Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Screening strain sensitive transition metals using oxygen adsorption

Yucheng He, Pengqi Hai, Chao Wu* Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China

*corresponding author at: Frontier Institute of Science and Technology, Xi'an

Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China

E-mail address: chaowu@xjtu.edu.cn

Figure S1	l
Figure S2	2
Figure S3	3
Figure S4	1
Figure S5	5
Figure S6	5
Figure S7	7
Figure S8	3
Figure S9)
Figure S101	10
Figure S111	l 1
Figure S121	12
Figure S13	13
Figure S14	14
Figure S15	15
Figure S16	16
Fable S1	17
Fable S2	18
Fable S3	19
Table S4	20
Fable S5	22
Fable S6	23
Table S7	24
Fable S8	25

Contents

Figure S1.The absolute variation of the formation energy of isolated O* adatoms in the strain variation range($\pm 5\%$).

Figure S2. Top and side views of isolated O atom adsorbed on the Cd (0001) facet at (a) 2% stain, and (b) 3% strain. Large balls represent metal atoms and small red balls represent oxygen atom.

Figure S3. Top and side views of isolated O atom adsorbed on the Ti (0001) facet at (a) -4% stain, (b) -3% strain, and (c) -2% strain.

Figure S4.Top and side views of isolated O atom adsorbed on the Zr (0001) facet at (a) -4% stain, (b) -3% strain, and (c) -2% strain.

Figure S5.Top and side views of isolated O atom adsorbed on the Hf (0001) facet at (a) -4% stain, (b) -3% strain, and (c) -2% strain.

Figure S6.Top and side views of isolated O atom adsorbed on the Zn (0001) facet at (a) -4% stain, (b) -3% strain, and (c) -2% strain.

Figure S7.Top and side views of isolated O atom adsorbed on the Au (111) facet at (a) -5% stain, and (b) -4% strain.

Figure S8. Formation energy of two 1NN O*adatoms on unstrained close-packed metal facets as a function of (a) the *d*-band center ε_d and (b) the second moment of electronic density of states distribution m_2^c . Formation energy of two 1NN O*adatoms on (c) Pd(111) and (d) W(110) as a function of the *d*-band center shift $\Delta \varepsilon_d$. The ε_d (in a) and m_2^c (in b) are taken from the work of Nørskovet al.¹ The numbers (in c and d) represent the applied strain.

Figure S9.The absolute variation of the formation energy of two1NN O* adatoms in the strain variation range($\pm 5\%$).

Figure S10. Top and side views of two 1NN O atoms adsorbed on the Cd (0001) facet at (a) +3% stain, and (b) +4% strain.

Figure S11. Top and side views of two 1NN O atoms adsorbed on the Ag (111) facet at -5% strain.

Figure S12. Top and side views of two 1NN O atoms adsorbed on the Au (111) facet at (a) -5% stain, (b) -4% strain, and (c) -3% strain.

Figure S13. Top and side views of two 1NN O atoms adsorbed on the Zn (0001) facet at (a) -4% stain, (b) 0% strain, and (c) +4% strain.

Figure S14.Slices of electron density plots of two 1NN O atoms adsorbed on Pt(111) under the strain (ranging from -5% to +5%). The corresponding strain values are marked in (a) – (k). The white cycles in (f) denote the projected sites of two O* adatoms. The normal direction of slice is [001] of slab model and z= 6.96 Åwhich is the vertical position of surface Pt atoms of O-free and unstrained Pt(111). The electron density shape of Pt atom sandwiched by two O atoms changes obviously with the applied strain, the trend of which is consistent with the variation of E_{form} . The spherical symmetric electron density of Pt atoms away from two O* adatoms is reversed from -5% to +1% strain, while electron density of Pt atoms adjacent to two O* adatoms is not symmetric within the whole strain range. The variation of electron density indicates that due to O atoms adsorption, all surface Pt atoms could not correspond to the global strain uniformly.

Figure S15. Slices of electron density plots of two 1NN O atoms adsorbed on W(110) under the strain (ranging from -5% to +5%). The corresponding strain values are marked in (a) – (k). The white cycles in (f) denote the projected sites of two O* adatoms. The normal direction of slice is [001] of slab model and z= 6.64 Å,which is the vertical position of surface W atoms of O-free and unstrained W(110). The electron distribution of density and shapeof each W atom is almost similar to one another under the same strain, which indicates that all surface W atoms follow form the strain variation in a similar fashion.

Figure S16. O* adatom diffusion on Ir(111). Energy profiles over (a) isolated-O* model and (b) double-O* model. (c), (d), (e) and (f) Key structures of the O* adatom diffusion. The panels are the top view, the bottom panels are the side view.

Madal	Studio	$E_{\rm form}$		$\Delta E_{\rm form}$		$\Delta E_{\rm form}$ %	6
widdei	Strain	PW91	PBE	PW91	PBE	PW91	PBE
Ir L l · l ot	-5%	-1.57	-1.50				
	0%	-1.82	-1.74	0.84	0.81	46%	47%
Isolated-O*	5%	-2.41	-2.31				
т	-5%	-1.49	-1.40				
II Dauhla O*	0%	-1.78	-1.69	0.76	0.74	43%	44%
Double-O*	5%	-2.25	-2.15				
D4	-5%	-0.91	-0.80				
ri Izalatad O*	0%	-1.22	-1.11	0.70	0.71	57%	64%
Isolated-O*	5%	-1.61	-1.51				
Pt	-5%	-0.75	-0.64				
	0%	-1.13	-1.03	0.80	0.82	71%	80%
Double-O*	5%	-1.55	-1.46				

Table S1 Comparison between PW91 and PBE functionals (eV)

Model	Strain	$E_{\rm form}$	E_{dip}	$\Delta E_{\rm form}$	$\Delta E_{\rm form}$ -D3	$\Delta E_{\rm form}\%$	$\Delta E_{\rm form}$ %-D3			
T.,	-5%	-1.57	-0.16							
Ir Isolated-O*	0%	-1.82	-0.15	0.84	0.88	46%	45%			
	5%	-2.41	-0.19							
т	-5%	-1.49	-0.15							
	0%	-1.78	-0.15	0.76	0.79	43%	41%			
Double-O*	5%	-2.25	-0.18							
D	-5%	-0.91	-0.13							
Pt	0%	-1.22	-0.20	0.70	0.71	57%	50%			
Isolated-O*	5%	-1.61	-0.14							
D	-5%	-0.75	-0.13							
Pt Double-O*	0%	-1.13	-0.21	0.80	0.83	71%	62%			
	5%	-1.55	-0.16							

Table S2 Effect of dispersion correction on formation energy (eV)

Metal	Relative change of d_{sur-1}^{st} sub under the strain (%)										
facet	-5%	-4%	-3%	-2%	-1%	0%	1%	2%	3%	4%	5%
Sc(0001)	5	4	3	2	1	0	-1	-2	-3	-3	-4
Ti(0001)	5	4	3	2	1	0	-1	-1	-2	-3	-3
V(110)	9	7	5	4	2	0	-1	-2	-4	-5	-6
Cr(110)	5	4	3	2	1	0	-1	-2	-3	-4	-5
Fe(110)	4	3	2	2	1	0	-1	-2	-2	-3	-4
Co(111)	4	3	2	1	1	0	-1	-1	-2	-3	-3
Ni(111)	4	3	3	2	1	0	0	-1	-2	-3	-3
Cu(111)	5	4	3	2	1	0	-1	-2	-2	-3	-4
Zn(0001)	4	2	2	1	1	0	-1	-1	-2	-2	-6
Y(0001)	3	2	2	1	0	0	-1	-1	-2	-3	-3
Zr(0001)	6	4	3	2	1	0	-1	-1	-2	-3	-3
Nb(110)	7	6	5	3	2	0	-1	-3	-4	-5	-6
Mo(110)	5	4	3	2	1	0	-1	-2	-3	-4	-5
Tc(0001)	3	2	2	1	0	0	-1	-1	-2	-3	-3
Ru(0001)	3	2	2	1	1	0	-1	-2	-2	-3	-4
Rh(111)	3	3	2	1	1	0	-1	-1	-2	-3	-3
Pd(111)	4	4	3	2	1	0	-1	-2	-3	-4	-5
Ag(111)	7	5	3	3	2	0	-1	-2	-3	-4	-5
Cd(0001)	3	2	2	2	0	0	0	-2	-2	-3	-6
Hf(0001)	3	3	2	1	1	0	-1	-1	-2	-2	-3
Ta(110)	7	5	4	3	1	0	-1	-2	-4	-5	-6
W(110)	5	4	3	2	1	0	-1	-2	-3	-4	-5
Re(0001)	4	2	2	1	1	0	-1	-1	-2	-3	-3
Os(0001)	3	3	2	2	1	0	-1	-1	-2	-3	-3
Ir(111)	3	2	2	1	1	0	-1	-1	-2	-3	-3
Pt(111)	5	4	3	2	1	0	-1	-3	-4	-5	-7
Au(111)	10	9	7	6	3	0	-1	-2	-4	-5	-6

Table S3. Relative change of interplanar spacing between surface and 1st subsurface ($d_{sur-1}^{st}_{sub}$).

Metal					$E_{\rm form}$ o	f isolated (O* (eV)				
facet	-5%	-4%	-3%	-2%	-1%	0%	1%	2%	3%	4%	5%
Sc(0001)	-6.14	-6.20	-6.27	-6.34	-6.40	-6.45	-6.50	-6.54	-6.57	-6.60	-6.65
Ti(0001)	-5.90	-5.80	-5.76	-5.69	-5.59	-5.56	-5.56	-5.55	-5.55	-5.57	-5.63
					-5.4	12					
V(110)	-4.96	-5.03	-5.05	-5.07	-5.04	-5.07	-5.06	-5.05	-5.07	-5.11	-5.12
Cr(110)	-4.22	-4.25	-4.28	-4.35	-4.42	-4.47	-4.52	-4.55	-4.53	-4.50	-4.49
Fe(110)	-3.31	-3.34	-3.38	-3.41	-3.45	-3.50	-3.55	-3.56	-3.53	-3.51	-3.08
					-3.4	-33					
Co(111)	-2.43	-2.47	-2.51	-2.55	-2.59	-2.63	-2.65	-2.68	-2.72	-2.76	-2.80
-2.254											
Ni(111)	-2.22	-2.29	-2.35	-2.40	-2.45	-2.50	-2.53	-2.57	-2.60	-2.63	-2.66
-5.90 -5.44 ⁵											
Cu(111)	-1.61	-1.61	-1.65	-1.72	-1.74	-1.78	-1.82	-1.85	-1.88	-1.90	-1.93
					-5.18	-4.80^{6}					
Zn(0001)	-1.84	-1.80	-1.79	-1.83	-1.91	-2.04	-2.14	-2.25	-2.37	-2.50	-2.61
Y(0001)	-5.92	-5.98	-6.03	-6.09	-6.14	-6.20	-6.25	-6.30	-6.35	-6.39	-6.43
Zr(0001)	-5.84	-5.84	-5.76	-5.71	-5.64	-5.60	-5.58	-5.58	-5.56	-5.53	-5.52
-9.00 -8.77 ⁷											
Nb(110)	-4.45	-4.52	-4.59	-4.63	-4.65	-4.69	-4.75	-4.77	-4.79	-4.82	-4.85
-5.088											
Mo(110)	-4.01	-4.02	-4.06	-4.10	-4.15	-4.18	-4.20	-4.21	-4.23	-4.24	-4.21
						-7.58	-7.359				
Tc(0001)	-3.21	-3.28	-3.33	-3.40	-3.48	-3.58	-3.68	-3.77	-3.81	-3.88	-3.94
Ru(0001)	-2.67	-2.74	-2.81	-2.88	-2.95	-3.05	-3.13	-3.19	-3.25	-3.30	-3.31
					-2.7	1 10					
Rh(111)	-1.99	-2.00	-2.02	-2.06	-2.10	-2.13	-2.16	-2.20	-2.24	-2.29	-2.36
					-5.53-5	5.2211					
Pd(111)	-1.14	-1.22	-1.28	-1.34	-1.38	-1.42	-1.46	-1.49	-1.51	-1.55	-1.59
					-1.4	812					
Ag(111)	-0.49	-0.52	-0.52	-0.55	-0.60	-0.65	-0.68	-0.70	-0.69	-0.71	-0.72
-4.05 -3	.8213										
Cd(0001)	-1.25	-1.21	-1.23	-1.29	-1.36	-1.44	-1.54	-1.65	-1.81	-1.90	-1.94
Hf(0001)	-6.01	-5.86	-5.78	-5.74	-5.72	-5.73	-5.76	-5.80	-5.83	-5.86	-5.93
Ta(110)	-4.68	-4.77	-4.85	-4.94	-5.00	-5.04	-5.10	-5.17	-5.11	-5.14	-5.18
W(110)	-3.95	-4.02	-4.07	-4.14	-4.22	-4.29	-4.34	-4.37	-4.39	-4.43	-4.44
					-4.1	614					
Re(0001)	-3.24	-3.27	-3.32	-3.41	-3.52	-3.63	-3.75	-3.88	-3.94	-3.97	-4.03
Os(0001)	-2.30	-2.38	-2.48	-2.62	-2.76	-2.82	-2.91	-3.00	-3.09	-3.14	-3.18
Ir(111)	-1.57	-1.62	-1.66	-1.72	-1.77	-1.82	-1.89	-1.96	-2.06	-2.22	-2.41
					-5.22-4	1.57 ¹⁵					
Pt(111)	-0.91	-0.92	-0.99	-1.06	-1.14	-1.22	-1.31	-1.43	-1.51	-1.58	-1.61

Table S4. Formation energy of isolated O atom on the metal close-packed facet.

-1.03 ¹⁶											
Au(111)	0.20	0.32	0.16	-0.04	-0.27	-0.35	-0.37	-0.42	-0.49	-0.51	-0.51
					-3.75 -3	.3817					

Formation energy E_{form} taking the energy of free oxygen atom as reference are represented in bold.

Studio		Slope		_	Intercept				
Strain	Period 4	Period 5	Period 6		Period 4	Period 5	Period 6		
-5%	0.54	0.62	0.84		-7.67	-7.76	-9.09		
-4%	0.54	0.63	0.84		-7.70	-7.83	-9.12		
-3%	0.54	0.62	0.82		-7.72	-7.85	-9.03		
-2%	0.53	0.62	0.80		-7.72	-7.86	-8.97		
-1%	0.52	0.61	0.78		-7.69	-7.85	-8.90		
0%	0.52	0.61	0.77		-7.67	-7.86	-8.91		
1%	0.51	0.60	0.77		-7.67	-7.88	-8.97		
2%	0.50	0.60	0.77		-7.65	-7.89	-9.01		
3%	0.50	0.59	0.75		-7.62	-7.87	-8.95		
4%	0.49	0.59	0.75		-7.60	-7.87	-8.96		
5%	0.49	0.58	0.75		-7.58	-7.87	-9.01		

Table S5. Fitting line of the formation energy of isolated O*adatoms and the metal's valency.

Metal	$E_{\rm form}$ of two O* (eV)										
facet	-5%	-4%	-3%	-2%	-1%	0%	1%	2%	3%	4%	5%
Sc(0001)	-6.14	-6.21	-6.27	-6.34	-6.39	-6.44	-6.48	-6.52	-6.55	-6.58	-6.61
Ti(0001)	-5.66	-5.62	-5.62	-5.60	-5.58	-5.58	-5.58	-5.58	-5.59	-5.59	-5.61
V(110)	-4.99	-5.04	-5.07	-5.09	-5.08	-5.09	-5.09	-5.08	-5.09	-5.11	-5.12
Cr(110)	-4.18	-4.20	-4.24	-4.29	-4.33	-4.37	-4.41	-4.45	-4.44	-4.42	-4.42
Fe(110)	-3.23	-3.25	-3.32	-3.34	-3.39	-3.43	-3.46	-3.48	-3.45	-3.45	-3.38
Co(111)	-2.32	-2.35	-2.38	-2.41	-2.45	-2.48	-2.52	-2.56	-2.60	-2.64	-2.69
Ni(111)	-2.04	-2.09	-2.15	-2.20	-2.25	-2.31	-2.35	-2.40	-2.44	-2.48	-2.52
Cu(111)	-1.46	-1.47	-1.49	-1.51	-1.54	-1.58	-1.62	-1.66	-1.69	-1.73	-1.77
Zn(0001)	-1.90	-1.87	-1.86	-1.90	-1.96	-2.05	-2.13	-2.22	-2.32	-2.43	-2.51
Y(0001)	-5.91	-5.96	-6.01	-6.07	-6.12	-6.17	-6.21	-6.26	-6.30	-6.34	-6.38
Zr(0001)	-5.63	-5.67	-5.66	-5.65	-5.63	-5.61	-5.61	-5.61	-5.61	-5.60	-5.59
Nb(110)	-4.52	-4.57	-4.63	-4.66	-4.68	-4.72	-4.76	-4.78	-4.79	-4.80	-4.82
Mo(110)	-3.87	-3.89	-3.93	-3.98	-4.03	-4.07	-4.11	-4.14	-4.16	-4.17	-4.16
Tc(0001)	-3.18	-3.24	-3.29	-3.36	-3.44	-3.52	-3.61	-3.69	-3.75	-3.81	-3.87
Ru(0001)	-2.58	-2.65	-2.71	-2.78	-2.84	-2.92	-2.98	-3.03	-3.07	-3.10	-3.11
Rh(111)	-1.85	-1.88	-1.92	-1.96	-2.00	-2.03	-2.07	-2.11	-2.15	-2.19	-2.24
Pd(111)	-1.01	-1.07	-1.14	-1.21	-1.27	-1.31	-1.34	-1.38	-1.42	-1.46	-1.50
Ag(111)	-0.39	-0.35	-0.33	-0.34	-0.39	-0.43	-0.46	-0.49	-0.51	-0.55	-0.58
Cd(0001)	-1.28	-1.24	-1.26	-1.31	-1.36	-1.44	-1.52	-1.60	-1.68	-1.82	-1.88
Hf(0001)	-5.84	-5.78	-5.75	-5.74	-5.74	-5.74	-5.76	-5.78	-5.81	-5.84	-5.88
Ta(110)	-4.75	-4.84	-4.91	-4.98	-5.03	-5.06	-5.09	-5.13	-5.11	-5.11	-5.13
W(110)	-3.86	-3.93	-3.99	-4.04	-4.10	-4.15	-4.20	-4.24	-4.28	-4.32	-4.35
Re(0001)	-3.25	-3.28	-3.33	-3.42	-3.52	-3.63	-3.73	-3.85	-3.91	-3.94	-3.99
Os(0001)	-2.28	-2.36	-2.45	-2.57	-2.67	-2.73	-2.80	-2.88	-2.95	-2.99	-3.02
Ir(111)	-1.49	-1.54	-1.60	-1.66	-1.72	-1.78	-1.83	-1.89	-1.98	-2.11	-2.25
Pt(111)	-0.75	-0.77	-0.84	-0.93	-1.03	-1.13	-1.23	-1.34	-1.43	-1.50	-1.55
Au(111)	0.27	0.22	0.17	0.04	-0.11	-0.18	-0.22	-0.29	-0.37	-0.42	-0.45

Table S6. Formation energy of two1NN O*adatoms on close-packed metal facets.

Staain		Slope		Intercept				
Strain	Period 4	Period 5	Period 6	Period 6		Period 5	Period 6	
-5%	0.54	0.62	0.84		-7.60	-7.68	-9.07	
-4%	0.54	0.63	0.84		-7.64	-7.77	-9.07	
-3%	0.54	0.63	0.83		-7.69	-7.82	-9.07	
-2%	0.54	0.63	0.82		-7.72	-7.85	-9.05	
-1%	0.54	0.63	0.80		-7.72	-7.87	-9.01	
0%	0.53	0.62	0.79		-7.72	-7.89	-8.99	
1%	0.53	0.62	0.79		-7.71	-7.91	-9.01	
2%	0.52	0.62	0.78		-7.70	-7.92	-9.01	
3%	0.51	0.61	0.77		-7.68	-7.93	-8.97	
4%	0.51	0.60	0.76		-7.65	-7.90	-8.95	
5%	0.50	0.60	0.75		-7.64	-7.90	-8.97	

Table S7. Fitting line of the formation energy of two 1NN O*adatoms and the metal's valency.

Table S8 Comparison between formation energy and free energy (eV)

Model	Strain	$E_{\rm form}$	$\Delta ZPE-T\Delta S$	$\Delta E_{\rm form}$	ΔG	$\Delta E_{\rm form}\%$	$\Delta G\%$
L.	-5%	-1.57	0.20				
II Isolated-O*	0%	-1.82	0.14	0.84	0.88	46%	53%
	5%	-2.41	0.15				
Ir Double-O*	-5%	-1.49	0.21				
	0%	-1.78	0.27	0.76	0.81	43%	54%
	5%	-2.25	0.16				
D+	-5%	-0.91	0.15				
ri Isolatod O*	0%	-1.22	0.11	0.70	0.77	57%	69%
Isolated-O*	5%	-1.61	0.08				
Pt Double-O*	-5%	-0.75	0.16				
	0%	-1.13	0.14	0.80	0.84	71%	84%
	5%	-1.55	0.13				

References:

- 1 A. Vojvodic, J. K. Nørskov and F. Abild-Pedersen, *Topics in Catal.*, 2013, **57**, 25-32.
- 2 J. Liu, X. Fan, C. Sun and W. Zhu, RSC Adv., 2016, 6, 71311-71318.
- 3 S. Liu, X. Tian, T. Wang, X. Wen, Y.-W. Li, J. Wang and H. Jiao, *Phys. Chem. Chem. Phys.*, 2015, **17**, 8811-8821.
- 4 S. H. Ma, Z. Y. Jiao, T. X. Wang and X. Q. Dai, Euro. Phys. J. B, 2015, 88, 4.
- 5 N. K. Das and T. Shoji, Appl. Surf. Sci., 2018, 445, 217-228.
- 6 X. Hao, R. Zhang, L. He, Z. Huang and B. Wang, Mole. Catal., 2018, 445, 152-162.
- 7 F.-H. Wang, S.-Y. Liu, J.-X. Shang, Y.-S. Zhou, Z. Li and J. Yang, Surf. Sci., 2008, 602, 2212-2216.
- 8 D. N. Tafen and M. C. Gao, JOM, 2013, 65, 1473-1481.
- 9 Y. G. Zhou, X. T. Zu, J. L. Nie and F. Gao, Euro. Phys. J. B, 2009, 67, 27-34.
- 10 B. Hammer, Surf. Sci., 2000, 459, 323-348.
- 11 M. V. Ganduglia-Pirovano and M. Scheffler, Phys. Rev. B, 1999, 59, 15533-15543.
- 12 M. Todorova, K. Reuter and M. Scheffler, J. Phys. Chem. B, 2004, 108, 14477-14483.
- 13 Y. Xu, J. Greeley and M. Mavrikakis, J. Am. Chem. Soc., 2005, 127, 12823-12827.
- 14 M. Stöhr, R. Podloucky and S. Müller, J. Phys.: Condens. Mat., 2009, 21, 134017.
- 15 W. P. Krekelberg, J. Greeley and M. Mavrikakis, J. Phys. Chem. B, 2004, 108, 987-994.
- 16 T. Xue, C. Wu, X. Ding and J. Sun, *Phys. Chem. Chem. Phys.*, 2018, **20**, 17927-17933.
- 17 A. D. Daigle and J. J. BelBruno, Surf. Sci., 2011, 605, 1313-1319.