Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information

Synthesis of New Chiral Mn(III)-Salen Complexes as Recoverable and Reusable Homogeneous Catalysts for Asymmetric Epoxidation of Styrenes and Chromenes

Pooja Chaudhary^a, Geeta Devi Yadav^a, Krishna K. Damodaran^b and Surendra Singh^{a*}

^aDepartment of Chemistry, University of Delhi, Delhi-110007, India ^bDepartment of Chemistry, University of Iceland, Reykjavik, Iceland Email: ssingh1@chemistry.du.ac.in

1. Comparison of literature reported data with our catalysts	Page 2
2. Calibration of gas chromatography (GC)	Pages 3-8
3. Catalysts and ligands characterization	Page 9-11
4. Recovered catalysts 1b and 2b characterization	Pages 11-13
5. Catalysts synthesis characterization data	Pages 13-20
6. ¹ H-NMR and ¹³ C-NMR spectra of catalytic products	Pages 21-23
7. References	Pages 23-24
8. ¹ H and ¹³ C-NMR spectra	Pages 25-74
9. HPLC chromatogram of catalytic products	Pages 75-91
10. GC chromatogram of catalytic products	Pages 92-100

Entry	Homogeneous	Styrene, Catalyst	Solvent	Oxidant	Yield (%)	ee (%)	TOF	Ref.
	Catalyst	time, temp.	(mL)	(mmol)/Axiai base (mmol)			$(X10^{-5} S^{-1})$	
1	C ₂ -Symmetrical diphenol- derived bi- Mn(III)-salen complex	0.5 mmol, 5 mol%, 1 h, 0 °C	CH ₂ Cl ₂ (3 mL)	<i>m</i> -CPBA (1.6)/NMO (2.5)	99.4 (DACH)	27.5 (DACH)	5.52(DACH)	1
2	Polymeric Mn(III)-salen complex	0.5 mmol, 4 mol%, 2 h, 0 °C	CH ₂ Cl ₂ (1 mL)	<i>m</i> -CPBA (1)/PyNO (1)	>99(DACH)	35(DACH)	3.44(DACH)	2
3	Macrocyclic Mn(III)-salen complex	0.625 mmol, 5 mol%, 6 h, 5 °C	DMC (1 mL)	NaOCl (1.5)/PyNO (0.12)	>99(DACH)	40(DACH)	0.92(DACH)	3
4	Macrocyclic Mn(III)-salen complexes	0.625 mmol, 5 mol%, 3 h, 0 °C	CH ₂ Cl ₂ (1 mL)	NaOCl (1.5)/PyNO (0.12)	>99(DACH) >99(DPEN)	33(DACH) 59(DPEN)	1.83(DACH) 1.83(DPEN)	4
5	Dimeric homochiral Mn(III)-salen complex	0.4 mmol, 7 mol%, 5 h, 2 °C	CH ₂ Cl ₂ : CH ₃ CN (1.5:1.5 mL)	Oxone (0.6)/PyNO (0.4)	>99(DACH)	44(DACH)	0.79(DACH)	5
6	Macrocyclic Mn(III)-salen complex	0.625 mmol, 2.5 mol%, 4 h, 0 °C	CH ₂ Cl ₂ (1 mL)	NaOCl (1.5)/PyNO (0.063)	>99(DPEN)	70(DPEN)	2.78(DPEN)	6
7	Polymeric ionic liquid- functionalized Mn(III)-salen complex	0.5 mmol, 4 mol%, 2 h, 0 °C	CH ₂ Cl ₂ (1 mL)	<i>m</i> -CPBA (1)/PyNO (1)	99(DACH)	39(DACH)	3.44(DACH)	7
8	Ionic liquid- functionalized Mn(III)-salen complex	0.5 mmol, 4 mol%, 2 h, 0 °C	CH ₂ Cl ₂ (1 mL)	<i>m</i> -CPBA (1)/PyNO (1)	99(DACH)	40(DACH)	3.44(DACH)	8
9	Dimeric Mn(III)-salen complex	1 mmol, 2.5 mol%, 10 min, 0 °C	CH ₂ Cl ₂ (1 mL)	<i>m</i> -CPBA (2)/NMO (5)	73 (DPEN)	55 (DPEN)	48.67(DPEN)	9
10	Mn(III)-salen complexes	2.5 mmol, 1 mol%, 20 h, 2 °C	CH ₂ Cl ₂ : MeOH (1:1, 1.6 mL)	Urea-H ₂ O ₂ adduct (3)/Ammoniu m acetate (0.2)	70(DACH) 75(DPEN)	32(DACH) 39(DPEN)	0.97(DACH) 1.04(DPEN)	10
11	Mn(III)-salen complexes	0.5 mmol, 2 mol%, 1 h (DPEN) or 2 h (DACH), 0 °C	Ethyl acetate (0.5 mL)	NaOCl (1.34)/PyNO (0.05)	98(DACH) 97(DPEN)	34(DACH) 53(DPEN)	6.8(DACH) 13.5(DPEN)	This work

Table 1. Comparison of literature reported homogeneous Mn(III)-salen complexes with Mn(III)-salen complexes 1b and 2b for asymmetric epoxidation of styrene.

DPEN = 1,2-Diphenyl-1,2-ethylenediamine

DACH = 1,2-Diaminocyclohexane

DMC = Dimethyl Carbonate

Turn over frequency = [product]/[catalyst][time]

Calibration of GC

The calibration curve of the conversion of styrene oxide was plotted between observed area% ratio of the styrene oxide with respect to styrene and known concentration of the styrene oxide and styrene. We have prepared the equal concentration (10 mM) solution of styrene and styrene oxide in ethyl acetate and mixed them in different ratios as given in Table 2 and calculated the area% for different known ratios of styrene and styrene oxide by gas chromatographic (GC) analysis. We obtained a straight line with slope 0.9798 as a response factor for styrene oxide.

Table 2. Area % for the known concentration ratios of styrene and styrene oxide using gas chromatographic (GC) analysis.

Entry	(Known conc.)	(Obtained Area %)		
	Styrene : Styrene oxide	Styrene	Styrene oxide	
1	10:90	11.5464	88.4536	
2	30:70	31.4116	68.5884	
3	50:50	49.7104	50.2896	
4	70:30	70.4295	29.5705	
5	90:10	89.5176	10.4824	

Figure 1. Calibration curve for the gas chromatographic (GC) studies using styrene and styrene oxide.

10% Styrene 90% styrene oxide

30% Styrene 70% styrene oxide

50% Styrene 50% styrene oxide

70% Styrene 30% styrene oxide

90% Styrene 10% styrene oxide

Catalysts and ligands characterization

Figure 2. UV-visible spectra of ligands 8a-e and 9a-e.

Figure 3. UV-visible spectra of Mn(III)-salen complexes 1a-e and 2a-e.

Figure 4. TGA thermograms of Mn(III)-salen complexes 1a-e and 2a-e.

Figure 5. PXRD patterns of Mn(III)-salen complexes 1a-e.

Figure 6. PXRD patterns of Mn(III)-salen complexes 2a-e and Jacobsen catalyst.

Recovered catalysts 1b and 2b characterization

Figure 7. FT-IR spectra: (a) Fresh complex 1b and recovered complex 1b after each run; (b) Fresh complex 2b and recovered complex 2b after each run.

Figure 8. PXRD patterns of fresh and recovered complexes 1b and 2b.

Figure 9. UV-visible spectra of fresh and recovered complexes 1b and 2b.

Figure 10. Recovered complex 1b (i) and 2b (ii) photos.

Complex 1c^[11,12]

Synthesize by following the procedure of complex **1a**. Brown solid, Yield (317 mg, 94%); m.p. 248-250 °C; IR (KBr): 3411, 2925, 1719, 1601, 1537, 1454, 1426, 1390, 1310, 1272, 1182, 1110, 1079, 1013, 969, 894, 852, 769, 720, 701, 670, 575, 513 cm⁻¹. UV-vis (CH₃OH): λ_{max} 229, 309, 369, 432, 500 nm. HRMS(ESI): *m/z* calcd. for [M - Cl]⁺ (C₆₀H₆₆MnN₂O₆): 965.4301, found: 965.4253. $[\alpha]_{589}^{25} = -1200$ (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₆₀H₆₆ClMnN₂O₆: C, 71.95; H, 6.64; N, 2.80. Found: C, 72.12; H, 6.86; N, 2.95%.

Complex 1d^[11,12]

Synthesize by following the procedure of complex **1a**. Brown solid, Yield (428 mg, 92%); m.p. 228-230 °C; IR (KBr): 3417, 2921, 1716, 1600, 1535, 1455, 1421, 1387, 1315, 1269, 1179, 1112, 1076, 1020, 964, 897, 850, 771, 720, 701, 671, 574, 513 cm⁻¹. UV-vis (CH₃OH): λ_{max} 229, 309, 369, 431, 500 nm. HRMS(ESI): *m/z* calcd. for [M - Cl]⁺ (C₇₄H₉₄MnN₂O₆): 1161.6492,

found: 1161.6444. $[\alpha]_{589}^{25} = -1064$ (c = 0.02, CH₂Cl₂). Anal. calcd. for C₇₄H₉₄ClMnN₂O₆: C, 74.19; H, 7.91; N, 2.34. Found: C, 74.52; H, 7.98; N, 2.61%.

Complex 1e^[11,12]

Synthesize by following the procedure of complex **1a**. Brown solid, Yield (374 mg, 94%); m.p. 198-200 °C; IR (KBr): 3416, 2922, 1717, 1601, 1537, 1456, 1428, 1389, 1314, 1269, 1179, 1104, 1076, 1016, 965, 892, 853, 812, 769, 721, 703, 671, 576, 513 cm⁻¹. UV-vis (CH₃OH): λ_{max} 229, 310, 370, 432, 500 nm. HRMS(ESI): *m/z* calcd. for [M - Cl + H]⁺ (C₈₂H₁₁₁MnN₂O₆): 1274.7822, found: 1274.7801. $[\alpha]_{589}^{25} = -1149$ (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₈₂H₁₁₀ClMnN₂O₆: C, 75.17; H, 8.46; N, 2.14. Found: C, 75.00; H, 8.21; N, 2.39%.

Complex 2c^[11,12]

Synthesize by following the procedure of complex **1a**. Brown solid, Yield (317 mg, 95%); decomposed at 296-298 °C; IR (KBr): 3429, 2950, 1715, 1601, 1538, 1458, 1434, 1391, 1342, 1314, 1269, 1180, 1113, 1080, 1018, 970, 895, 854, 814, 772, 702, 677, 566, 519, 490 cm⁻¹. UV-vis (CH₃OH): λ_{max} 229, 309, 372, 429, 500 nm. HRMS(ESI): *m/z* calcd. for [M - Cl]⁺ (C₅₂H₆₄MnN₂O₆): 867.4144, found: 867.4131. $[\alpha]_{589}^{25} = -1176$ (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₅₂H₆₄ClMnN₂O₆: C, 69.13; H, 7.14; N, 3.10. Found: C, 69.10; H, 7.20; N, 3.26%.

Complex 2d^[11,12]

Synthesize by following the procedure of complex **1a**. Brown solid, Yield (402 mg, 92%); m.p. 278-280 °C; IR (KBr): 3430, 2924, 1712, 1602, 1537, 1466, 1436, 1392, 1341, 1312, 1268, 1177, 1106, 1013, 894, 860, 814, 771, 705, 673, 567, 518, 489 cm⁻¹. UV-vis (CH₃OH): λ_{max} 230, 310, 371, 429, 500 nm. HRMS(ESI): *m/z* calcd. for [M - Cl]⁺ (C₆₆H₉₂MnN₂O₆): 1063.6335, found: 1063.6309. $[\alpha]_{589}^{25} = -1087$ (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₆₆H₉₂ClMnN₂O₆: C, 72.07; H, 8.43; N, 2.55. Found: C, 72.44; H, 8.16; N, 2.71%.

Complex 2e^[11,12]

Synthesize by following the procedure of complex **1a**. Brown solid, Yield (310 mg, 96%); m.p. 258-260 °C; IR (KBr): 3425, 2922, 1723, 1601, 1538, 1466, 1422, 1392, 1339, 1311, 1264, 1182, 1104, 861, 817, 773, 717, 673, 566, 515, 449 cm⁻¹. UV-vis (CH₃OH): λ_{max} 230, 310, 372, 429, 500 nm. HRMS(ESI): *m/z* calcd. for [M - Cl + H]⁺ (C₇₄H₁₀₉MnN₂O₆): 1176.7666, found: 1176.7612. $\left[\alpha\right]_{589}^{25}$ = -1098 (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₇₄H₁₀₈ClMnN₂O₆: C, 73.33; H, 8.98; N, 2.31. Found: C, 73.63; H, 8.62; N, 2.34%.

Ligand 8c^[3,6]

Synthesize by following the procedure of ligand **8a**. Yellow solid, Yield (305 mg, 97%); m.p. 115-117 °C; ¹H-NMR (400 MHz, CDCl₃): δ = 13.96 (s, 2H), 8.42 (s, 2H), 8.03 (d, *J* = 8.5 Hz, 4H), 7.49-7.46 (m, 6H), 7.26 (s, 2H), 7.24-7.21 (m, 10H), 4.77 (s, 2H), 4.33 (t, *J* = 6.7 Hz, 4H),

1.79 (pent, J = 7.2 Hz, 4H), 1.43-1.39 (m, 26H), 0.94 (t, J = 7.1 Hz, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 167.01$ (2C), 166.66 (2C), 160.54 (2C), 145.22 (2C), 139.1 (2C), 137.98 (2C), 129.99 (4C), 129.74 (2C), 128.75 (2C), 128.64 (2C), 128.48 (6C), 128.01 (4C), 127.75 (2C), 126.29 (4C), 118.74 (2C), 80.15 (2C), 65.1 (2C), 35.01 (2C), 29.28 (6C), 28.48 (2C), 28.24 (2C), 22.40 (2C), 14.02 (2C) ppm. IR (KBr): 3401, 2959, 1716, 1624, 1467, 1446, 1389, 1355, 1275, 1176, 1112, 1058, 1012, 972, 885, 855, 769, 760, 702 cm⁻¹. UV-vis (CH₃OH): λ_{max} 226, 266, 305 nm. HRMS(ESI): m/z calcd. for [M + H]⁺ (C₆₀H₆₈N₂O₆): 913.5155, found: 913.5137. [α]²⁵₅₈₉ = -110 (c = 0.02, CH₂Cl₂). Anal. calcd. for C₆₀H₆₈N₂O₆: C, 78.91; H, 7.51; N, 3.07. Found: C, 79.00; H, 7.65; N, 3.12%.

Ligand 8d^[3,6]

Synthesize by following the procedure of ligand **8a**. Viscous yellow liquid, Yield (470 mg, 97%); ¹H-NMR (400 MHz, CDCl₃): δ = 13.96 (s, 2H), 8.42 (s, 2H), 8.03 (d, *J* = 8.4 Hz, 4H), 7.49-7.46 (m, 6H), 7.26 (s, 2H), 7.24-7.21 (m, 10H), 4.77 (s, 2H), 4.32 (t, *J* = 6.7 Hz, 4H), 1.77 (p, *J* = 7.8 Hz, 4H), 1.43 (s, 22H), 1.26 (s, 32H), 0.87 (t, *J* = 7 Hz, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 167.00 (2C), 166.66 (2C), 160.54 (2C), 145.22 (2C), 139.11 (2C), 137.98 (2C), 130.00 (4C), 129.74 (2C), 128.75 (2C), 128.64 (2C), 128.50 (2C), 128.48 (4C), 128.00 (4C), 127.75 (2C), 126.28 (4C), 118.74 (2C), 80.15 (2C), 65.12 (2C), 35.01 (2C), 31.93 (2C), 29.67 (2C), 29.65 (2C), 29.60 (2C), 29.57 (2C), 29.36 (2C), 29.32 (2C), 29.28 (6C), 28.78 (2C), 26.08 (2C), 22.7 (2C), 14.13 (2C) ppm. IR (KBr): 3400, 2956, 1714, 1626, 1467, 1442, 1394, 1359, 1278, 1172, 1109, 1052, 1012, 972, 917, 885, 854, 768, 756, 709, 692 cm⁻¹. UV-vis (CH₃OH): λ_{max} 227, 266, 303 nm. HRMS(ESI): *m/z* calcd. for [M + H]⁺ (C₇₄H₉₇N₂O₆): 1109.7346, found: 1109.7323. $[\alpha]_{589}^{25} = -168 (c = 0.02, CH₂Cl₂). Anal. calcd. for C₇₄H₉₆N₂O₆: C, 80.10; H, 8.72; N, 2.52. Found: C, 80.41; H, 8.87; N, 2.64%.$

Ligand 8e^[3,6]

Synthesize by following the procedure of ligand **8a**. Viscous yellow liquid, Yield (382 mg, 96%); ¹H-NMR (400 MHz, CDCl₃): $\delta = 13.96$ (s, 2H), 8.42 (s, 2H), 8.03 (d, J = 8.4 Hz, 4H), 7.49-7.46 (m, 6H), 7.25 (s, 2H), 7.24-7.22 (m, 10H), 4.77 (s, 2H), 4.32 (t, J = 6.7 Hz, 4H), 1.78 (pent, J = 7.7 Hz, 4H), 1.43 (s, 22H), 1.25 (s, 48H), 0.87 (t, J = 7.0 Hz, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 167.00$ (2C), 166.66 (2C), 160.54 (2C), 145.22 (2C), 139.11 (2C), 137.98 (2C), 130.00 (4C), 129.74 (2C), 128.75 (2C), 128.64 (2C), 128.50 (2C), 128.48 (4C), 128.00 (4C), 127.75 (2C), 126.28 (4C), 118.75 (2C), 80.16 (2C), 65.12 (2C), 35.01 (2C), 31.94 (2C), 29.71 (6C), 29.67 (6C), 29.62 (2C), 29.58 (2C), 29.37 (2C), 29.33 (2C), 29.28 (6C), 28.78 (2C), 26.08 (2C), 22.70 (2C), 14.14 (2C) ppm. IR (KBr): 3405, 2958, 1715, 1625, 1465, 1440, 1390, 1360, 1272, 1177, 1111, 1055, 1015, 979, 915, 889, 851, 771, 759, 711, 698 cm⁻¹. UV-vis (CH₃OH): λ_{max} 226, 266, 303 nm. HRMS(ESI): m/z calcd. for [M + H]⁺ (C₈₂H₁₁₃N₂O₆): 1221.8598, found: 1221.8583. $\left[\alpha\right]_{589}^{25} = -202 (c = 0.02, CH₂Cl₂). Anal. calcd. for C₈₂H₁₁₂N₂O₆: C, 80.61; H, 9.24; N, 2.29. Found: C, 80.54; H, 9.45; N, 2.35%.$

Ligand 9c^[3,6]

Synthesize by following the procedure of ligand **9a**. Yellow solid, Yield (348 mg, 90%); mp; 78-80 °C; ¹H-NMR (400 MHz, CDCl₃): δ = 14.06 (s, 2H), 8.35 (s, 2H), 8.03 (d, *J* = 8.4 Hz, 4H), 7.49-7.47 (m, 6H), 7.22 (d, *J* = 2.2 Hz, 2H), 4.32 (t, *J* = 6.7 Hz, 4H), 3.39-3.37 (m, 2H), 2.06-2.02 (m, 2H), 1.94-1.91 (m, 2H), 1.82-1.75 (m, 6H), 1.51-1.49 (m, 2H), 1.43-1.42 (m, 26H), 0.94 (t, *J* = 7.2 Hz, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 166.65 (2C), 165.63 (2C), 160.68 (2C), 145.28 (2C), 137.91 (2C), 129.98 (4C), 129.56 (2C), 128.44 (2C), 128.37 (4C), 126.26 (4C), 118.71 (2C), 72.40 (2C), 65.07 (2C), 34.96 (2C), 32.97 (2C), 29.29 (6C), 28.46 (2C), 28.23 (2C), 24.29 (2C), 22.38 (2C), 14.01 (2C) ppm. IR (KBr): 3414, 2959, 1717, 1626, 1470, 1440,

1390, 1360, 1289, 1179, 1107, 1069, 1038, 1018, 972, 936, 887, 851, 771, 757, 713 cm⁻¹. UV-vis (CH₃OH): λ_{max} 228, 261, 304 nm. HRMS(ESI): *m/z* calcd. for [M + H]⁺ (C₅₂H₆₇N₂O₆): 815.4999, found: 815.4986. $[\alpha]_{589}^{25} = -170$ (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₅₂H₆₆N₂O₆: C, 76.62; H, 8.16; N, 3.44. Found: C, 76.15; H, 8.12; N, 3.54%.

Ligand 9d^[3,6]

Synthesize by following the procedure of ligand **9a**. Viscous yellow liquid, Yield (400 mg, 92%); ¹H-NMR (400 MHz, CDCl₃): δ = 14.06 (s, 2H), 8.35 (s, 2H), 8.03 (d, *J* = 8.5 Hz, 4H), 7.49-7.47 (m, 6H), 7.23 (d, *J* = 2.2 Hz, 2H), 4.32 (t, *J* = 6.7 Hz, 4H), 3.39-3.37 (m, 2H), 2.06-2.03 (m, 2H), 1.93-1.91 (m, 2H), 1.81-1.73 (m, 6H), 1.51-1.48 (m, 2H), 1.44 (s, 22H), 1.26 (s, 32H), 0.87 (t, *J* = 7.0 Hz, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 166.65 (2C), 165.62 (2C), 160.68 (2C), 145.27 (2C), 137.91 (2C), 129.99 (4C), 129.56 (2C), 128.45 (2C), 128.37 (4C), 126.26 (4C), 118.71 (2C), 72.4 (2C), 65.09 (2C), 34.96 (2C), 31.91 (2C), 29.65 (2C), 29.64 (2C), 29.59 (2C), 29.55 (2C), 29.35 (2C), 29.29 (10C), 28.76 (2C), 26.06 (2C), 24.29 (2C), 22.69 (2C), 14.12 (2C) ppm. IR (KBr): 3421, 2947, 1716, 1625, 1467, 1441, 1393, 1367, 1280, 1179, 1100, 1070, 1046, 1019, 975, 936, 887, 852, 773, 759, 713 cm⁻¹. UV-vis (CH₃OH): λ_{max} 228, 261, 304 nm. HRMS(ESI): *m/z* calcd. for [M + H]⁺ (C₆₆H₉₅N₂O₆): 1011.7190, found: 1011.7168. [*a*]²⁵₅₈₉ = -194 (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₆₆H₉₄N₂O₆: C, 78.37; H, 9.37; N, 2.77. Found: C, 78.47; H, 9.32; N, 2.91%.

Ligand 9e^[3,6]

Synthesize by following the procedure of ligand **9a**. Viscous yellow liquid, Yield (342 mg, 91%); ¹H-NMR (400 MHz, CDCl₃): δ = 14.06 (s, 2H), 8.36 (s, 2H), 8.03 (d, *J* = 8.4 Hz, 4H), 7.49-7.47 (m, 6H), 7.23 (d, *J* = 2.2 Hz, 2H), 4.32 (t, *J* = 6.7 Hz, 4H), 3.39-3.37 (m, 2H), 2.06-2.03 (m, 2H), 1.93-1.91 (m, 2H), 1.80-1.73 (m, 6H), 1.51-1.48 (m, 2H), 1.43 (s, 22H), 1.25 (s, 48H), 0.87 (t, *J* = 7.0 Hz, 6H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 166.66 (2C), 165.62 (2C), 160.69 (2C), 145.28 (2C), 137.92 (2C), 129.99 (4C), 129.57 (2C), 128.45 (2C), 128.37 (4C), 126.27 (4C), 118.72 (2C), 72.42 (2C), 65.10 (2C), 34.97 (2C), 32.99 (2C), 31.93 (2C), 29.71 (8C), 29.67 (6C), 29.61 (2C), 29.57 (2C), 29.37 (2C), 29.30 (6C), 28.78 (2C), 26.07 (2C), 24.30 (2C), 22.70 (2C), 14.13 (2C) ppm. IR (KBr): 3427, 2951, 1718, 1624, 1460, 1448, 1394, 1369, 1279, 1175, 1102, 1078, 1049, 1012, 978, 940, 882, 849, 778, 749, 714 cm⁻¹. UV-vis (CH₃OH): λ_{max} 228, 261, 305 nm. HRMS(ESI): *m/z* calcd. for [M + H]⁺ (C₇₄H₁₁₁N₂O₆): 1123.8442, found: 1123.8411. $[\alpha]_{589}^{25}$ = -187 (*c* = 0.02, CH₂Cl₂). Anal. calcd. for C₇₄H₁₁₀N₂O₆: C, 79.10; H, 9.87; N, 2.49. Found: C, 79.24; H, 9.89; N, 2.67%.

3-(tert-butyl)-2-hydroxy-5-iodobenzaldehyde (5)

Synthesize by following the reported procedure.¹³ Yellow solid, Yield (2.75 g, 91%); m.p. 43-45 °C; ¹H-NMR (400 MHz, CDCl₃): δ = 11.73 (s, 1H), 9.79 (s, 1H), 7.72-7.69 (m, 2H), 1.39 (s, 9H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 195.93, 160.86, 142.54, 141.35, 140.02, 122.49, 80.62, 35.05, 29.03 ppm.

Pentyl 3'-(tert-butyl)-5'-formyl-4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (6c)

Synthesize by following the procedure of compound **6b**. Viscous colorless liquid, Yield (391 mg, 83%); ¹H-NMR (400 MHz, CDCl₃): δ = 11.86 (s, 1H), 9.98 (s, 1H), 8.12 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 2.2 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 4.35 (t, *J* = 6.7 Hz, 2H), 1.80 (pent, *J* = 7.2 Hz, 2H), 1.48-1.38 (m, 13H), 0.94 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C-NMR

(100 MHz, CDCl₃): δ = 197.15, 166.47, 161.23, 144.36, 139.14, 133.04, 131.24, 130.32, 130.24 (2C), 129.19, 126.48 (2C), 120.78, 65.22, 35.09, 29.21 (3C), 28.46, 28.23, 22.38, 14.01 ppm. IR (KBr): 3413, 2972, 1713, 1657, 1608, 1566, 1515, 1446, 1391, 1360, 1331, 1273, 1218, 1165, 1108, 1072, 1014, 957, 855, 774, 715 cm⁻¹. HRMS(ESI): *m/z* calcd. for [M + H]⁺ (C₂₃H₂₉O₄): 369.2065, found: 369.2061. Anal. calcd. for C₂₃H₂₈O₄: C, 74.97; H, 7.66. Found: C, 75.03; H, 7.39%.

Dodecyl 3'-(tert-butyl)-5'-formyl-4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (6d)

Synthesize by following the procedure of compound **6b**. Viscous colorless liquid, Yield (490 mg, 82%); ¹H-NMR (400 MHz, CDCl₃): $\delta = 11.85$ (s, 1H), 9.95 (s, 1H), 8.09 (d, J = 8.8 Hz, 2H), 7.76 (s, 1H), 7.63-7.62 (m, 1H), 7.60 (d, J = 8.8 Hz, 2H), 4.32 (t, J = 7.2 Hz, 2H), 1.76 (pent, J = 6.8 Hz, 2H), 1.46 (s, 9H), 1.44-1.41 (m, 2H), 1.24 (s, 16H), 0.85 (t, J = 6.8 Hz, 3H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 197.23$, 166.54, 161.31, 144.42, 139.19, 133.11, 131.31, 130.39, 130.32 (2C), 129.27, 126.55 (2C), 120.85, 65.32, 35.17, 32.00, 29.73 (2C), 29.67, 29.63, 29.44, 29.38, 29.28 (3C), 28.83, 26.15, 22.77, 14.21 ppm. IR (KBr): 3410, 2973, 1712, 1606, 1568, 1509, 1441, 1394, 1324, 1278, 1215, 1168, 1071, 1014, 955, 894, 851, 761, 716 cm⁻¹. HRMS(ESI): m/z calcd. for [M + H]⁺ (C₃₀H₄₃O₄): 467.3161, found: 467.3157. Anal. calcd. for C₃₀H₄₂O₄: C, 76.68; H, 8.73. Found: C, 76.88; H, 8.91%.

Hexadecyl 3'-(*tert*-butyl)-5'-formyl-4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (6e)

Synthesize by following the procedure of compound **6b**. Viscous colorless liquid, Yield (521 mg, 78%); ¹H-NMR (400 MHz, CDCl₃): δ = 11.84 (s, 1H), 9.95 (s, 1H), 8.09 (d, *J* = 7.6 Hz, 2H), 7.76 (d, *J* = 2.0 Hz, 1H), 7.62 (d, *J* = 2.4 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 4.32 (t, *J* = 6.8 Hz, 2H), 1.76 (pent, *J* = 7.2 Hz, 2H), 1.46 (s, 9H), 1.43-1.39 (m, 2H), 1.23 (s, 24H), 0.85 (t, *J* = 6.8 Hz, 3H) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 197.12, 166.45, 161.20, 144.30, 139.07, 133.00,

131.18, 130.28, 130.21 (2C), 129.13, 126.44 (2C), 120.73, 65.21, 35.05, 31.90, 29.68 (4C), 29.64 (3C), 29.57, 29.54, 29.35, 29.28, 29.17 (2C), 28.72, 26.04, 22.67, 14.11 ppm. IR (KBr): 3411, 2974, 1716, 1601, 1565, 1513, 1473, 1432, 1392, 1364, 1329, 1287, 1219, 1159, 1119, 1070, 1016, 957, 892, 852, 766, 717 cm⁻¹. HRMS(ESI): m/z calcd. for [M + H]⁺ (C₃₄H₅₁O₄): 523.3787, found: 523.3785. Anal. calcd. for C₃₄H₅₀O₄: C, 78.12; H, 9.64. Found: C, 78.45; H, 9.47%.

Styrene oxide (11)^[14]

Colorless liquid, Yield (58.5 mg, 97%); $[\alpha]_{589}^{25} = +16$ (c = 0.64, CHCl₃); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.34-7.25$ (m, 5H), 3.84-3.82 (m, 1H), 3.12-3.09 (m, 1H), 2.76 (dd, J = 5.5, 2.5 Hz, 1H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 137.53$, 128.41(2C), 128.08, 125.40 (2C), 52.24, 51.09 ppm.

4-Fluorostyrene oxide (13)^[14]

Colorless liquid, Yield (66.3 mg, 96%); $[\alpha]_{589}^{25} = -14$ (c = 0.65, CHCl₃); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.26-7.22$ (m, 2H), 7.05-7.01 (m, 2H), 3.85-3.83 (m, 1H), 3.14-3.12 (m, 1H), 2.76 (dd, J = 5.4, 2.5 Hz, 1H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 163.93$, 161.49, 133.34, 133.31, 127.23, 127.15, 115.60, 115.38, 51.85, 51.17 ppm.

4-Chlorostyrene oxide (15)^[14]

Colorless liquid, Yield (75.6 mg, 98%); $[\alpha]_{589}^{25} = -20$ (c = 0.65, CHCl₃); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.30$ (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 3.83-3.81 (m, 1H), 3.14-3.12 (m, 1H), 2.74 (dd, J = 5.4, 2.5 Hz, 1H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 136.22$, 133.94, 128.72 (2C), 126.85 (2C), 51.78, 51.22 ppm.

4-Bromostyrene oxide (17)^[14]

Colorless liquid, Yield (96.4 mg, 97%); $[\alpha]_{589}^{25} = -20$ (c = 0.62, CHCl₃); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.46$ (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 3.82-3.81 (m, 1H), 3.15-3.13 (m, 1H), 2.74 (dd, J = 5.4, 2.5 Hz, 1H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 136.75$, 131.66 (2C), 127.18 (2C), 122.03, 51.83, 51.20 ppm.

2,2-dimethyl-2H-chromene oxide (19)^[15]

Colorless liquid, Yield (84.8 mg, 96%); $[\alpha]_{589}^{25} = 20$ (c = 0.97, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.33$ (dd, J = 7.4, 1.4 Hz, 1H), 7.23 (dt, J = 8.0, 1.6 Hz, 1H), 6.92 (dt, J = 7.4, 0.8 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 3.89 (d, J = 4.4 Hz, 1H), 3.49 (d, J = 4.4 Hz, 1H), 1.58 (s, 3H), 1.25 (s, 3H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 152.60$, 130.32, 129.66, 121.07, 119.96, 118.03, 73.00, 62.89, 51.01, 25.71, 22.61 ppm.

spiro[cyclohexane-1,2'-[2H][1]chromene oxide (21)^[16]

Colorless liquid, Yield (105.9 mg, 98%); $[\alpha]_{589}^{25} = 12$ (c = 0.86, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.32$ (dd, J = 1.5, 7.4 Hz, 1H), 7.26-7.21 (m, 1H), 6.92 (dt, J = 7.4, 1.0 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 3.86 (d, J = 4.4 Hz, 1H), 3.48 (d, J = 4.4 Hz, 1H), 2.11-2.05 (m, 1H), 1.93-1.84 (m, 1H), 1.72-1.64 (m, 3H), 1.61-1.56 (m, 2H), 1.52-1.46 (m, 1H), 1.43-1.32 (m, 2H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 152.29$, 130.20, 129.60, 121.02, 120.76, 118.15, 73.55, 62.54, 50.55, 34.15, 30.26, 25.45, 21.18, 20.93 ppm.

6-cyano-2,2-dimethyl-2H-chromene oxide (23)^[16]

Colorless liquid, Yield (95.8 mg, 95%); $[\alpha]_{589}^{25} = 85$ (c = 0.27, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.65$ (d, J = 2.0 Hz, 1H), 7.52 (dd, J = 8.5, 2.0 Hz, 1H), 6.86 (d, J = 8.5 Hz, 1H), 3.91 (d, J = 4.3 Hz, 1H), 3.54 (d, J = 4.4 Hz, 1H), 1.6 (s, 3H), 1.30 (s, 3H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 156.50$, 134.42, 133.82, 121.12, 119.04, 118.74, 104.32, 74.69, 62.30, 49.88, 25.50, 23.03 ppm.

6-cyano-spiro[cyclohexane-1,2'-[2H][1]chromene oxide (25)^[16]

Colorless liquid, Yield (116 mg, 96%); $[\alpha]_{589}^{25} = 35$ (c = 0.97, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃): $\delta = 7.64$ (d, J = 1.9 Hz, 1H), 7.53 (dd, J = 8.4, 1.9 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 3.87 (d, J = 4.4 Hz, 1H), 3.54 (d, J = 4.4 Hz, 1H), 2.10-2.06 (m, 1H), 1.91-1.80 (m, 1H), 1.74-1.65 (m, 3H), 1.58-1.35 (m, 5H) ppm. ¹³C-NMR (100 MHz, CDCl₃): $\delta = 156.28$, 134.39, 133.76, 121.89, 119.13, 118.78, 104.28, 75.31, 61.93, 49.44, 33.92, 30.85, 25.19, 21.16, 20.76 ppm.

References

[1] T. Dong, X. Wu, J. Cai and J. Huang, Inorg. Chem. Commun., 2019, 101, 57-61.

[2] R. Tan, D. Yin, N. Yu, L. Tao, Z. Fu and D. Yin, J. Mol. Catal. A Chem., 2006, 259, 125-132.

[3] N. C. Maity, G. V. S. Rao, K. J. Prathap, S. H. R. Abdi, R. I. Kureshy, N. H. Khan and H. C. Bajaj, *J. Mol. Catal. A Chem.*, 2013, **366**, 380-389.

[4] N. C. Maity, S. H. R. Abdi, R. I. Kureshy, N. H. Khan, E. Suresh, G. P. Dangi and H. C. Bajaj, *J. Catal.*, 2011, **277**, 123-127.

[5] R. I. Kureshy, N. H. Khan, S. H. R. Abdi, I. Ahmed, S. Singh and R. V. Jasra, *J. Mol. Catal. A Chem.*, 2003, **203**, 69-73.

[6] R. I. Kureshy, T. Roy, N. H. Khan, S. H. R. Abdi, A. Sadhukhan and H. C. Bajaj, *J. Catal.*, 2012, **286**, 41-50.

[7] R. Tan, D. Yin, N. Yu, H. Zhao and D. Yin, J. Catal., 2009, 263, 284-291.

[8] R. Tan, D. Yin, N. Yu, Y. Jin, H. Zhao and D. Yin, J. Catal., 2008, 255, 287-295.

[9] L. Xinwen, T. Ning, L. Weisheng and T. Minyu, J. Mol. Catal. A Chem., 2004, 212, 353-358.

[10] R. I. Kureshy, N. H. Khan, S. H. R. Abdi, S. Singh, I. Ahmed, R. S. Shukla and R. V. Jasra, *J. Catal.*, 2003, **219**, 1-7.

[11] J. Cubillos, Advances in Chemical Engineering, 2012, Chapter 7, 203-214.

[12] A. Patti, S. Pedotti, F. P. Ballistreri and G. T. Sfrazzetto, *Molecules*, 2009, 14, 4312-4325.

[13] K. M. Tramposch, H. F. Kung and M. Blau, J. Med. Chem., 1983, 26, 121-125.

[14] H. Liao, Y. Chou, Y. Wang, H. Zhang, T. Cheng and G. Liu, *ChemCatChem*, 2017, **9**, 3197-3202.

[15] H. Shitama and T. Katsuki, Tetrahedron Lett., 2006, 47, 3203-3207.

[16] S. Liao and B. List, Angew. Chem. Int. Ed., 2010, 49, 628-631.

 ∞

8196.722 Hz 0.250144 Hz 3.9976959 sec 61.000 usec 12.86 usec 298.0 K 1.00000000 sec 400.1724710 MHz 4.67 usec 14.00 usec 16.77000046 W

HPLC Chromatograms

Racemic-styrene oxide (11)

HPLC condition: Chiralpak IC column, hexane/isopropyl alcohol = 95/5, flow rate = 1 mL/min, wavelength = 220 nm, temperature = 25 °C.

Styrene oxide (11) with catalyst 1b after first run

2	5.640	1146940	188724	23.657	23.657
Total		4848183	810067	100.000	100.000

Styrene oxide (11) with catalyst 1b after second run

HPLC condition: Chiralpak IC column, hexane/isopropyl alcohol = 95/5, flow rate = 1 mL/min, wavelength = 220 nm, temperature = 25 °C.

Styrene oxide (11) with catalyst 1b after third run

1	5.214	3087745	536158	75.451	75.451
2	5.608	1004633	163903	24.549	24.549
Total		4092378	700061	100.000	100.000

Styrene oxide (11) with catalyst 2b after first run

HPLC condition: Chiralpak IC column, hexane/isopropyl alcohol = 95/5, flow rate = 1 mL/min, wavelength = 220 nm, temperature = 25 °C.

Styrene oxide (11) with catalyst 2b after second run

Peak	Ret. Time	Area	Height	Conc.	Area%
1	5.479	4120163	672948	67.019	67.019
2	5.929	2027631	314070	32.981	32.981
Total		6147794	987018	100.000	100.000

Styrene oxide (11) with catalyst 2b after third run

Styrene oxide (11) with catalyst 2b after fourth run

HPLC condition: Chiralpak IC column, hexane/isopropyl alcohol = 95/5, flow rate = 1 mL/min, wavelength = 220 nm, temperature = 25 °C.

Racemic-4-fluorostyrene oxide (13)

4-Fluorostyrene oxide (13) with catalyst 1b

HPLC condition: Chiralpak AD-H column, hexane/isopropyl alcohol = 99.8/0.2, flow rate = 0.8 mL/min, wavelength = 220 nm, temperature = 25 °C.

Peak	Ret. Time	Area	Height	Conc.	Area%
1	13.215	12223688	784645	72.770	72.770
2	14.079	4574128	298127	27.230	27.230
Total		16797816	1082772	100.000	100.000

4-fluorostyrene oxide (13) with catalyst 2b

Peak	Ret. Time	Area	Height	Conc.	Area%
1	13.552	4037433	281933	67.145	67.145
2	14.489	1975608	133647	32.855	32.855
Total		6013041	415580	100.000	100.000

Racemic-4-chlorostyrene oxide (15)

HPLC condition: Chiralpak AD-H column, hexane/isopropyl alcohol = 99.5/0.5, flow rate = 0.8 mL/min, wavelength = 220 nm, temperature = 25 °C.

4-Chlorostyrene oxide (15) with catalyst 1b

4-Chlorostyrene oxide (15) with catalyst 2b

Racemic-4-bromostyrene oxide (17)

HPLC condition: Chiralpak AD-H column, hexane/isopropyl alcohol = 99.5/0.5, flow rate = 0.8 mL/min, wavelength = 220 nm, temperature = 25 °C.

4-bromostyrene oxide (17) with catalyst 1b

1	10.912	9448307	738859	73.951	73.951
2	11.651	3328170	262260	26.049	26.049
Total		12776476	1001119	100.000	100.000

4-bromostyrene oxide (17) with catalyst 2b

HPLC condition: Chiralpak AD-H column, hexane/isopropyl alcohol = 99.5/0.5, flow rate = 0.8 mL/min, wavelength = 220 nm, temperature = 25 °C.

Racemic-2,2-dimethyl-2*H*-chromene oxide (19)

2,2-dimethyl-2*H*-chromene oxide (19) with catalyst 1b

2,2-dimethyl-2H-chromene oxide (19) with catalyst 2b

HPLC condition: Chiralpak IA column, hexane/isopropyl alcohol = 95/5, flow rate = 1 mL/min, wavelength = 270 nm, temperature = 25 °C.

Racemic-spiro[cyclohexane-1,2'-[2H][1]chromene oxide (21)

2	11.130	9781562	758281	50.009	50.009
Total		19559579	1599932	100.000	100.000

Spiro[cyclohexane-1,2'-[2H][1]chromene oxide (21) with catalyst 1b

HPLC condition: Chiralpak IA column, hexane/isopropyl alcohol = 95/5, flow rate = 0.5 mL/min, wavelength = 270 nm, temperature = 25 °C.

Spiro[cyclohexane-1,2'-[2H][1]chromene oxide (21) with catalyst 2b

Peak	Ret. Time	Area	Height	Conc.	Area%
1	10.005	21433810	1803986	93.286	93.286
2	11.140	1542552	129259	6.714	6.714
Total		22976362	1933244	100.000	100.000

Racemic-6-cyano-2,2-dimethyl-2*H*-chromene oxide (23)

HPLC condition: Chiralcel OD-H column, hexane/isopropyl alcohol = 95/5, flow rate = 0.5 mL/min, wavelength = 254 nm, temperature = 25 °C.

6-cyano-2,2-dimethyl-2H-chromene oxide (23) with catalyst 1b

6-cyano-2,2-dimethyl-2H-chromene oxide (23) with catalyst 2b

Racemic-6-cyano-spiro[cyclohexane-1,2'-[2H][1]chromene oxide (25)

HPLC condition: Chiralcel OD-H column, hexane/isopropyl alcohol = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm, temperature = 25 °C.

6-cyano-spiro[cyclohexane-1,2'-[2H][1]chromene oxide (25) with catalyst 1b

90

1	17.965	1900271	85176	91.086	91.086
2	22.269	185956	6601	8.914	8.914
Total		2086227	91778	100.000	100.000

6-cyano-spiro[cyclohexane-1,2'-[2H][1]chromene oxide (25) with catalyst 2b

HPLC condition: Chiralcel OD-H column, hexane/isopropyl alcohol = 90/10, flow rate = 0.5 mL/min, wavelength = 254 nm, temperature = 25 °C.

GC Chromatograms

GC chromatogram of styrene (10)

1 2.369 51027387.6 20425079.2 100.00000

GC chromatogram of styrene oxide (11) synthesized in first run with catalyst 1b

GC conditions of styrene oxide (11): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

GC chromatogram of styrene oxide (11) synthesized in second run with catalyst 1b

Peak	Ret.Time	Area	Height	Conc.
1	2.337	1068325.8	379837.4	13.54397
2	3.764	6819509.7	2394947.8	86.45603

GC chromatogram of styrene oxide (11) synthesized in third run with catalyst 1b

GC chromatogram of styrene oxide (11) synthesized in first run with catalyst 2b

GC conditions of styrene oxide (11): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

GC chromatogram of styrene oxide (11) synthesized in second run with catalyst 2b

GC chromatogram of styrene oxide (11) synthesized in third run with catalyst 2b

GC conditions of styrene oxide (11): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

Peak	Ret.Time	Area	Height	Conc.
1	2.341	420592.2	124089.1	9.47374
2	3.750	4018967.9	1240984.4	90.52626

GC chromatogram of styrene oxide (11) synthesized in fourth run with catalyst 2b

GC chromatogram of 4-fluorostyrene (12)

GC conditions of 4-fluorostyrene (12): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

1	2.387	62514346.9	25662949.4	100.00000

GC chromatogram of 4-fluorostyrene oxide (13) with catalyst 1b

GC chromatogram of 4-fluorostyrene oxide (13) with catalyst 2b

GC conditions of 4-fluorostyrene oxide (13): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

GC chromatogram of 4-chlorostyrene (14)

GC conditions of 4-chlorostyrene (14): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

GC chromatogram of 4-chlorostyrene oxide (15) with catalyst 1b

GC conditions of 4-chlorostyrene oxide (15): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

GC chromatogram of 4-chlorostyrene oxide (15) with catalyst 2b

GC chromatogram of 4-bromostyrene (16)

GC conditions of 4-bromostyrene (16): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = 250 °C, column flow rate = 1.36 mL/min, column temperature = 100-180 °C, temperature program = 6 °C/min, detector temperature = 250 °C.

GC chromatogram of 4-bromostyrene oxide (17) with catalyst 1b

GC chromatogram of 4-bromostyrene oxide (17) with catalyst 2b

GC conditions of 4-bromostyrene oxide (17): column information Rtx-5, L = 30 m, 0.25 mm ID, injector temperature = $250 \,^{\circ}$ C, column flow rate = $1.36 \,$ mL/min, column temperature = $100-180 \,^{\circ}$ C, temperature program = $6 \,^{\circ}$ C/min, detector temperature = $250 \,^{\circ}$ C.

