Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Effect of Preparation Conditions and Co-Pi Groups as Noble Metalfree Redox Mediator and Hole Extractor to Boost Photoelectrochemical Water Oxidation for 1D Nanorod α-Fe₂O₃

Ai Qin, ^{#a} Wanqing Fang, ^{#a} Yimin Lin ^a and Li Fu ^{*a}

^a Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Colloge of Chemistry and Material Science, Fujian Normal University, Cangshan Campus, No.8 Shangsan Road, Fuzhou, Fujian 350007, China.

[#] Ai Qin and Wanqing Fang contributed equally to this work.

*Corresponding author

E-mail address: wodimeige@163.com

Figure S1 SEM image of cross-section of Fe₂O₃ at 600°C calcination temperature photoanodes.

Figure S2 EDS scanning spectra of (a)α-Fe₂O₃ and (b)α-Fe₂O₃/Co-Pi photoanodes.

Table S1 Contents of corresponding elements in α -Fe₂O₃ and α -Fe₂O₃/Co-Pi photoanodes obtained from EDS.

Element	Wt%		At%	0
	a-Fe ₂ O ₃	α-Fe ₂ O ₃ /Co-Pi	a-Fe ₂ O ₃	α-Fe ₂ O ₃ /Co-Pi
ОК	6.21	5.97	21.29	20.71
FK	3.10	3.13	8.96	9.15
Si k	7.47	8.32	14.58	16.45
Sn K	54.03	57.17	24.95	26.73
Ca K	4.09	4.37	5.60	6.05
Fe K	25.08	21.04	24.62	20.91

Figure S3 TEM image with 50000x magnification of Fe_2O_3 (a) without or (b) with dashed frame. Inside the dashed frame was Fe_2O_3 with short nanorod morphology.

Figure S4 XRD for FTO substrate, Fe_2O_3 calcined at various temperatures of 500, 525, 550, 575, and 600°C, SnO_2 (black five-pointed star), α -Fe₂O₃(red snowflake).

Sample	Fe	22 O 3	Fe ₂ O ₃ /Co-Pi	
Name	Atomic %	PPAt. %	Atomic %	PP At. %
C 1s	36.67	41.8	35.76	44.28
Fe 2p	19.04	5.43	14.02	4.71
O 1s	44.28	52.77	43.46	48.54
Co 2p	0	0	4.74	1.09
Р 2р	0	0	2.02	1.38

Table S2 The content of each element in Fe_2O_3 and Fe_2O_3/Co -Pi photoanodes obtained from XPS.

Figure S5 UV-vis absorption spectra of Fe₂O₃ prepared with various hydrothermal time of 2, 4, 6, 8, and 10 h.

Figure S6 UV-vis absorption spectra of Fe₂O₃ prepared with various concentration of Fe(NO₃)₃·9H₂O precursor of 2, 4, 6, 8, 10, and 12 mM.

Figure S7 UV-vis absorption spectra of Fe₂O₃ calcined at various temperatures of 500, 525, 550, 575, and 600°C.

Figure S8 LSV curves of bare α-Fe₂O₃ prepared with various hydrothermal time of 2, 4, 6, 8, and 10 h. The dotted line represents the dark state current density.

Figure S9 LSV curves of bare α-Fe₂O₃ prepared with various concentration of Fe(NO₃)₃·9H₂O precursor of 2, 4, 6, 8, 10, and 12 mM. The dotted line represents the dark state current density.

Figure S10 PEC stability test of 5h of bare Fe₂O₃ and Fe₂O₃/Co-Pi.

Fig. S10 is the PEC stability test of 5h of bare Fe_2O_3 and Fe_2O_3/Co -Pi. It could be seen from the figure that after the PEC stability test for 5 hours at $1.23V_{RHE}$, the bare Fe_2O_3 and Fe_2O_3/Co -Pi photoanodes both maintained the photocurrent density of 80% of the initial value.

Figure S11 LSV curves of (a) bare Fe₂O₃ and (b) Fe₂O₃/CoPi without and with Na₂SO₃.

Figure S12 EIS Nyquist plots of Fe₂O₃ calcined at various temperatures of 500, 525, 550, 575, and 600°C at a bias of 1.23 V_{RHE} under simulated solar light illumination.

Figure S13 Digital photo of bare Fe₂O₃ calcined at 600°C.

Figure S14 EIS Nyquist plots for Fe_2O_3 and Fe_2O_3/Co -Pi photoanodes after immersion in phosphate for various time of 3, 6, 9, and 12 h at a bias of 1.23 V_{RHE} under simulated solar light illumination.