Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Ni(OH)₂ Coated CoMn-Layered Double Hydroxide Nanowires as Efficient Water Oxidation Electrocatalysts

Xue Li^{*a*}, Komal Patil^{*b*}, Ashutosh Agarwal^{*c*}, Pravin Babar^{*d*}, Jun Sung Jang^{*b*}, Xing Chen^{*e*}, Yung Tae Yoo ^{*f**} and Jin Hyeok Kim^{*b**}

a Department of Materials Science and Engineering, Chosun University, Gwangju 61452, South Korea

b Optoelectronic Convergence Research Center, Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea

c Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, South Korea

d KAUST Catalysis Center, Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

e Department of Business Administration, Honam University, Gwangju 62399, South Korea

f Department of Mechanical Engineering, Chosun University, Gwangju 61452, South Korea

*Corresponding author: <u>ytyou@chosun.ac.kr</u> (Yung Tae Yoo), <u>jinhyeok@chonnam.ac.kr</u> (Jin Hyeok Kim),

Fig.S1 Optical photographs of catalysts (a) bare NF, (b) $Ni(OH)_2/NF$, (c) CoMn-LDH/NF, and (d) $Ni(OH)_2@CoMn-LDH/NF$.

Fig. S2 (a) OER polarization curves at a scan rate of 1 mV s⁻¹, (b) Corresponding Tafel plots, (c) Overpotential values at the current density of 50 and 100 mA cm⁻² with various molar ratios of Co: Mn of CoMn-LDH in 1 M KOH.

Fig. S3. FE-SEM image of Ni(OH)₂@CoMn-LDH nanowires at low magnification.

Fig. S4 (a) EDS spectrum (b) TEM image (c) HRTEM image and inset is SAED pattern (d-g) Elemental mapping images for CoMn-LDH nanowires.

Fig. S5 XPS survey spectrum of Ni(OH)₂@CoMn-LDH/NF.

Fig. S6 XPS spectra of $Ni(OH)_2/NF$. (a) XPS survey spectrum and high-resolution XPS spectra of (b) Ni 2p, and (c) O 1s.

Fig. S7 XPS spectra of CoMn-LDH/NF. (a) XPS survey spectrum and high-resolution XPS spectra of (b) Co 2p, (c) Mn 2p, and (d) O 1s.

Fig. S8 High-resolution XPS spectra of Ni(OH)₂@CoMn-LDH/NF after 25 h stability test. (a) Ni 2p, (b) Co 2p, (c) Mn 2p, and (d) O 1s.

Fig. S9 CV curves at different scan rates of (a) CoMn-LDH, and (b) Ni(OH)₂.

Fig. S10 The equivalent circuit for the simulation of EIS

Table S1 Comparison of OER performances of various LDH-based catalysts in alkaline solution	on
previously reported OER electrocatalysts	

Electrocatalysts	Substrate	Electrolyte	Overpotential (mV) ^a	Ref.
CoMn-LDH	NF ^b	1 M KOH	326 °	This work
Ni(OH) ₂ @CoMn-LDH	NF	1 M KOH	250 °	This work
CoMn LDH	GC d	1 M KOH	324	1
CoMn LDH	-	1 M KOH	325	2
CoMn LDH/g-C ₃ N ₄	_	1 M KOH	350 °	2
CoMn-LDH/MWCNT ^d	-	1 M KOH	300	3
CoMn-LDH	-	0.1 M KOH	386	4
CoMn LDH/CNT	_	0.1 M KOH	355	4
CoFe LDH	NF	1 M KOH	300	5
NiFe LDH	GC	1M KOH	375	6
NiFe LDH/CNT	GC	1 M KOH	320	7
NiMn LDH/NiCo ₂ O ₄	NF	1 M KOH	310	8
Ni ₃ Mn ₁ LDH	RDE ^f	1 M KOH	350	9
Ni ₅ Mn LDH/MWCNT	RDE	1 M KOH	350	9
CoNi LDH	CP ^g	1 M KOH	367	10
CoNi LDH	ITO ^h	1M KOH	333	11

Overpotential (mV) ^a: at 10 mA cm⁻²

NF ^b: Ni Foam

326 °: at 30 mA cm⁻²

GC^d: Glass Carbon

350 °: at 39.23 mA cm⁻²

RDE ^f: Rotating Disk Electrode

CP ^g: Carbon Paper

ITO ^h: Indium Tin Oxide

References

- Jagadale, A. D. *et al.* Ultrathin nanoflakes of cobalt-manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. *J. Power Sources* 306, 526–534 (2016).
- Arif, M. *et al.* Coupling of Bifunctional CoMn-Layered Double Hydroxide@Graphitic C3N4 Nanohybrids towards Efficient Photoelectrochemical Overall Water Splitting. *Chem. - An Asian J.* 13, 1045–1052 (2018).
- Jia, G. *et al.* Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation. *ACS Appl. Mater. Interfaces* 8, 14527–14534 (2016).
- Liu, Z. *et al.* CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. *ChemElectroChem* 3, 906–912 (2016).
- Feng, L. *et al.* A Highly Active CoFe Layered Double Hydroxide for Water Splitting. *Chempluschem* 82, 483–488 (2017).
- Gao, X., Long, X., Yu, H., Pan, X. & Yi, Z. Ni Nanoparticles Decorated NiFe Layered Double Hydroxide as Bifunctional Electrochemical Catalyst. *J. Electrochem. Soc.* 164, H307–H310 (2017).

- Gong, M. *et al.* An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. *J. Am. Chem. Soc.* 135, 8452–8455 (2013).
- 8. Yang, L. *et al.* NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction. *J. Power Sources* **392**, 23–32 (2018).
- Sumboja, A., Chen, J., Zong, Y., Lee, P. S. & Liu, Z. NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries. *Nanoscale* 9, 774–780 (2017).
- Liang, H. *et al.* Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. *Nano Lett.* 15, 1421–1427 (2015).
- Zhang, C. *et al.* Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. *J. Mater. Chem. A* 4, 11516– 11523 (2016).