# SUPPORTING INFORMATION

## Synthesis, Characterization and Cytotoxic Activity Studies on

### Cancer Cell Lines of New Paraben Decorated Monospiro-

# Cyclotriphosphazenes

Elif Şenkuytu<sup>1</sup>\*, Nadide Akbaş<sup>1</sup>, Tuba Yıldırım<sup>2</sup> and Gönül Yenilmez Çiftçi<sup>1</sup>

<sup>1</sup> Department of Chemistry, Faculty of Science, Atatürk University, 25100, Erzurum, Turkey

<sup>2</sup>Department of Chemistry, Gebze Technical University, 41400, Gebze/Kocaeli, Turkey

<sup>3</sup>Department of Biology, Faculty of Arts and Sciences, Amasya University, 05100 Amasya, Turkey

#### TABLE OF CONTENTS

| Figure S1. Mass spectrum of compound 1.                                                                                                                  | 2   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure S2. The proton decoupled <sup>31</sup> P NMR spectrum of compound 1                                                                               | 2   |
| Figure S3. <sup>1</sup> H NMR spectrum of compound 1                                                                                                     | 3   |
| Figure S4. <sup>13</sup> C NMR spectrum of compound 1                                                                                                    | 3   |
| Figure S5. FT-IR spectrum of compound 1                                                                                                                  | 4   |
| Figure S6. Mass spectrum of compound 2.                                                                                                                  | 4   |
| Figure S7. The proton decoupled <sup>31</sup> P NMR spectrum of compound 2                                                                               | 5   |
| Figure S8. <sup>1</sup> H NMR spectrum of compound 2                                                                                                     | 5   |
| Figure S9. <sup>13</sup> C NMR spectrum of compound 2                                                                                                    | 6   |
| Figure S10. FT-IR spectrum of compound 2                                                                                                                 | 6   |
| Figure S11. Mass spectrum of compound 3.                                                                                                                 | 7   |
| Figure S12. The proton decoupled <sup>31</sup> P NMR spectrum of compound 3                                                                              | 7   |
| Figure S13. <sup>1</sup> H NMR spectrum of compound 3                                                                                                    | 8   |
| Figure S14. <sup>13</sup> C NMR spectrum of compound 3                                                                                                   | 8   |
| Figure S15. FT-IR spectrum of compound 3                                                                                                                 | 9   |
| Figure S16. Mass spectrum of compound 4.                                                                                                                 | 9   |
| Figure S17. The proton decoupled <sup>31</sup> P NMR spectrum of compound 4                                                                              | .10 |
| Figure S18. <sup>1</sup> H NMR spectrum of compound 4                                                                                                    | .10 |
| Figure S19. <sup>13</sup> C NMR spectrum of compound 4                                                                                                   | .11 |
| Figure S20. FT-IR spectrum of compound 4                                                                                                                 | .11 |
| Figure S21. Mass spectrum of compound 5.                                                                                                                 | .12 |
| Figure S22. The proton decoupled <sup>31</sup> P NMR spectrum of compound 5                                                                              | .12 |
| Figure S23. <sup>1</sup> H NMR spectrum of compound 5                                                                                                    | .13 |
| Figure S24. <sup>13</sup> C NMR spectrum of compound 5                                                                                                   | .13 |
| Figure S25. FT-IR spectrum of compound 5                                                                                                                 | .14 |
| Figure S26. Mass spectrum of compound 6.                                                                                                                 | .14 |
| Figure S27. The proton decoupled <sup>31</sup> P NMR spectrum of compound 6                                                                              | .15 |
| Figure S28. <sup>1</sup> H NMR spectrum of compound 6                                                                                                    | .15 |
| Figure S29. <sup>13</sup> C NMR spectrum of compound 6                                                                                                   | .16 |
| Figure S30. FT-IR spectrum of compound 6                                                                                                                 | .16 |
| Figure S31. Perspective view of crystal packing of compound 2                                                                                            | .17 |
| Table S1. The bond and conformational parameters for compounds 2                                                                                         | .17 |
| <b>Table S2.</b> Predicted Log $IC_{50}$ ( $\mu$ M) and calculated Log $IC_{50}$ ( $\mu$ M) value of Compounds <b>1-6</b> for MCF-7 and DLD-1 cell lines | .19 |



Figure S1. Mass spectrum of compound 1



Figure S2. The proton decoupled <sup>31</sup>P NMR spectrum of compound 1



Figure S3. <sup>1</sup>H NMR spectrum of compound 1



Figure S4. <sup>13</sup>C NMR spectrum of compound 1



Figure S5. FT-IR spectrum of compound 1



Figure S6. Mass spectrum of compound 2.



Figure S7. The proton decoupled <sup>31</sup>P NMR spectrum of compound 2



Figure S8. <sup>1</sup>H NMR spectrum of compound 2



Figure S9. <sup>13</sup>C NMR spectrum of compound 2



Figure S10. FT-IR spectrum of compound 2



Figure S11. Mass spectrum of compound 3.



Figure S12. The proton decoupled <sup>31</sup>P NMR spectrum of compound 3



Figure S13. <sup>1</sup>H NMR spectrum of compound 3



Figure S14. <sup>13</sup>C NMR spectrum of compound 3



Figure S15. FT-IR spectrum of compound 3



Figure S16. Mass spectrum of compound 4.



Figure S17. The proton decoupled <sup>31</sup>P NMR spectrum of compound 4



Figure S18. <sup>1</sup>H NMR spectrum of compound 4



Figure S19. <sup>13</sup>C NMR spectrum of compound 4



Figure S20. FT-IR spectrum of compound 4



Figure S21. Mass spectrum of compound 5.



Figure S22. The proton decoupled <sup>31</sup>P NMR spectrum of compound 5



Figure S23. <sup>1</sup>H NMR spectrum of compound 5



Figure S24. <sup>13</sup>C NMR spectrum of compound 5



Figure S25. FT-IR spectrum of compound 5



Figure S26. Mass spectrum of compound 6.



Figure S27. The proton decoupled <sup>31</sup>P NMR spectrum of compound 6



Figure S28. <sup>1</sup>H NMR spectrum of compound 6



Figure S29. <sup>13</sup>C NMR spectrum of compound 6



Figure S30. FT-IR spectrum of compound 6



Figure S31. Perspective view of crystal packing of compound 2

| 2      |                  |         |           |  |  |
|--------|------------------|---------|-----------|--|--|
|        | Bond Lengths (Å) |         |           |  |  |
| P2—O3  | 1.574 (2)        | C24—C23 | 1.392 (5) |  |  |
| P2—O4  | 1.579 (3)        | C24—C25 | 1.381 (5) |  |  |
| P2—N2  | 1.577 (3)        | C21—C26 | 1.366 (5) |  |  |
| P2—N1  | 1.572 (3)        | C21—C22 | 1.373 (5) |  |  |
| P1—O2  | 1.583 (2)        | C29—C30 | 1.347 (6) |  |  |
| P101   | 1.578 (2)        | C29—C34 | 1.360 (6) |  |  |
| P1—N3  | 1.577 (3)        | C11—C10 | 1.375 (6) |  |  |
| P1—N1  | 1.571 (3)        | C2—C3   | 1.381 (5) |  |  |
| P3—O5  | 1.580 (2)        | C18—C17 | 1.372 (5) |  |  |
| P3—O6  | 1.576 (2)        | C16—C19 | 1.478 (5) |  |  |
| P3—N3  | 1.576 (3)        | C16—C17 | 1.383 (5) |  |  |
| P3—N2  | 1.576 (3)        | C16—C15 | 1.390 (6) |  |  |
| O2—C1  | 1.404 (4)        | C40—C39 | 1.374 (6) |  |  |
| O5-C13 | 1.396 (4)        | C40—C43 | 1.480 (6) |  |  |
| 01—C12 | 1.412 (4)        | C40—C41 | 1.385 (6) |  |  |
| O3—C21 | 1.402 (4)        | O12—C43 | 1.307 (6) |  |  |
| O4—C37 | 1.402 (4)        | 012—C44 | 1.430 (6) |  |  |
| O6—C29 | 1.397 (4)        | C23—C22 | 1.380 (5) |  |  |
| O9—C27 | 1.324 (5)        | C5—C4   | 1.366 (6) |  |  |

Table S1. The bond and conformational parameters for compounds 2.

| O9—C28       | 1.441 (5)   | C25—C26     | 1.371 (5) |
|--------------|-------------|-------------|-----------|
| O8—C19       | 1.323 (5)   | C8—C9       | 1.366 (6) |
| O8—C20       | 1.438 (5)   | C38—C39     | 1.376 (6) |
| O10—C27      | 1.194 (5)   | C4—C3       | 1.362 (6) |
| O7—C19       | 1.198 (5)   | C9—C10      | 1.385 (6) |
| C37—C38      | 1.370 (5)   | C15—C14     | 1.369 (6) |
| C37—C42      | 1.362 (5)   | C42—C41     | 1.369 (6) |
| C7—C6        | 1.476 (5)   | 011—C43     | 1.175 (6) |
| C7—C12       | 1.386 (5)   | C30—C31     | 1.371 (6) |
| C7—C8        | 1.404 (5)   | C34—C33     | 1.378 (7) |
| C1—C6        | 1.388 (5)   | C32—C31     | 1.358 (7) |
| C1—C2        | 1.380 (5)   | C32—C33     | 1.368 (8) |
| C13—C18      | 1.364 (5)   | C32—C35     | 1.472 (8) |
| C13—C14      | 1.377 (5)   | 013—C35     | 1.173 (9) |
| <u>C6–C5</u> | 1.399 (5)   | 014—C35     | 1.248 (9) |
| C12—C11      | 1.378 (5)   | 014—C36     | 1.464 (7) |
| C24—C27      | 1.483 (5)   |             |           |
|              | Bond An     | gles (°)    |           |
| O3—P2—O4     | 92.77 (13)  | C22—C21—O3  | 119.3 (3) |
| O3—P2—N2     | 111.11 (15) | C30—C29—O6  | 123.1 (3) |
| N2—P2—O4     | 111.11 (15) | C30—C29—C34 | 120.6 (4) |
| N1—P2—O3     | 111.46 (14) | C34—C29—O6  | 116.1 (4) |
| N1—P2—O4     | 112.01 (15) | C10-C11-C12 | 119.2 (4) |
| N1—P2—N2     | 116.05 (15) | C1—C2—C3    | 119.3 (4) |
| O1—P1—O2     | 102.91 (12) | C13—C18—C17 | 120.1 (4) |
| N3—P1—O2     | 104.88 (13) | O9—C27—C24  | 112.9 (3) |
| N3—P1—O1     | 111.76 (15) | O10-C27-O9  | 122.5 (4) |
| N1—P1—O2     | 112.13 (15) | O10-C27-C24 | 124.6 (4) |
| N1—P1—O1     | 105.75 (14) | C17—C16—C19 | 122.0 (4) |
| N1—P1—N3     | 118.42 (15) | C17—C16—C15 | 118.4 (4) |
| O6—P3—O5     | 93.05 (13)  | C15—C16—C19 | 119.5 (4) |
| O6—P3—N2     | 110.88 (15) | C39—C40—C43 | 122.2 (4) |
| N3—P3—O5     | 111.38 (15) | C39—C40—C41 | 118.6 (4) |
| N3—P3—O6     | 112.07 (14) | C41—C40—C43 | 119.2 (4) |
| N3—P3—N2     | 116.01 (15) | C43—O12—C44 | 117.9 (5) |
| N2—P3—O5     | 111.19 (15) | C22—C23—C24 | 120.5 (4) |
| C1-02-P1     | 122.8 (2)   | C4—C5—C6    | 122.1 (4) |
| C13—O5—P3    | 126.5 (2)   | C26—C25—C24 | 120.6 (3) |
| C12—O1—P1    | 123.1 (2)   | C21—C26—C25 | 119.5 (3) |
| C21—O3—P2    | 123.4 (2)   | С9—С8—С7    | 121.7 (4) |
| C37—O4—P2    | 125.5 (2)   | C37—C38—C39 | 118.5 (4) |
| C29—O6—P3    | 125.3 (2)   | 08—C19—C16  | 112.2 (4) |
| P3—N3—P1     | 122.23 (18) | O7—C19—O8   | 123.7 (4) |
| P3—N2—P2     | 124.66 (18) | O7—C19—C16  | 124.0 (4) |
| C27—O9—C28   | 115.7 (3)   | C21—C22—C23 | 118.7 (3) |
| P1—N1—P2     | 122.49 (17) | C18—C17—C16 | 120.4 (4) |
| C19—O8—C20   | 116.2 (4)   | C3—C4—C5    | 120.3 (3) |
| C38—C37—O4   | 120.0 (3)   | C4—C3—C2    | 120.0 (4) |
| C42—C37—O4   | 117.8 (3)   | C8—C9—C10   | 120.1 (4) |

| C42—C37—C38 | 121.7 (3) | C14—C15—C16 | 121.3 (4) |
|-------------|-----------|-------------|-----------|
| С12—С7—С6   | 123.5 (3) | C37—C42—C41 | 119.1 (4) |
| С12—С7—С8   | 116.3 (3) | C15-C14-C13 | 118.9 (4) |
| C8—C7—C6    | 120.2 (3) | C40—C39—C38 | 121.2 (4) |
| C6-C1-O2    | 119.4 (3) | C11—C10—C9  | 119.9 (4) |
| C2-C1-O2    | 118.1 (3) | O12—C43—C40 | 113.2 (4) |
| C2-C1-C6    | 122.2 (3) | O11—C43—C40 | 123.3 (5) |
| C18—C13—O5  | 117.6 (3) | 011—C43—012 | 123.1 (5) |
| C18—C13—C14 | 120.9 (3) | C42—C41—C40 | 120.8 (4) |
| C14—C13—O5  | 121.1 (3) | C29—C30—C31 | 119.8 (4) |
| C1—C6—C7    | 122.7 (3) | C29—C34—C33 | 119.0 (5) |
| C1—C6—C5    | 116.1 (3) | C31—C32—C33 | 118.2 (4) |
| C5—C6—C7    | 121.2 (3) | C31—C32—C35 | 124.3 (6) |
| C7—C12—O1   | 119.7 (3) | C33—C32—C35 | 117.5 (6) |
| C11—C12—O1  | 117.4 (3) | C35—O14—C36 | 106.9 (7) |
| C11—C12—C7  | 122.7 (3) | C32—C31—C30 | 121.2 (5) |
| C23—C24—C27 | 122.9 (3) | C32—C33—C34 | 121.1 (5) |
| C25—C24—C27 | 118.1 (3) | O13—C35—C32 | 126.6 (8) |
| C25—C24—C23 | 119.0 (3) | 013—C35—014 | 119.2 (6) |
| C26—C21—O3  | 118.8 (3) | O14—C35—C32 | 114.2 (8) |
| C26—C21—C22 | 121.7 (3) |             |           |

Table S2. Predicted Log IC\_{50} ( $\mu M)$  and calculated Log IC\_{50} ( $\mu M)$  value of Compounds 1-6 for MCF-7 and DLD-1 cell lines

| MCF-7 cell | Experimental | Predicted Log    | Calculated             | Observed Log     | Residual |
|------------|--------------|------------------|------------------------|------------------|----------|
| line       | Doses        | $IC_{50}(\mu M)$ | IC <sub>50</sub> value | $IC_{50}(\mu M)$ | Error    |
| Compound 1 | 50           | 4.301            | 173.660                | 3.760            | -0.678   |
| Compound 2 | 12.5         | 4.903            | 79.692                 | 4.099            | -1.016   |
| Compound 3 | 25           | 4.602            | 93.469                 | 4.029            | -0.769   |
| Compound 4 | 200          | 3.699            | 173.062                | 3.762            | -0.075   |
| Compound 5 | 50           | 4.301            | 76.137                 | 4.118            | -0.399   |
| Compound 6 | 25           | 4.602            | 72.238                 | 4.141            | -0.682   |

| DLD-1 cell | Experimental | Predicted Log    | Calculated             | Observed Log      | Residual |
|------------|--------------|------------------|------------------------|-------------------|----------|
| line       | Doses        | $IC_{50}(\mu M)$ | IC <sub>50</sub> value | $IC_{50} (\mu M)$ | Error    |
| Compound 1 | 25           | 4.602            | 14.712                 | 4.832             | -0.143   |
| Compound 2 | 25           | 4.602            | 107.328                | 3.969             | -0.816   |
| Compound 3 | 25           | 4.602            | 54.320                 | 4.265             | -0.585   |
| Compound 4 | 200          | 3.699            | 157.244                | 3.803             | -0.042   |
| Compound 5 | 25           | 4.602            | 67.192                 | 4.173             | -0.657   |
| Compound 6 | 12.5         | 4.903            | 36.087                 | 4.443             | -0.748   |