Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

New Journal of Chemistry

Electronic Supplementary Information

The role of hydrogen bonding in tuning CEST contrast efficiency: A comparative study of intra and inter molecular hydrogen bonding

Shalini Pandey, † Subhayan Chakraborty,† Rimilmandrita Ghosh, Divya Radhakrishnan, S. Peruncheralathan* and Arindam Ghosh*

[a] School of Chemical Sciences, National Institute of Science Education and Research ,HBNI, At/PO Jatni, Khurdha 752050 ,Odisha,India

Email: peru@niser.ac.in, aringh@niser.ac.in

Table of Content

- Figures S1.1 to S1.8: ¹H and ¹³C NMR spectra and characterization of compounds 1,2 and 3 in DMSOd₆.
- Figure S2.1: Fitting Curve for determination T₂ relaxation of buffer solution.
- **Figures S2.2-S2.4:** Fitting Curves for determination of solute concentration effect on the T₂ relaxation time of buffer solution for *N*,*N*'-(1,2-phenylene)diacetamide (1).
- Figures S2.5-S2.7: Fitting Curves for determination of solute concentration effect on the T₂ relaxation time of buffer solution for *N*,*N*'-(1,3-phenylene)diacetamide (2).
- **Figures S3-S7:** (a) Overlaid z-spectra for *N*,*N*²-(1,2-phenylene)diacetamide (1) with changing saturation power at variable temperature (b) Omega plot for calculation of k_{ex}.
- **Figures S8-S12:**(a) Overlaid z-spectra for *N*,*N*'-(1,3-phenylene)diacetamide (2) with changing saturation power at variable temperature (b) Omega plot for calculation of k_{ex}.
- **Figures S13-S16:** (a) Overlaid z-spectra for *N*,*N*'-(1,2-phenylene)diacetamide (1) with changing saturation power at variable pH of buffer solution (b) Omega plot for calculation of k_{ex}.
- **Figures S17-S20:** (a) Overlaid z-spectra for *N*,*N*'-(1,3-phenylene)diacetamide (2) with changing saturation power at variable pH of buffer solution (b) Omega plot for calculation of k_{ex}.
- **Figure S21:** Overlaid z-spectra for *N*,*N*²-(1,3-phenylene)diacetamide (**2**) with varying pH ranging from 6.5-8.1.
- **Figures S22:** Plot of k_{ex} as a function of pH for *N*,*N*'-(1,2-phenylene)diacetamide (1)
- Figure S23.1: Fitting Curve for determination of T₁ relaxation time constant of buffer solution.
- **Figure S23.2:** Fitting Curve for determination of T₁ relaxation time constant of buffer solution having 15mM concentration of *N*,*N*'-(1,3-phenylene)diacetamide (**2**).

Figure S1.1: ¹H-NMR spectrum of *N N*'-(1,2-phenylene)diacetamide (1) in DMSO-D₆.

Figure S1.2: ¹³C NMR spectrum of *N*,*N*'-(1,2-phenylene)diacetamide (1) in DMSO-D₆.

Figure S1.3: Expanded ESI Mass spectra of N,N'-(1,2-Phenylene)diacetamide.

N,N'-(1,2-Phenylene)diacetamide (1): ¹H NMR (700 MHz, DMSO-d₆) δ 9.37 (s, 1H), 7.61 – 7.58 (m, 1H), 7.18 – 7.16 (m, 1H), 2.13 (s, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 169.1, 130.9, 125.2, 125.0, 24.1. HR-MS (ESI): calculated for C₁₀H₁₂N₂O₂ [M+H]⁺: 193.0972, found, 193.1014.

Figure S1.4: ¹H-NMR spectrum of *N*,*N*'-(1,3-phenylene)diacetamide (2) in DMSO-D₆.

Figure S1.5: ¹³C NMR spectrum of *N*,*N*'-(1,3-phenylene)diacetamide (2) in DMSO-D₆.

Figure S1.6: Expanded ESI Mass spectra of N,N'-(1,3-Phenylene)diacetamide.

N,N'-(1,3-Phenylene)diacetamide (2): ¹H NMR (700 MHz, DMSO-d₆) δ 9.92 (s, 1H), 7.88 (s, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 8.0 Hz, 1H), 2.03 (s, 6H); ¹³C NMR (175 MHz, DMSO-d₆) δ 168.7, 140.0, 129.2, 114.3, 110.2, 24.4. HR-MS (ESI): calculated for C₁₀H₁₂N₂ O₂ [M+H]⁺: 193.0972, found, 193.1007.

Figure S1.7: ¹H NMR spectrum of *N*,*N*'-(1,4-phenylene)diacetamide (3) in DMSO-D₆.

Figure S1.8: ¹³C NMR spectrum of *N*,*N*'-(1,4-phenylene)diacetamide (3) in DMSO-D₆.

N,N'-(1,4-Phenylene)diacetamide (3): ¹H NMR (700 MHz, DMSO-d₆) δ 9.79 (s, 1H), 7.47 (s, 2H), 2.01 (s, 3H); ¹³C NMR (175 MHz, DMSO-d₆) δ 169.3, 135.0, 119.8, 24.2.

Figure S2.0: Logarithm of normalized water peak (at 4.7 ppm) intensity as a function of echo delay for determining the transverse relaxation of buffer solution.

Figure S2.1: Logarithm of normalized water peak (at 4.7 ppm) intensity as a function of echo delay for determining the transverse relaxation of 15mM solution of **1**, in buffer.

Figure S2.2: Logarithm of normalized water peak (at 4.7 ppm) intensity as a function of echo delay for determining the transverse relaxation of half diluted saturated solution of **1**, in buffer.

Figure S2.3: Logarithm of normalized water peak (at 4.7 ppm) intensity as a function of echo delay for determining the transverse relaxation of saturated solution of **1**, in buffer.

Figure S2.4: Logarithm of normalized water peak (at 4.7 ppm) intensity as a function of echo delay for determining the transverse relaxation of 15mM solution of **2**, in buffer.

Figure S2.5: Logarithm of normalized water peak (at 4.7 ppm) intensity as a function of echo delay for determining the transverse relaxation of half diluted saturated solution of **2**, in buffer.

Figure S2.6: Logarithm of normalized water peak (at 4.7 ppm) intensity as a function of echo delay for determining the transverse relaxation of saturated solution of **2**, in buffer.

Figure S3: (a) Dependence of CEST percentage on saturation field strength ranging from $1.5 \,\mu\text{T}$ to $5.5 \,\mu\text{T}$ for *N*,*N*'-(1,2-phenylene)diacetamide (1) at 298K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_{1^2}$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation

Figure S4: (a) Dependence of CEST percentage on saturation field strength ranging from $1.5 \,\mu\text{T}$ to $5.5 \,\mu\text{T}$ for *N*,*N*'-(1,2-phenylene)diacetamide (1) at 304K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S5: (a) Dependence of CEST percentage on saturation field strength ranging from $1.5 \,\mu\text{T}$ to $5.5 \,\mu\text{T}$ for *N*,*N*'-(1,2-phenylene)diacetamide (1) at 310K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S6: (a) Dependence of CEST percentage on saturation field strength ranging from $1.5 \,\mu\text{T}$ to $5.5 \,\mu\text{T}$ *N*,*N'*-(1,2-phenylene)diacetamide (1) at 316K (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10^{-5} was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S7: (a) Dependence of CEST percentage on saturation field strength ranging from $1.5 \,\mu\text{T}$ to $5.5 \,\mu\text{T}$ for *N*,*N*'-(1,2-phenylene)diacetamide (1) at 322K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S8: (a) Dependence of CEST percentage on saturation field strength ranging from $1.5 \,\mu\text{T}$ to $5.5 \,\mu\text{T}$ for *N*,*N*'-(1,3-phenylene)diacetamide (**2**) at 298K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S9: (a) Dependence of CEST percentage on saturation field strength ranging from $1.5 \,\mu\text{T}$ to $5.5 \,\mu\text{T}$ for *N*,*N*'-(1,3-phenylene)diacetamide (**2**) at 304K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S10: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N*'-(1,3-phenylene)diacetamide (**2**) at 310K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S11: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N*'-(1,3-phenylene)diacetamide (**2**) at 316K (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S12: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N'*-(1,3-phenylene)diacetamide (**2**) at 322K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S13: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N*'-(1,2-phenylene)diacetamide (1) at 310K and pH 6.5 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ₁² (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 6.5. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S14: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N'*-(1,2-phenylene)diacetamide (1) at 310K and pH 7.0 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ₁² (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.0. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S15: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N*'-(1,2-phenylene)diacetamide (**1**) at 310K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω 1² (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S16: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N*'-(1,2-phenylene)diacetamide (1) at 310K and pH 8.1 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω ¹² (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 8.1. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S17: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N*'-(1,3-phenylene)diacetamide (**2**) at 310K and pH 6.5 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 6.5. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S18: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N*'-(1,3-phenylene)diacetamide (**2**) at 310K and pH 7.0 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω_1^2 (rad/sec)⁻² x 10⁻⁵ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.0. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S19: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T for *N*,*N'*-(1,3-phenylene)diacetamide (**2**) at 310K and pH 7.4 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of 1/ ω 1² (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 7.4. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S20: (a) Dependence of CEST percentage on saturation field strength ranging from 1.5 μ T to 5.5 μ T *N,N'*-(1,3-phenylene)diacetamide (**2**) at 310K and pH 8.1 (b) Omega plot for exchange rate measurement. The expected linear relationship of M_z/(M₀-M_z) as a function of $1/\omega_1^2$ (rad/sec)⁻² x 10⁻⁷ was obtained when recorded at 9.4 T of 15 mM compound in 0.01M PBS buffer at pH 8.1. RF saturation pulse was applied for 6 s ensuring complete saturation.

Figure S21: Dependence of CEST effect of *N*,*N*'-(1,3-phenylene)diacetamide (**2**) on pH. Overlaid Z-spectra with pH ranging from 6.5 to 8.1, RF saturation of 5 μ T was applied for 3s to obtain the z-spectra.

Figure S22: Dependence of k_{ex} for 1, as a function of pH of buffer solution.

Figure S23.1: Normalized water peak (at 4.7 ppm) intensity as a function of relaxation delay for determining the longitudinal relaxation time constant of water in normal PBS buffer solution.

Figure S23.2: Normalized water peak (at 4.7 ppm) intensity as a function of relaxation delay for determining the longitudinal relaxation time constant of water in 15mM solution of **2** in PBS buffer.