Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supplementary information

Investigation of enhanced electro-catalytic HER/OER performances of copper tungsten oxide@reduced graphene oxide nanocomposites in alkaline and acidic media

Jahangeer Ahmed*, Norah Alhokbany, Tansir Ahamad, Saad M. Alshehri

Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

*Email Address: jahmed@ksu.edu.sa

Supplementary data:

Figure S-1: XRD analysis of pure (a) CuWO₄ nanoparticles and (b) rGO sheets.

Figure S-2. EDAX studies equipped with TEM (a) without sample and (b) with sample.

Figure S-3. CV curves of the CuWO₄@rGO nanocomposites in 0.5M KOH for HER.

Figure S-4. CV curves of the CuWO₄@rGO nanocomposites in 0.5M H₂SO₄ for HER.

Figure S-5. CV sweeps of the CuWO₄@rGO nanocomposites in 0.5M KOH for OER.

Figure S-6. CV sweeps of the CuWO₄@rGO nanocomposites in 0.5M H₂SO₄ for OER.

Figure S-7. Cyclic stability of the CuWO₄@rGO electrodes in 0.5M KOH at 50 mV/s.

Figure S-8. Plot for energy loss during CA measurements at fixed anodic potentials with time.

Figure S-9. (a) FTIR, (b) SEM and (c) TEM analysis of $CuWO_4@rGO$ nanocomposites after electro-catalysis for OER in alkaline electrolyte.

Table S-1: Experimental details and results of the synthesized CuWO₄@rGO nanocomposites for HER

Table S-2: Experimental details and results of the synthesized CuWO₄@rGO nanocomposites for OER

Figure S-1: XRD analysis of pure (a) CuWO₄ nanoparticles and (b) rGO sheets.

Figure S-2. EDAX studies equipped with TEM (a) without sample and (b) with sample.

Figure S-3. CV curves of the CuWO₄@rGO nanocomposites in 0.5M KOH for HER.

Figure S-4. CV curves of the CuWO₄@rGO nanocomposites in 0.5M H₂SO₄ for HER.

Figure S-5. CV sweeps of the CuWO₄@rGO nanocomposites in 0.5M KOH for OER.

Figure S-6. CV sweeps of the CuWO₄@rGO nanocomposites in 0.5M H₂SO₄ for OER.

Figure S-7. Cyclic stability of the CuWO₄@rGO electrodes in 0.5M KOH at 50 mV/s.

Figure S-8. Plot for energy loss during CA measurements at fixed anodic potentials with time.

Figure S-9. (a) FTIR, (b) SEM and (c) TEM analysis of $CuWO_4@rGO$ nanocomposites after electro-catalysis for OER in alkaline electrolyte.

Table S-1: Comparison of present experimental details and results of the synthesized CuWO₄@rGO nanocomposites for HER against previous reports.

Electrolyte	Working Electrode	Reference Electrode	Tafel	References
0.5М КОН	Glassy Carbon with CuWO ₄ @rGO nanocomposites	Ag/AgCl	~212 mV/dec	Present work
0.5M H ₂ SO ₄	Glassy Carbon with CuWO ₄ @rGO nanocomposites	Ag/AgCl	~192 mV/dec	Present work
0.5M H ₂ SO ₄	Glassy Carbon with ZnMoO ₄	Ag/AgCl	~230 mV/dec	Materials Letters, 2021, 284, 128996
0.1 M KOH	Glassy Carbon with NiWO ₄ @rGO	Ag/AgCl	~250 mV/dec	Materials Letters, 2019, 240, 51-54
0.1 M KOH	Glassy Carbon with NiWO ₄	Ag/AgCl	~475 mV/dec	Materials Letters, 2019, 240, 51-54
1 М КОН	Screen-printed carbon electrodes with SrWO ₄	Hg/HgO	138 – 167 mV/dec	Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 145- 153
0.5 M H ₂ SO ₄	Carbon paper with commercial CoWO4 and CoWO _{4-x} @C	Hg/HgO	225 – 254 mV/dec	AppliedCatalysisB:Environmental,2019,259,118090

Table S-2: Comparison of present experimental details and results of the synthesized $CuWO_4@rGO$ nanocomposites for OER against previous reports.

Electrolyte	Working Electrode	Reference Electrode	Tafel	References
0.5M KOH	Glassy Carbon with CuWO ₄ @rGO nanocomposites	Ag/AgCl	~110 mV/dec	Present work
0.5M H ₂ SO ₄	Glassy Carbon with CuWO ₄ @rGO nanocomposites	Ag/AgCl	~315 mV/dec	Present work
1.0 M KOH	Glassy Carbon with CuWO ₄ nanoparticles	Ag/AgCl	~190 mV/dec	ChemElectroChem, 2018, 5, 3938-3945
0.5 M KOH	Glassy Carbon with Cu-Ni@rGO nanoparticles	Ag/AgCl	~190 mV/dec	Materials Letters, 2020, 260, 126969
0.5 M KOH	Glassy Carbon with Cu-Ni nanoparticles	Ag/AgCl	~378 mV/dec	Materials Letters, 2020, 260, 126969
1 М КОН	Screen-printed carbon electrodes with SrWO ₄	Hg/HgO	~218 mV/dec	Journal of the Taiwan Institute of Chemical Engineers, 2021, 126, 145- 153
1 М КОН	Ni Foam with NiCo ₂ O ₄ @NiWO ₄	Ag/AgCl	~217 mV/dec	International Journal of Hydrogen Energy, 2019, 44, 2883-2888
1 М КОН	Glassy carbon electrode with Bi ₂ WO ₆ /TiO ₂ -Ag	Ag/AgCl	~231 mV/dec	Applied Surface Science, 2021, 569, 150918