UiO-67 Metal-organic framework immobilized Fe$^{3+}$ catalyst for efficient Morita-Baylis-Hillman reaction

Yuzhen Zhaoa, Min Zhua, Hailing Shangb, Daniele Ramellac, Kaicheng Zhua,*, Yi Luanb,*

a Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Sciences, Xijing University, Xi’an, 710123, China.

b School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China, E-mail: yiluan@ustb.edu.cn.

c Department of chemistry, Temple University-Beury Hall, 1901, N. 13th Street Philadelphia PA 19122, United States.
Fig. S1 XPS spectra of UiO-67
Fig. S2 PXRD pattern of UiO-67@Fe and recycled UiO-67@Fe

Fig. S3 FT-IR pattern of UiO-67@Fe and recycled UiO-67@Fe
Fig. S4 TEM observation of UiO-67
Table S1 Various catalysts of MBH reaction of cyclopentenone with benzaldehyde.

![Chemical structure of MBH reaction](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Temp. (℃)</th>
<th>Yield (%)</th>
<th>TON<sup>a</sup></th>
<th>TOF (h<sup>-1</sup>)<sup>b</sup></th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UiO-67@Fe (1.0 mol%)</td>
<td>THF</td>
<td>6</td>
<td>23</td>
<td>93</td>
<td>93</td>
<td>15.5</td>
<td>This work</td>
</tr>
<tr>
<td>2</td>
<td>NMP (5.0 mol%)/Ba(OH)<sub>2</sub> (1.5 mol%)<sup>11</sup></td>
<td>CH<sub>3</sub>OH/CH<sub>2</sub>Cl<sub>2</sub></td>
<td>9</td>
<td>0</td>
<td>72</td>
<td>48</td>
<td>5.3</td>
<td>[1]</td>
</tr>
<tr>
<td>3</td>
<td>α-ZrP/Urloci/Cu<sup>2+</sup> (20mg)<sup>21</sup></td>
<td>DMF</td>
<td>15</td>
<td>r.t.</td>
<td>74</td>
<td>-</td>
<td>-</td>
<td>[2]</td>
</tr>
<tr>
<td>4</td>
<td>Fu (+)-DMAP/(10mol%)</td>
<td>i-PrOH</td>
<td>24</td>
<td>-20</td>
<td>87</td>
<td>8.7</td>
<td>0.36</td>
<td>[3]</td>
</tr>
<tr>
<td>5</td>
<td>IRMOF-3–thiourea (2 mol%)<sup>4</sup></td>
<td>THF</td>
<td>24</td>
<td>4</td>
<td>73</td>
<td>36.5</td>
<td>1.52</td>
<td>[4]</td>
</tr>
</tbody>
</table>

^aTurnover number = mol converted/mol of active sites. ^bTurnover frequency = Turnover number/reaction time.

References

NMR spectra:
3a 2-[(4-Fluoro-phenyl)-hydroxy-methyl]-cyclopent-2-enone
3b 2-[(4-Bromo-phenyl)-hydroxy-methyl]-cyclopent-2-enone

![Chemical Structure](image)
3e 2-[(3-Bromo-phenyl)-hydroxy-methyl]-cyclopent-2-enone
3d 2-[(4-Chloro-phenyl)-hydroxy-methyl]-cyclopent-2-enone
3e 2-(Hydroxy-phenyl-methyl)-cyclopent-2-enone
3f 2-(Hydroxy-m-tolyl-methyl)-cyclopent-2-enone
3g 2-[hydroxy-(4-methoxy-phenyl)-methyl]-cyclopent-2-enone
3h 2-(Hydroxy-naphthalen-2-yl-methyl)-cyclopent-2-enone
3i 2-(1-Hydroxy-3-phenyl-allyl)-cyclopent-2-enone
3j 2-(1-Hydroxy-3-phenyl-propyl)-cyclopent-2-enone