Supporting Information for

The Reactivity of Nb_n⁺ Clusters with Acetylene and Ethylene to Produce a Cubic Aromatic Metal Carbide Nb₄C₄⁺

Wen Gan,^{a,b} Benben Huang,^{a,b} Mengzhou Yang,^{a,b} Lijun Geng,^a Zhixun Luo^{a,b,*} and Klavs Hansen^c

^a Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of

Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^c Centre for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, 92 Weijin

Road, Tianjin 300072, China.

CONTENTS

S1 Mass Spectrometry Observation	2
S2 Optimized Structures	4
S3 Energetics	12
S4 Bonding Nature of $Nb_4C_4^+$	13
S5 Interaction and Energy Decomposition Analysis	17
S6 Reaction Dynamics of $Nb_n^+ + C_2H_2$	25

S1 Mass Spectrometry Observation

Fig. S1 Repeated experiments showing mass spectra of the Nb_n⁺ clusters (a) and reacting with different gas flow rates of 0.2, 1.6, 4.0, and 8.8 sccm 0.2% C₂H₂ in He, respectively (b-e). Those marked with inverted triangle symbols in the bottom frame correspond to oxide contamination.

Fig. S2 Mass spectra of the Nb_n⁺ clusters (a) and reacting with different gas flow rates of 0.2, 1.6, 4.0, and 7.2 sccm 0.2% C_2H_4 in He, respectively (b-e). Those marked with inverted triangle symbols in the bottom frame correspond to oxide contamination.

S2 Optimized Structures

Fig. S3 Optimized structures of Nb₄C₂. Green and pink balls represent Nb and C atoms respectively. spin multiplicities (*M*) and relative energies (ΔE , in units of eV, including zero-point energy, are shown below each isomer.

Fig. S4 Optimized structures for Nb₄C₄. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S5 Optimized structures for Nb₆C₈. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (M) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S6 Optimized structures for Nb₈C₁₂. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (M) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S7. Optimized structures for Nb₃C₂⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S8 Optimized structures for Nb₃C₄⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S9 Optimized structures for Nb₄⁺ and Nb₄C⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S10 Optimized structures for Nb₄C₂⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S11 Optimized structures for Nb₄C₃⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S12 Optimized structures for Nb₄C₄⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S13 Optimized structures for Nb₅C₈⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (M) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S14 Optimized structures for Nb₆C₇⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S15 Optimized structures for Nb₆C₈⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S16 Optimized structures for Nb₇C₁₂⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (*M*) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S17 Optimized structures for Nb₈C₁₁⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (M) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

Fig. S18 Optimized structures for Nb₈C₁₂⁺. Green and pink balls represent Nb and C atoms, respectively. Spin multiplicities (M) and relative energies (ΔE , in eV, including zero-point energy (ZPE)) are shown below each isomer.

S3 Energetics

-		lpha HOMO-LUMO gap	β HOMO-LUMO gap	AEA	E _b (Nb)	E _b (C)
-	$Nb_4C_2^+$	0.37	1.04	5.37	5.09	7.76
	$Nb_4C_4^+$	0.90	0.64	4.54	8.42	8.11
	$Nb_6C_8^+$	0.26	1.14	5.27	7.14	6.20
	$Nb_8C_{12}^+$	0.59	0.61	5.82	7.04	6.43

Table S1. Calculated energetics of the $Nb_nC_m^+$ clusters.

^{*a*} Energies are given in units of eV, including zero-point energy (ZPE). ^{*b*} AEA are the adiabatic electron affinity of the cluster ions. ^{*c*} $E_b(Nb)$ are the binding energy of a Nb atom to $Nb_nC_m^+$ clusters, which is defined as $-E(Nb_nC_m^+) + E(Nb_n - {}_1C_m^+) + E(Nb)$, and $E_b(C)$ are the binding energy of a C atom to $Nb_nC_m^+$ clusters, which is defined as $-E(Nb_nC_m^+) + E(Nb_nC_m^+) + E(Nb_nC_m^+)$

S4 Bonding Nature of Nb₄C₄⁺

Fig. S19 DFT calculation result of the Spin population analysis for $Nb_4C_4^+$.

			Nb1-C6/8	Nb1-C7	Nb1-C7		
	Nb1-Nb2/4	Nb1-Nb3	Nb2-C5/7	Nb2-C6	Nb2-C6	C6-C8/5	C5-C8
	Nb3-Nb2/4	Nb2-Nb4	Nb3-C6/8	Nb3-C5	Nb3-C5	C5-C7	C7-C6/8
			Nb4-C5/7	Nb4-C8	Nb4-C8		
Mayer	0.65	0.72	1.06	1.20	-	-	-
Wiberg	0.66	0.72	1.32	1.48	0.099	0.12	0.13

Nb1-C7-Nb4-C8 C6-Nb1-C8 12. 10.94 10.94 9.12 9.12 0 0 7.29 7.29 5.47 5.47 3.65 3.6 1.82 1.82 0.00 0.00 5.44 7.25 9.06 Length unit: Bohr 3.65 5.47 7.29 9.12 10.94 Length unit: Bohr Nb2-Nb4-C8-C6 C5-C6-C7 Nb1-Nb2-Nb3 13.63 12.6 11.68 11.63 10.8 9.73 9.69 -9.06 0 7.75 600 7.75 7.25 5.8 5.82 5.44 0 0 3.62 3. 3.88 1.81 1.94 4.10 6.15 8.21 10.26 12.31 6.06 8.09 ength unit Bohr 6.18 8.24 10.30 Length unit: Bohr

Fig. S20 Electron localization function (ELF) analysis at the different planes of $Nb_4C_4^+$.

Table S2. Bond order analysis of $Nb_4C_4^+$.

Fig. S21 DFT-calculated frontier canonical molecular orbitals of $Nb_4C_4^+$.

Fig. S22 AdNDP bonding patterns with the occupation numbers (ON) indicated of D_{2d} Nb₄C₄⁺.

Fig. S23 The iso-chemical shielding surface (ICSSs) at the different planes of $Nb_4C_4{}^+\!.$

Fig. S24 The gauge including magnetically induced current (GIMIC) of $Nb_4C_4^+$ when the external magnetic field in the [0,0,1] direction (Z) is applied, with the integral of the induced current that crosses the defined section is labeled below.

S5 Interaction and Energy Decomposition Analysis

	Nb-Nb		Nb-C		C-C		C-H	
	length	order	length	order	length	order	length	order
Nb4 ⁺	2.55	2.00	-	-	-	-	-	-
C_2H_2	-	-	-	-	1.21	3.11	1.06	0.94
C_2H_4	-	-	-	-	1.34	2.15	1.09	0.94
$Nb_4(C_2H_2)_2^+$	2.69	1.28	2.18	0.87	1.43	1.41	1.10	0.85
$Nb_4(C_2H_4)_2^+$	2.58	1.61	2.30	0.69	1.46	1.30	1.10	0.86
$Nb_4C_4^+$	2.90	0.68	2.01	1.38	2.80	0.13	-	-

Table S3. DFT-Calculated average bond lengths and average Wiberg bond order of the $Nb_n(C_2H_2)_m^+$, $Nb_n(C_2H_4)_m^+$ and $Nb_4C_4^+$ clusters.

Fig. S25 Energy level correlation of α frontier orbitals (a), and β frontier orbitals (b) in Nb₄(C₂H₂)₂⁺ cluster, and insets show the corresponding orbitals of Nb₄(C₂H₄)₂⁺ cluster.

Fig. S26 Natural orbitals for chemical valence (NOCV) pair of α orbitals Ψ (eigenvalues given in parenthesis), and the corresponding NOCV deformation electron density plots $\Delta \rho$ between Nb₄⁺ and (C₂H₂)₂. The color code of the charge flow is red \rightarrow blue. The isosurface values are ±0.03 a.u. for symmetrized fragment orbitals (SFOs) and NOCV orbitals, ±0.00015 a.u. for $\Delta \rho$, respectively.

Fig. 27 Natural orbitals for chemical valence (NOCV) pair of β orbitals Ψ (eigenvalues given in parenthesis), and the corresponding NOCV deformation electron density plots $\Delta \rho$ between Nb₄⁺ and (C₂H₂)₂. The color code of the charge flow is red \rightarrow blue. The isosurface values are ±0.03 a.u. for symmetrized fragment orbitals (SFOs) and NOCV orbitals, ±0.00015 a.u. for $\Delta \rho$, respectively.

Table S4. EDA results for Nb₄(C₂H₂)₂⁺ cluster using ADF at the PW91/TZ2P-ZORA level, taking Nb₄⁺ and (C₂H₂)₂ as interacting fragments. Total bonding energy $\Delta E_{int} = \Delta E_{pauli} + \Delta E_{ele} + \Delta E_{orb}$, where ΔE_{pauli} is the repulsion energy caused by the Pauli exclusion principle, ΔE_{ele} and ΔE_{orb} are the attraction energies due to electrostatic and orbital interactions respectively. Energies are given in eV.

	Nb ₄ (C ₂ H ₂) ₂ +	
Energy term	Assignment	eV
ΔE_{int}	-	-13.46
ΔE _{pauli}	-	56.57
$\Delta E_{\rm ele}$	-	-34.40
$\Delta E_{\rm orb}$	-	-35.63
$\Delta E_{orb-\alpha(1)}$	π back donation	-6.39(17.93%)
$\Delta E_{\text{orb-}\beta(1)}$	polarization $+\pi$ back donation	-6.09(17.09%)
$\Delta E_{\text{orb-}\beta(2)}$	π back donation	-4.30(12.07%)
$\Delta E_{orb-\alpha(2)}$	π back donation	-3.38(9.49%)
$\Delta E_{\text{orb-}\beta(3)}$	π back donation	-3.06(8.59%)
$\Delta E_{orb-\alpha(3)}$	π back donation	-2.85(8.00%)
$\Delta E_{\text{orb-}\alpha(4)}$	polarization+ π donation	-1.39(3.90%)
$\Delta E_{orb-\alpha(5)}$	polarization + π donation	-1.06(2.98%)
$\Delta E_{\text{orb-}\beta(4)}$	polarization+ π donation	-0.96(2.69%)
$\Delta E_{\text{orb-}\beta(5)}$	π donation + π back donation	-0.88(2.47%)
$\Delta E_{orb-\alpha(6)}$	π back donation	-0.76(2.13%)
$\Delta E_{\text{orb-}\beta(6)}$	π donation	-0.69(1.94%)
$\Delta E_{orb-\alpha(7)}$	π donation	-0.61(1.71%)
$\Delta E_{\text{orb-}\beta(7)}$	π donation	-0.50(1.40%)
$\Delta E_{\text{orb-rest}}$	-	-2.71(7.61%)

Fig. S28 Energy level correlation of α frontier orbitals (a), and β frontier orbitals (b) in Nb₄(C₂H₄)₂⁺ cluster. Insets show the corresponding orbitals of Nb₄(C₂H₄)₂⁺.

Fig. S29 Natural orbitals for chemical valence (NOCV) pair of α orbitals Ψ (eigenvalues given in parenthesis), and the corresponding NOCV deformation electron density plots $\Delta \rho$ between Nb₄⁺ and (C₂H₄)₂. The color code of the charge flow is red \rightarrow blue. The isosurface values are ±0.03 a.u. for symmetrized fragment orbitals (SFOs) and NOCV orbitals, ±0.00015 a.u. for $\Delta \rho$, respectively.

Fig. S30 Natural orbitals for chemical valence (NOCV) pair of β orbitals Ψ (eigenvalues given in parenthesis), and the corresponding NOCV deformation electron density plots $\Delta \rho$ between Nb₄⁺ and (C₂H₄)₂. The color code of the charge flow is red \rightarrow blue. The isosurface values are ±0.03 a.u. for symmetrized fragment orbitals (SFOs) and NOCV orbitals, ±0.00015 a.u. for $\Delta \rho$, respectively.

Table S5. EDA results for Nb₄(C₂H₄)₂⁺ cluster using ADF at the PW91/TZ2P-ZORA level, taking Nb₄⁺ and (C₂H₄)₂ as interacting fragments. Total bonding energy $\Delta E_{int} = \Delta E_{pauli} + \Delta E_{ele} + \Delta E_{orb}$. ΔE_{pauli} is the repulsion energy caused by the Pauli exclusion principle. ΔE_{ele} and ΔE_{orb} are the attraction energies due to electrostatic and orbital interactions, respectively. Energy values are given in eV.

Energy term	Nb ₄ (C ₂ H ₄) ₂ ⁺ Assignment	eV
Δ <i>E</i> _{int}	-	-6.00
Δ <i>E</i> _{pauli}	-	24.31
Δ <i>E</i> _{ele}	-	-15.18
Δ <i>E</i> _{orb}	-	-15.13
ΔE _{orb-β(1)}	polarization + π donation	-2.73(18.04%)
$\Delta E_{\text{orb-}\alpha(2)}$	π back donation	-2.25(14.87%)
Δ <i>E</i> _{orb-β(2)}	π back donation	-2.13(14.08%)
$\Delta E_{\text{orb-}\alpha(1)}$	polarization+ π donation	-2.01(13.28%)
$\Delta E_{\text{orb-}\alpha(3)}$	π back donation	-1.92(12.69%)
Δ <i>E</i> _{orb-β(3)}	polarization + π back donation	-1.11(7.34%)
ΔE _{orb-β(4)}	π donation + σ donation	-0.41(2.71%)
$\Delta E_{\text{orb-}\alpha(4)}$	π donation + σ donation	-0.39(2.58%)
ΔE _{orb-β(5)}	π donation + σ donation	-0.28(1.85%)
$\Delta E_{\text{orb-}\alpha(5)}$	π donation + σ donation	-0.21(1.39%)
ΔE _{orb-rest}	-	-1.69(7.61%)

S6 Reaction Dynamics of $Nb_n^+ + C_2H_2$

Reaction coordinate

Fig. S31 The proposed reaction path for $Nb_3^+ + C_2H_2 \rightarrow Nb_3C_2^+ + H_2$.

Reaction coordinate

Fig. S32 The proposed reaction path1 for $Nb_4^+ + C_2H_2 \rightarrow Nb_4C_2^+ + H_2$.

Reaction coordinate

Fig. S33 The proposed reaction path2 for $Nb_4^+ + C_2H_2 \rightarrow Nb_4C_2^+ + H_2$.

Fig. S34 The proposed reaction path3 for $Nb_4^* + C_2H_2 \rightarrow Nb_4C_2^* + H_2$.

Fig. S35 The proposed reaction path4 for $Nb_4^+ + C_2H_2 \rightarrow Nb_4C_2^+ + H_2$.

	Relative energy (eV)											
	Nb4 ⁺ + 2C2H2	11	12	TS1	13	TS2	14	TS3	15	TS4	16	TS5
M=2	0.00	-3.48	-5.82	-5.26	-6.77	-6.55	-6.79	-5.63	-7.08	-5.99	-7.27	-6.04
M=4	0.70	-2.83	-5.54	-4.54	-6.25	-5.98	-6.00	-5.07	-6.64	-5.48	-6.12	-5.70
	17	TS6	18	TS5	17	18	TS6	19	TS7	I10	Nb ₄ C ₄ + + 2H ₂	
M=2	-6.90	-6.08	-6.66	-6.57	-7.03	-6.92	-5.59	-6.59	-6.15	-6.73	-6.59	
M=4	-6.71	-5.96	-6.55	-5.82	-6.32	-6.19	-5.38	-6.42	-5.44	-6.08	-5.90	

Table S6. Energy comparison between different spin multiplicities (M=2 and M=4) of the structures in "Nb₄⁺ + 2C₂H₂ \rightarrow Nb₄C₄⁺ + 2H₂". The relative energies (eV) are given relative to the separated reactants (²Nb₄⁺ + 2C₂H₂).

Table S7. DFT-calculated imaginary frequencies of the transition states in "Nb₄⁺ + 2C₂H₂ \rightarrow Nb₄C₄⁺ + 2H₂".

	Frequency analysis							
Transition states	² TS1	² TS2	² TS3	² TS4	² TS5	² TS6		
Imaginary frequencies (cm ⁻¹)	-342.60	-172.18	-268.34	-997.75	-675.09	-1218.21		
Transition states	² TS5	² TS6	² TS7					
Imaginary frequencies (cm ⁻¹)	-1182.46	-969.11	-1012.94					