Electronic supplementary information (ESI)

Development of a ruthenium aquo complex for utilization in synthesis and, in catalysis for selective hydration of nitriles and alkynes[†]

Rumpa Saha, Aparajita Mukherjee and Samaresh Bhattacharya*

Department of Chemistry, Inorganic Chemistry Section, Jadavpur University,

Kolkata - 700 032, India.

E-mail: samareshb.chemistry@jadavpuruniversity.in

Bond distances (Å)						
Ru1-N1	2.0636(17)	C3-N1	1.433(3)			
Ru1-N2	1.9908(18)	C1-N1	1.305(3)			
Ru1-N3	2.0741(19)	C1-C2	1.425(3)			
Ru1-N4	1.9750(18)	C2-N2	1.295(3)			
Ru1-N5	2.0777(19)	C10-N2	1.437(3)			
Ru1-O3	2.1358(16)					
	Bond an	ngles (°)				
N1-Ru1-N4	172.67(7)	N1-Ru1-N2	77.67(7)			
N2-Ru1-O3	175.98(7)	N3-Ru1-N4	79.24(8)			
N3-Ru1-N5	158.06(8)	N4-Ru1-N5	79.11(8)			

 Table S1. Selected bond distances and bond angles for 1a.

Fig. S1 Crystal structure of complex 1b. The perchlorate ions and hydrogen atoms are omitted for clarity.

Bond distances (Å)						
Ru1-N1	2.065(8)	C3-N1	1.443(13)			
Ru1-N2	2.005(8)	C1-N1	1.301(14)			
Ru1-N3	2.083(9)	C1-C2	1.425(16)			
Ru1-N4	1.979(8)	C2-N2	1.295(13)			
Ru1-N5	1.984(7)	C10-N2	1.449(13)			
Ru1-N6	2.039(9)					
	Bond an	ngles (°)				
N1-Ru1-N4	170.6(3)	N3-Ru1-N4	79.8(4)			
N2-Ru1-N6	174.3(3)	N4-Ru1-N5	79.4(3)			
N3-Ru1-N5	159.1(3)	Ru1-N6-C32	175.9(10)			
N1-Ru1-N2	77.2(4)	N6-C32-C33	178.2(16)			

Bond distances (Å)							
Ru1-N1	C3-N1	1.414(14)					
Ru1-N2	2.050(8)	C1-N1	1.290(14)				
Ru1-N3	2.075(8)	C1-C2	1.394(16)				
Ru1-N4	1.987(8)	C2-N2	1.272(14)				
Ru1-N5	2.061(8)	C10-N2	1.446(14)				
Ru1-N6	2.099(9)						
	Bond angles (°)						
N1-Ru1-N4	175.0(3)	N1-Ru1-N2	76.8(4)				
N2-Ru1-N6	170.0(4)	N3-Ru1-N4	79.2(3)				
N3-Ru1-N5	157.6(3)	N4-Ru1-N5	78.5(3)				

 Table S3. Selected bond distances and bond angles for 1d.

Fig. S2. Energy difference between linkage isomers of 1c.

Fig. S3. DFT-optimized structure of 1c. The hydrogen atoms are omitted for clarity.

Bond distances (Å)						
Ru1-N1	2.151	C1-N1	1.313			
Ru1-N2	2.086	C3-N1	1.417			
Ru1-N3	2.133	C1-C2	1.427			
Ru1-N4	2.007	C2-N2	1.313			
Ru1-N5	2.116	C10-N2	1.422			
Ru1-O3	2.195	S1-C32	1.816			
O3-S1	1.526	S1-C33	1.822			
	Bond a	angles (°)				
N1-Ru1-N2	77.799	N3-Ru1-N4	78.427			
N2-Ru1-O3	170.139	N4-Ru1-N5	79.034			
N1-Ru1-N4	176.902	N3-Ru1-N5	157.445			
Ru1-O3-S1	126.135					

 Table S4. Some computed bond distances and bond angles for complex 1c.

Fig. S4. DFT-optimized structure of 1e. The hydrogen atoms are omitted for clarity.

Bond distances (Å)						
Ru1-N1	2.211	C1-N1	1.312			
Ru1-N2	2.171	C3-N1	1.422			
Ru1-N3	2.137	C1-C2	1.431			
Ru1-N4	2.006	C2-N2	1.304			
Ru1-N5	2.133	C10-N2	1.423			
Ru1-P1	2.551					
Bond angles (°)						
N1-Ru1-N2	76.522	N3-Ru1-N4	78.376			
N2-Ru1-P1	178.154	N4-Ru1-N5	78.674			
N1-Ru1-N4	170.360	N3-Ru1-N5	156.279			

 Table S5. Some computed bond distances and bond angles for complex 1e.

Fig. S5. Electronic absorption spectrum of complex 1a in aqueous solution.

Excited	Composition	CI value	E (eV)	Oscillator	λ_{theo}	Assignment	λ_{exp}
State	-			strength	(nm)		(nm)
				(f)			
1	$H-3 \rightarrow L$	0.44216	2.5721	0.4901	482	MLCT/LLCT	492
	$H-1 \rightarrow L$	0.37240				ILCT	
	$H \rightarrow L$	0.39467				ILCT	
2	$H-4 \rightarrow L$	0.43694	3.1122	0.0277	389	MLCT/ILCT/ LLCT	395
	$H-4 \rightarrow L+1$	0.10291				MLCT/ILCT	
	$H-3 \rightarrow L+1$	0.24545				MLCT/ILCT	
	$H-2 \rightarrow L$	0.12469				MLCT/LLCT	
	$H-2 \rightarrow L+1$	0.11714				MLCT/LLCT/ ILCT	
	$H-1 \rightarrow L+1$	0.10428				LLCT	
	$H-1 \rightarrow L+2$	0.10440				LLCT	
	$H-1 \rightarrow L+5$	0.27243				LMCT/LLCT/ILCT	
	$H \rightarrow L+5$	0.20279				LMCT/LLCT/ILCT	
3	$H-5 \rightarrow L+1$	0.40042	3.9929	0.2109	310	LLCT	312
	$H \rightarrow L+3$	0.34558				LLCT	
	$H \rightarrow L+4$	0.37591				LLCT	
	$H \rightarrow L+5$	0.10524				LMCT/LLCT/ILCT	
4	$H-8 \rightarrow L+1$	0.13454	4.5044	0.0880	275	ILCT	269
	$H-5 \rightarrow L+2$	0.48720				LLCT	
	$H-3 \rightarrow L+3$	0.26888				MLCT/ILCT	
	$H-3 \rightarrow L+4$	0.27855				MLCT/ILCT	
	$H-2 \rightarrow L+4$	0.10789				MLCT/ILCT/LLCT	
	$H-1 \rightarrow L+4$	0.21551				LLCT	
5	$H-12 \rightarrow L$	0.35228	5.1824	0.0136	239	ILCT/LMCT	227
	$H-11 \rightarrow L$	0.23171				ILCT/LMCT	
	$H-10 \rightarrow L+1$	0.13218				LLCT	
	$H-5 \rightarrow L+4$	0.27703				LLCT	
	$H-1 \rightarrow L+9$	0.36093				ILCT/LLCT	

Table S6.Computed parameters from TDDFT calculations on complex 1a for
electronic spectral properties in aqueous solution.

% Contribution	n Fragments					
of fragments to	Ru	trpy	L-OCH ₃	H ₂ O		
HOMO (H)	5	1	94	0		
H-1	9	2	89	0		
H-2	73	14	12	1		
H-3	77	17	5	1		
H-4	66	11	23	0		
H-5	0	0	99	1		
H-8	2	95	3	0		
H-10	0	1	99	0		
H-11	1	3	95	1		
H-12	0	1	98	1		
LUMO (L)	10	2	88	0		
L+1	6	93	0	1		
L+2	1	99	0	0		
L+3	3	96	0	1		
L+4	3	97	0	0		
L+5	52	12	18	18		
L+9	11	3	72	14		

Table S7. Compositions of the molecular orbitals of complex 1aassociated with the electronic spectral transitions.

Fig. S6. Contour plots of the molecular orbitals of complex 1a, which are associated with the electronic spectral transitions (See Table S6).

Excited state	Composition	CI value	<i>E</i> (eV)	Oscillator strength (f)	λ_{theo} (nm)	Assignment	λ_{exp} (nm)
1	$H-3 \rightarrow L$	0.49112	2.5632	0.4854	484	MLCT/LLCT	481
	$H-1 \rightarrow L$	0.28458				ILCT	
	$H \rightarrow L$	0.40475				ILCT	
2	$H-4 \rightarrow L$	0.63154	3.0572	0.0456	405	MLCT/ILCT/LLCT	405
	$H-3 \rightarrow L+1$	0.10707				MLCT/ILCT	
	$H-2 \rightarrow L$	0.24464				MLCT/LLCT	
3	$H-5 \rightarrow L+1$	0.44630	4.0032	0.2295	310	LLCT	304
	$H \rightarrow L+3$	0.50881				LLCT	
4	$H-8 \rightarrow L+1$	0.12636	4.5065	0.0979	275	ILCT	273
	$H-5 \rightarrow L+2$	0.48345				LLCT	
	$H-3 \rightarrow L+3$	0.34287				MLCT/LLCT/ILCT	
	$H-3 \rightarrow L+4$	0.18001				MLCT/ILCT/LLCT	
	$H-2 \rightarrow L+4$	0.14342				MLCT/ILCT/LLCT	
	$H-1 \rightarrow L+4$	0.21724				LLCT	
5	$H-12 \rightarrow L$	0.15867	5.1735	0.0187	240	ILCT/LMCT	232
	$H-2 \rightarrow L+7$	0.33532				IMCT/MLCT/LLCT/ILCT	
	$H-2 \rightarrow L+8$	0.19579				MLCT/LLCT	
	$H-2 \rightarrow L+9$	0.16477				MLCT/LLCT	
	$H-1 \rightarrow L+7$	0.19995				LMCT/LLCT/ ILCT	
	$H-1 \rightarrow L+8$	0.30896				ILCT/ LLCT	
	$H-1 \rightarrow L+9$	0.21252				ILCT/ LLCT	
	$H \rightarrow L+10$	0.19191				LLCT/ ILCT	

Table S8.Computed parameters from TDDFT calculations on complex 1b for
electronic spectral properties in acetonitrile solution.

% Contribution		Fra	gments	
of fragments to	Ru	trpy	L-OCH ₃	CH ₃ CN
HOMO (H)	4	0	96	0
H-1	6	1	93	0
H-2	73	14	9	4
H-3	74	16	5	5
H-4	69	12	18	1
H-5	0	1	99	0
H-8	2	94	4	
H-12	0	1	99	0
LUMO (L)	8	3	89	2
L+1	5	94	1	0
L+2	1	98	0	1
L+3	1	99	0	0
L+4	3	97	0	0
L+7	55	15	26	4
L+8	4	2	80	14
L+9	4	2	77	17
L+10	6	1	15	78

Table S9. Compositions of the molecular orbitals of complex 1bassociated with the electronic spectral transitions.

Fig. S7. Contour plots of the molecular orbitals of complex 1b, which are associated with the electronic spectral transitions (See Table S8).

Excited	Composition	CI value	E(eV)	Oscillator	$\lambda_{ m theo}$	Assignment	λ_{exp}
State				strength	(nm)		(nm)
				(f)			
1	H-2 →L	0.54729	2.5655	0.5531	483.28	MLCT/LLCT	486
	H-1 →L	0.15447				ILCT/MLCT	
	$H \rightarrow L$	0.39826				ILCT	
2	H-4 →L	0.46758	3.0525	0.0242	406.18	MLCT/ILCT	403
	H-3 →L	0.21236				MLCT/LLCT	
	$H-3 \rightarrow L+1$	0.10453				MLCT/ILCT	
	$H-3 \rightarrow L+2$	0.11788				MLCT/ILCT	
	$H-2 \rightarrow L+1$	0.32982				MLCT/LLCT/ILCT	
	$H-1 \rightarrow L+2$	0.25499				LLCT/MLCT	
3	$H-5 \rightarrow L+1$	0.31171	4.0151	0.1169	308.80	LLCT	309
	$H-2 \rightarrow L+3$	0.10529				MLCT/ILCT/LLCT	
	$H-2 \rightarrow L+9$	0.16964				MLCT/LLCT/ILCT	
	$H-1 \rightarrow L+3$	0.35149				LLCT/MLCT	
	H-1 \rightarrow L+4	0.20294				LLCT/MLCT	
	$H-1 \rightarrow L+5$	0.17985				MLCT/ILCT/LLCT/LMCT	
	$H-1 \rightarrow L+9$	0.16712				MLCT/ILCT	
	$H \rightarrow L+3$	0.11691				LLCT	
	$H \rightarrow L+4$	0.14905				LLCT	
	$H \rightarrow L+9$	0.12275				ILCT	
4	$H-6 \rightarrow L+2$	0.10232	4.4551	0.1444	278.30	LLCT	271
	$H-5 \rightarrow L+2$	0.35304				LLCT	
	$H-2 \rightarrow L+5$	0.40564				MLCT/ILCT/LLCT/LMCT	
	$H-1 \rightarrow L+5$	0.11118				MLCT/ILCT/LLCT/LMCT	
	$H \rightarrow L+5$	0.37918				LMCT/LLCT/ILCT	
5	H-15 →L	0.31982	5.2754	0.0546	235.02	LLCT	216
	H-13→L	0.15501				ILCT/LLCT	
	$H-4 \rightarrow L+7$	0.28094				MLCT/ILCT/LLCT/LMCT	
	$H-3 \rightarrow L+7$	0.41276				MLCT/ILCT/LLCT/LMCT	
	$H-3 \rightarrow L+9$	0.10248				MLCT/LLCT	
	$H-2 \rightarrow L+7$	0.15762				MLCT/ILCT/LLCT/LMCT	
	$H-2 \rightarrow L+8$	0.13455				MLCT/ILCT/LLCT	
	$H-2 \rightarrow L+9$	0.11581				MLCT/ILCT/LLCT	

 Table S10. Computed parameters from TDDFT calculations on complex 1c for electronic spectral properties in acetonitrile solution.

% Contribution		Fra	gments	
of fragments to	Ru	trpy	L-OCH ₃	DMSO
HOMO (H)	6	1	93	0
H-1	14	2	83	1
H-2	70	12	14	4
H-3	70	13	9	7
H-4	68	10	22	0
H-5	0	1	99	0
H-6	1	0	97	2
H-13	1	11	66	22
H-15	1	90	5	4
LUMO (L)	10	3	87	0
L+1	7	91	1	1
L+2	2	97	1	0
L+3	2	96	0	2
L+4	2	97	1	0
L+5	57	11	17	15
L+7	56	24	14	6
L+8	4	2	85	9
L+9	0	2	97	1

 Table S11. Compositions of the molecular orbitals of complex 1c

 associated with the electronic spectral transitions

Fig. S8. Contour plots of the molecular orbitals of complex 1c, which are associated with the electronic spectral transitions (See Table S10).

Excited State	Composition	CI value	E (eV)	Oscillator strength	λ_{theo} (nm)	Assignment	λ_{exp} (nm)
1		0.04055	0.52.41	(f)	400		402
	$H-3 \rightarrow L$	0.34955	2.5341	0.5379	489	MLC1/LLC1	493
	$H-1 \rightarrow L$	0.42985				ILCT	
	$H \rightarrow L$	0.41819				ILCT	
2	$H-4 \rightarrow L$	0.49666	3.0361	0.0214	408	MLCT/LLCT/ILCT	410
	$H-4 \rightarrow L+1$	0.10156				MLCT/LLCT	
	$H-3 \rightarrow L+1$	0.34931				MLCT/ILCT	
	$H-2 \rightarrow L$	0.23312				MLCT/LLCT	
	$H-1 \rightarrow L+1$	0.12310				LLCT	
	$H-1 \rightarrow L+2$	0.11789				LLCT	
3	$H-5 \rightarrow L+1$	0.54863	3.9620	0.2109	313	LLCT	310
	$H \rightarrow L+3$	0.31981				LLCT	
	$H \rightarrow L+5$	0.17420				LLCT	
4	$H-10 \rightarrow L$	0.10579	4.4638	0.0947	278	ILCT/LLCT/LMCT	272
	$H-8 \rightarrow L+1$	0.27445				LLCT	
	$H-5 \rightarrow L+2$	0.52526				LLCT	
	$H-3 \rightarrow L+3$	0.10395				MLCT/ILCT	
	$H-2 \rightarrow L+4$	0.17197				MLCT/LLCT/ILCT	
	$H-1 \rightarrow L+4$	0.14673				LLCT	
5	$H-13 \rightarrow L$	0.13239	5.1140	0.0335	242	ILCT/LMCT	235
	$H-3 \rightarrow L+8$	0.13449				MLCT/LLCT	
	$H-1 \rightarrow L+11$	0.15755				ILCT	
	$H-1 \rightarrow L+12$	0.21121				ILCT	
	$H \rightarrow L+12$	0.54779				ILCT	

Table S12.Computed parameters from TDDFT calculations on complex 1d for
electronic spectral properties in acetonitrile solution.

% Contribution	Fragments					
of fragments to	Ru	trpy	L-OCH ₃	4-picoline		
HOMO (H)	5	1	94	0		
H-1	7	1	92	0		
H-2	73	14	10	3		
H-3	76	16	4	4		
H-4	70	10	19	1		
H-5	0	1	99	0		
H-8	0	1	7	92		
H-10	0	26	72	2		
H-13	0	1	99	0		
LUMO (L)	10	1	89	0		
L+1	6	92	1	1		
L+2	1	98	0	1		
L+3	1	98	0	1		
L+4	3	96	0	1		
L+5	4	0	1	95		
L+8	1	42	5	52		
L+11	2	1	97	0		
L+12	5	3	92	0		

 Table S13. Compositions of the molecular orbitals of complex 1d associated with the electronic spectral transitions

Fig. S9. Contour plots of the molecular orbitals of complex 1d, which are associated with the electronic spectral transitions (See Table S12).

Excited	Composition	CI value	E (eV)	Oscillator	$\lambda_{ m theo}$	Assignment	λ_{exp}
State				strength	(nm)		(nm)
				(<i>f</i>)			
1	H-3 →L	0.44901	2.4677	0.3669	502.43	MLCT/LLCT	485
	H-2 →L	0.21785				MLCT/LLCT	
	H-1 →L	0.24486				ILCT	
	$H \rightarrow L$	0.41560				ILCT	
2	H-5 →L	0.46758	3.1130	0.0205	398.28	LLCT	406
	$H-3 \rightarrow L+1$	0.21236				MLCT/LLCT	
	$H-3 \rightarrow L+2$	0.10453				MLCT/LLCT	
	$H-2 \rightarrow L+1$	0.11788				MLCT/ILCT	
	$H-2 \rightarrow L+2$	0.32982				MLCT/ILCT	
	H-1 \rightarrow L+2	0.25499				LLCT	
	$H \rightarrow L+2$					LLCT	
3	$H-3 \rightarrow L+5$	0.31171	4.0540	0.1060	305.83	MLCT/LLCT/ILCT/LMCT	307
	$H-3 \rightarrow L+9$	0.10529				MLCT/LLCT/ILCT	
	$H-1 \rightarrow L+4$	0.16964				LLCT	
	$H-1 \rightarrow L+5$	0.35149				LLCT/ILCT/LMCT	
	$H \rightarrow L+3$	0.20294				LLCT	
	$H \rightarrow L+4$	0.17985				LLCT	
	$H \rightarrow L+5$	0.16712				LLCT/ILCT/LMCT	
4	H-11 →L+2	0.10963	4.4670	0.0534	277.56	LLCT	271
	H-10 \rightarrow L+2	0.24403				LLCT	
	$H-4 \rightarrow L+3$	0.39297				MLCT/LLCT/ILCT	
	$H-4 \rightarrow L+5$	0.18952				MLCT/LLCT/ILCT/LMCT	
	$H-2 \rightarrow L+3$	0.31114				MLCT/ILCT	
	$H-2 \rightarrow L+5$	0.25729				MLCT/LLCT/LMCT	
	H-1 \rightarrow L+3	0.15528				LLCT	
5	H-7→L+4	0.10637	4.9812	0.0337	248.90	MLCT/LLCT	227
	H-7→L+5	0.13913				MLCT/LLCT/ILCT/LMCT	
	$H-4 \rightarrow L+6$	0.53488				MLCT/LLCT/ILCT	
	$H-2 \rightarrow L+6$	0.23400				MLCT/ILCT	
	$H-2 \rightarrow L+8$	0.11942				MLCT/LLCT/ILCT/LMCT	

Table S14. Computed parameters from TDDFT calculations on complex 1e for electronic spectral properties in acetonitrile solution.

% Contribution	Fragments					
of fragments to	Ru	trpy	L-OCH ₃	PPh ₃		
HOMO (H)	4	1	93	2		
H-1	6	1	90	3		
H-2	74	15	8	3		
H-3	27	4	5	64		
H-4	51	13	7	29		
H-5	1	1	4	94		
H-7	16	3	8	73		
H-10	1	1	9	89		
H-11	1	0	73	26		
LUMO (L)	8	2	90	0		
L+1	6	92	1	1		
L+2	1	98	0	1		
L+3	1	97	0	2		
L+4	3	95	0	2		
L+5	48	8	14	30		
L+6	4	91	1	4		
L+8	22	10	4	64		
L+9	3	2	18	77		

Table S15. Compositions of the molecular orbitals of complex 1eassociated with the electronic spectral transitions

Fig. S10. Contour plots of the molecular orbitals of complex 1e, which are associated with the electronic spectral transitions (See Table S14).

Fig. S11. Cyclic voltammograms of complex **1b** in acetonitrile solution (0.1 M TBHP) at a scan rate of 50 mVs⁻¹.

Table S16. Optimization of experimental parameters for catalytic hydration of nitrile to corresponding amide.^a

Entry	Catalyst	Mole %	Solvent	base	Temp,	Time,	Yeild ^b ,
		of			°C	h	%
		catalyst					
1	1a	1	1:9 water-isopropanol	KO ^t Bu	85	6	>99
2	1a	1	1:9 water-isopropanol	KO ^t Bu	85	4	94
3	1a	0.5	1:9 water-isopropanol	KO ^t Bu	85	6	70
4	1a	0.1	1:9 water-isopropanol	KO ^t Bu	85	6	30
5	1a	1	1:9 water-n-propanol	KO ^t Bu	85	6	35
6	1a	1	1:9 water-isopropanol	-	85	6	20
7	1a	1	1:9 water-isopropanol	КОН	85	6	>99
8	1a	1	1:9 water-isopropanol	КОН	85	4	>99
9	1a	0.5	1:9 water-isopropanol	КОН	85	4	90
10	1a	0.1	1:9 water-isopropanol	КОН	85	4	29
11	1a	0.5	1:9 water-isopropanol	КОН	rt	4	87
12	1a	0.5	1:9 water-isopropanol	КОН	rt ^c	6	98
13	1a	0.5	2:8 water-isopropanol	КОН	rt ^c	6	57
14	1a	0.5	isopropanol	КОН	rt ^c	6	77
15	-	-	1:9 water-isopropanol	КОН	rt	6	-
16	1	0.5	1:9 water-isopropanol	КОН	rt ^c	6	31

^a Experimental condition: Substrate 4-Fluro Benzonitrile(0.5 mmol), Catalyst [Ru(trpy)(L-OCH₃)(H₂O)](ClO₄)₂, solvent (5 mL), Base (1 mol%)

^b Conversion was determined by GC analysis.

^c Room tempareture stirring.

Table S17. Optimization of experimental parameters for catalytic hydration of alkyne to corresponding aldehyde.^a

Entry	Catalyst	Mole % of	Solvent	Base	Temp,	Time,	Yeild ^b ,
		catalyst			C	h	%
1	1a	1	1:9 acetone-water	-	70	6	-
2	1a	1	1:9 acetone-water	-	85	6	19
3	1a	1	1:9 acetone-water	КОН	85	6	40
4	1a	1	1:9 water-n-propanol	КОН	85	6	25
5	1a	1	1:9 water-isopropanol	КОН	85	6	98
6	1a	1	1:9 water-isopropanol	КОН	rt ^c	6	71
7	1a	1	1:9 water-isopropanol	КОН	rt ^c	10	96
8	1a	1	1:9 water-isopropanol	KO ^t Bu	rt	10	87
9	-	1	1:9 water-isopropanol	КОН	rt ^c	10	-
10	1a	1	isopropanol	КОН	rt ^c	10	53
11	1a	0.5	1:9 water-isopropanol	КОН	rt	10	41
12	1a	1.5	1:9 water-isopropanol	КОН	rt	6	95
13	1	1	1:9 water-isopropanol	КОН	rt ^c	10	61

^a Reaction conditions: Catalyst [Ru(trpy)(L-OCH₃)(H₂O)](ClO₄)₂; Substrate Phenylacetylene (0.5 mmol), solvent (5.0 mL), Base (1 mol%).

^b Determined by GCMS.

^c Room tempareture stirring

complex	1a	1b	1d
empirical formula	C ₃₃ H ₃₇ Cl ₂ N ₅ O ₁₃ Ru	$C_{136}H_{126}Cl_8N_{26}O_{39}Ru_4$	$C_{37}Cl_2H_{40}N_6O_{13}Ru$
formula weight	883.64	3436.50	948.72
crystal system	Triclinic	Monoclinic	Orthorhombic
space group	Pī	P2 ₁ /c	Pna2 ₁
<i>a</i> (Å)	11.3948(10)	15.965(3)	30.054(3)
<i>b</i> (Å)	12.4038(10)	39.938(7)	11.0969(10)
<i>c</i> (Å)	14.2466(12)	12.631(2)	25.405(2)
α (°)	83.522(3)	90	90
β (°)	69.862(2)	107.142(4)	90
γ (°)	82.487(3)	90	90
$V(Å^3)$	1869.3(3)	7696(2)	8472.6(13)
Z	2	2	8
$D_{\text{calcd}}/\text{mg m}^{-3}$	1.570	1.483	1.488
F (000)	904.0	3496.0	3888.0
crystal size (mm)	$0.12 \times 0.17 \times 0.22$	$0.24 \times 0.28 \times 0.30$	$0.15 \times 0.17 \times 0.20$
Т(К)	273	273	273
μ (mm ⁻¹)	0.633	0.608	0.565
R1 ^a	0.0328	0.1065	0.0612
wR2 ^b	0.0886	0.2880	0.1491
GOF ^c	1.093	1.161	1.058

Table S18. Crystallographic data for complexes 1a, 1b and 1d.

 ${}^{a} R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$ ${}^{b} wR2 = [\Sigma \{w(F_{o}^{2}-F_{c}^{2})^{2}\} / \Sigma \{w(F_{o}^{2})\}]^{1/2}.$ ${}^{c} GOF = [\Sigma (w(F_{o}^{2}-F_{c}^{2})^{2}) / (M-N)]^{1/2}, \text{ where M is the number of reflections and N is the number of number$ number of parameters refined.