Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Newly Synthesized Series of Oxoindole-Oxadiazole Conjugates as Potential Anti-SARS-CoV-2 Agents: *In Silico* and *In Vitro* Studies

Rana M. El-Masry^a, Ahmed A. Al Karmalawy^{b*}, Radwan Alnajjar^{c,d}, Sara H. Mahmoud^e, Ahmed Mostafa^e, Hanan H. Kadry^f, Sahar M. Abou-Seri^{g*}, Azza T. Taher^{f,h*}

^a Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), October 6 city, Giza, Egypt

^b Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.

^c Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.

^d Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.

^e Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza 12622, Egypt.

^f Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

^g Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

^h Department of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 city, Giza, Egypt.

Figure SI1: 2D and 3D docking representations of the seven newly synthesized Oxoindole-Oxadiazole conjugates and the previously reported one (I_a) compared to the docked N3 inhibitor against its binding site inside the COVID-19 main protease.

		2D	3D
No.	Tested comp.	○ polar → sidechain acceptor ○ solvent residue ③ arene-arene ○ bacic → backbone acceptor ○ metal complex ③ H arene-H ○ praziv → backbone acceptor ─ solvent contact ③ H arene-A ○ praziv ← backbone donor ─ metal/ion contact ③ H arene-A ○ proximity ▲ ligand ○ receptor ○ ecceptor ○ contour ▲ exposure ○ exposure	Red dashed lines refer to hydrogen bonds, while the black ones denote hydrophobic interactions.
1	IIIa	N H + 2,06 Phe 10 10 10 10 10 10 10 10 10 10	Glu166 Met165 His163
2	Шь		Cys145 Cys145 Glu200

Figure SI2: A) Surface of the COVID-19 main protease pocket showing the positioning and fitting of the tested compounds, **B**) surface and maps of the tested compounds and the previously reported one (Ia) compared to the docked N3 inhibitor against its binding site inside the COVID-19 main protease.

No.	Tested comp.	Α	В
1	IIIa		
2	Шь		
3	IIIc		

4	IIId	
5	IIIe	
6	III _f	
7	IIIg	

8	Ia	
9	N3	

Figure SI3: 2 D diagram (a), 3 D representation (b), and protein positioning (c and d) of the superimposition of the co-crystallized (red) and the docked pose (green), respectively, of N3 inhibitor inside the COVID-19 main protease binding site with RMSD of 1.46 Å.

Figure SI4: The aligned structures of IVe_4-6LU7 during simulation; green 0ns, yellow 50ns, red 100 ns.

Figure SI5: The histogram of N3 – 6LU7 contact throughout the trajectory.

Figure SI6: The N3 – 6LU7 Interactions that occur more than 30.0% of the simulation time.

Figure SI7: The histogram of IVa – 6LU7 contact throughout the trajectory.

Figure SI8: The IVa – 6LU7 Interactions that occur more than 30.0% of the simulation time.

Figure SI9: The histogram of IVb – 6LU7 contact throughout the trajectory.

Figure SI10: The $IV_b - 6LU7$ Interactions that occur more than 30.0% of the simulation time.

Figure SI11: The histogram of $IV_e - 6LU7$ contact throughout the trajectory.

Figure SI12: The $IV_e - 6LU7$ Interactions that occur more than 30.0% of the simulation time.

Figure SI13: The histogram of $I_a - 6LU7$ contact throughout the trajectory.

Figure SI14: The $I_a - 6LU7$ Interactions that occur more than 30.0% of the simulation time.