3d): Yield (69 mg, 60%); ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.39 (d, J = 8.9 Hz, 1H), 8.24 (d, J = 2.3 Hz, 1H), 7.92 (d, J = 7.4 Hz, 2H), 7.72 (dd, J = 8.9, 2.5 Hz, 1H), 7.58 (d, J = 7.3 Hz, 1H), 7.53-7.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.96, 151.32, 147.97, 139.50, 135.37, 133.85, 130.33, 128.61, 128.36, 116.23; ESI-HRMS (*m/z*): calcd for C₁₂H₁₀ClN₂O [M+ H],⁺ 233.0482; found, 233.0483.

N-(Benzo[d]thiazol-2-yl)benzamide (3e): Yield (89 mg, 70%); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 2H), 7.87 – 7.82 (m, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.35 – 7.25 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.01, 159.80,

147.74, 133.10, 132.01, 131.88, 129.03, 127.98, 126.12, 124.02, 121.40, 120.65. ESI-HRMS (*m/z*): calcd for C₁₄H₁₁N₂OS [M+ H],⁺ 255.0592; found, 255.0599.

N-(5-Methylbenzo[d]thiazol-2-yl)benzamide (3f): Yield (79 mg, 59%); ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 8.31 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 7.2 Hz, 1H), 7.95 (d, J = 7.3 Hz, 2H), 7.61 -7.54 (m, 2H), 7.51-7.47 (m, 2H), 2.32 (s, 3H); ¹³C NMR (126

MHz, CDCl₃) δ 165.90, 149.39, 146.80, 139.74, 134.20, 132.22, 129.40, 128.77, 127.44, 114.23, 17.87. LCMS (ESI-TOF): m/z: [M+H]+ calctd for C₁₅H₁₂N₂OS, 268.07; found, 268.13.

N-(Benzo[d]thiazol-2-yl)-3-methoxybenzamide (3g): Yield (88 mg, 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.8 Hz, 2H), 7.86 – 7.82 (m, 1H), 7.34 (dd, J = 8.2, 4.9 Hz, 1H), 7.28 (dt, J = 8.9, 3.3 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.49, 163.47, 160.26, 147.70, 131.86, 130.12, 126.05,

124.10, 123.90, 121.38, 120.61, 114.23, 55.55. ESI-HRMS (m/z): calcd for C₁₆H₁₅N₂O₂S [M+ H],⁺ 285.0698; found, 285.0705.

2,2,6,6-Tetramethylpiperidin-1-yl 2-phenylimidazo[1,2-a]pyridine-3-carboxylate (9) : ¹H NMR (400 MHz, CDCl₃) δ 9.55 (dt, J = 7.0, 1.1 Hz, 1H), 7.74 (dt, J = 9.0, 1.1 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.45 (dtd, J = 8.6, 7.0, 3.4 Hz, 4H), 7.07 (td, J = 7.0, 1.3 Hz, 1H), 1.69 (dd, J = 20.3, 9.7 Hz, 2H), 1.59 – 1.34 (m, 4H), 1.05 (s, 6H), 0.74 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.17, 153.39, 147.45, 135.41, 129.86, 128.79, 128.59, 128.20, 127.98, 117.43,

114.28, 111.02, 60.22, 39.20, 31.85, 21.01, 16.92; ESI-HRMS (*m*/*z*): calcd for C₂₃H₂₈N₃O₂ [M+ H],⁺ 378.2182; found, 378.2184.

3-Iodo-2,8-diphenylimidazo[1,2-a]pyridine (10): Yield (108 mg, 73%); ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 9.76 (d, J = 6.3 Hz, 1H), 8.32 (dd, J = 36.7, 8.4 Hz, 5H),

7.85 (d, J = 3.5 Hz, 2H), 7.77 (d, J = 7.0 Hz, 1H), 7.53 (s, 3H), 7.26 (t, J = 6.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 179.86, 158.42, 147.85, 145.81, 141.88, 132.24, 130.11, 130.05, 129.99, 129.26, 128.94, 127.86, 125.04, 123.79, 121.05, 115.35; ESI-HRMS (m/z): calcd for C₂₀H₁₅N₂O [M+H],+ 299.1184; found, 299.1190.

3-Iodo-2,8-diphenylimidazo[1,2-*a***]pyridine (11):** Yield (88 mg, 67%); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, J = 6.8, 1.0 Hz, 1H), 8.15 – 8.08 (m, 4H), 7.50 (dt, J = 12.3, 7.5 Hz, 4H), 7.44 (d, J = 7.3 Hz, 1H), 7.41 (dd, J = 7.2, 0.9 Hz, 2H), 7.02 (t, J = 7.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.04, 146.78, 135.77, 133.73, 130.25, 129.12, 128.64,

128.49, 128.45, 128.26, 128.24, 125.53, 123.87, 113.20, 60.03. ESI-HRMS (*m/z*): calcd for C₁₉H₁₄N₂I [M+ H],⁺ 397.0202; found, 397.0209.

2,8-Diphenyl-3-(phenylethynyl)imidazo[1,2-*a***]pyridine (12):** Yield (35 mg, 76%); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 7.3 Hz, 2H), 8.36 (d, J = 6.7 Hz, 1H), 8.18 – 8.13 (m, 2H), 7.62 (dd, J = 7.7, 1.7 Hz, 2H), 7.56 – 7.45 (m, 5H), 7.41 (ddd, J = 8.7, 6.2, 1.9 Hz, 5H), 7.00 (t, J = 6.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.00, 143.94 ,136.05, 133.71, 131.28, 130.18, 129.14, 128.72, 128.63 , 128.53, 128.49, 127.45, 124.56, 124.11,

122.85, 113.18, 104.99, 101.40, 78.65. ESI-HRMS (*m/z*): calcd for C₂₇H₁₉N₂[M+ H],⁺ 371.1548; found, 371.1575.

3-Iodo-2-phenylimidazo[1,2-*a*]pyridine (2a)

3-Iodo-6-methyl-2-phenylimidazo[1,2-*a*]pyridine (2b)

3-Iodo-7-methyl-2-phenylimidazo[1,2-a]pyridine (2c)

6-Chloro-3-iodo-2-phenylimidazo[1,2-*a*]pyridine (2d):

6-Bromo-3-iodo-2-phenylimidazo[1,2-*a*]pyridine (2e):

3-Iodo-2-(3-methoxyphenyl)imidazo[1,2-*a*]pyridine (2f):

3-Iodo-2-phenylimidazo[1,2-a]pyridine-7-carbonitrile (2g):

3-Bromo-2-phenylimidazo[1,2-*a*]pyridine (2h):

3-Bromo-6-methyl-2-phenylimidazo[1,2-a]pyridine (2i)

3-Bromo-7-methyl-2-phenylimidazo[1,2-*a*]pyridine (2j)

3-Chloro-2-phenylimidazo[1,2-*a*]pyridine (2k):

3-Chloro-6-methyl-2-phenylimidazo[1,2-*a*]pyridine (2l):

3-Chloro-7-methyl-2-phenylimidazo[1,2-*a*]pyridine (2m):

3-Iodo-2-phenylbenzo[*d*]imidazo[2,1-*b*]thiazole (6a):

3-Iodo-2-(p-tolyl)benzo[d]imidazo[2,1-b]thiazole (6b)

3-Iodo-2-(4-isobutylphenyl)benzo[d]imidazo[2,1-b]-thiazole (6c)

2-(2-Chlorophenyl)-3-iodobenzo[d]imidazo[2,1-b]thiazole(6d):

3-Bromo-2-phenylbenzo[*d*]imidazo[2,1-*b*]thiazole (6e)

3-Bromo-2-(4-fluorophenyl)benzo[d]imidazo[2,1-b]thiazole (6f)

3-Chloro-2-phenylbenzo[*d*]imidazo[2,1-*b*]thiazole (6g):

3-Chloro-2-(4-methoxyphenyl)benzo[*d*]imidazo[2,1-*b*]thiazole (6h):

2-Iodo-1-methyl-1*H*-benzo[d]imidazole (8a)

1-Benzyl-2-iodo-1*H*-benzo[*d*]imidazole (8c)

2-Iodo-4, 5-dimethylthiazole (8e)

N-(Pyridin-2-yl)benzamide (3a)

N-(4-Methylpyridin-2-yl)benzamide (3c):

N-(5-Chloropyridin-2-yl)benzamide (3d):

N-(Benzo[d]thiazol-2-yl)benzamide (3e)

N-(Benzo[d]thiazol-2-yl)-3-methoxybenzamide (3g)

2,2,6,6-Tetramethylpiperidin-1-yl 2-phenylimidazo[1,2-a]pyridine-3-carboxylate (9)

3-Iodo-2,8-diphenylimidazo[1,2-*a*]pyridine (11):

2,8-Diphenyl-3-(phenylethynyl)imidazo[1,2-*a*]pyridine (12):

References

- [1] H. Su, L. Wang, H. Rao, H. Xu, Org. Lett. 2017, 19, 2226-2229.
- [2] Q. Li, M. Zhou, L. Han, Q. Cao, X. Wang, L. Zhao, J. Zhou, H. Zhang, *Chem. Biol. Drug Design* **2015**, *86*, 849-856.
- [3] S. K. Maddili, R. Katla, V. K. Kannekanti, N. K. Bejjanki, B. Tuniki, C. H. Zhou, H. Gandham, *Eur. Med. Chem.* **2018**, *150*, 228-247.
- [4] S. P. Shaik, T. S. Reddy, S. Sunkari, A. V. S. Rao, K. S. Babu, S. K. Bhargava, A. Kamal, Anti-cancer agents Med. Chem. 2019, 19, 347-355.
- [5] S. Sharma, D. Bhattacherjee, P. Das, *Org. Biomol. Chem.* **2018**, *16*, 1337-1342.
- [6] J. Tessier, A. R. Schmitzer, *RSC Advances* **2020**, *10*, 9420-9430.