Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary information

Fig. SI-1. Resonance Raman spectra subtraction of A) ZoPrX Ground State to H_2O_2 -exposed state and B) ZoPrX Ground State to $H_2O_2(O^{18})$ -exposed state.

Fig. SI-2. Resonance Raman spectra subtraction of A) HRP Ground State to H_2O_2 -exposed state and B) HRP Ground State to $H_2O_2(O^{18})$ -exposed state.

	ZoPX		HRP			· · · ·	
Nativa	H_2O_2	$H_2O_2 - O^{18}$	Native	H_2O_2	$H_2O_2 - O^{18}$	Assignment	
1631	1630	1630	1631	1630	1630	$v_{10} (B_{1g})$	$v(C_{\alpha}C_{m})_{asym}$
		1618			1618		v(C=C)
	1613	1612				ν ₃₇ (E _u)	$\nu (C_{\alpha}C_{m})_{asym}$
1572	1577	1577	1573	1573	1577	v ₁₉ (A _{2g})	$v(C_{\alpha}C_m)_{asym}$
	1567	1568			1570	v_2 (A _{2g})	$\nu(C_{\beta}C_{\beta})$
		1560			1563	ν ₃₈ (E _u)	$\nu(C_{\beta}C_{\beta})$
			1547	1547	1548	v ₁₁ (B _{1g})	$\nu(C_{\beta}C_{\beta})$
1505	1503	1505	1498	1500	1500	v_3 (A _{1g})	$v(C_{\alpha}C_m)_{sym}$
1493	1490	1491				v ₃ (A _{1g})	$v(C_{\alpha}C_m)_{sym}$
1428	1427	1429	1429	1430	1431		δs(=CH ₂)
1377	1377	1378	1375	1375	1376	ν ₄ (A _{1g})	v(Pyr half-ring) _{sym}
	1260	1260		1259	1259	$v_5 + v_9 (A_{1g})$	ν (C _{β} X) _{sym} & δ (C _{β} Y) _{sym}
1238	1238	1238	1239	1239	1239	v_{13} (B _{1g})	δ(C _m H)
1177	1177	1177	1172	1172	1172	$v_{30}(B_{2g})$	v(Pyr half-ring) _{asym}
1132	1132	1132	1129	1129	1129	$\nu_{22}\left(A_{2g}\right)$	ν (Pyr half-ring) _{asym}
991	991	992	988	988	988	v_{31} (B _{2g})	$v(C_{\beta}H)_{asym}$
932	932	932	932	932	932	ν ₄₆ (E _u)	δ (Pyr def) _{asym}
759	759	759	758	758	758	v_{16} (B _{1g})	δ (Pyr def) _{sym}
719	719	719	720	720	720	v_{24} (A _{2g})	δ (Pyr def) _{asym}
681	681	681	682	682	682	v_7 (A _{1g})	δ (Pyr def) _{sym}
595	595	596	596	596	597	ν ₄₈ (E _u)	δ (Pyr def) _{sym}
	512	514				ν ₄₉ (Ε _u)	δ (Pyr rot)
442	439	438	441	438	444	$v_{33}(B_{2g})$	δ (Pyr rot)
435	432	432		433		$v_{25} (A_{2g})$	δ (Pyr rot)
		417			415	ν ₅₀ (E _u)	δ (Pyr rot)
410	410	410	410	410	409		$\delta(C_b C_\alpha C_\beta)$
383	383	385	383	383	385	$2v_{35}(A_{1g})$	δ (Pyr transl)
350	350	353	352	349	355	v_8 (A _{1g})	n(M-N)

Table SI-1 Resonance Raman band assignments.

Figure SI-3. CW X-band EPR spectra of ZoPrx restored Ground State obtained at 17K after 72 h incubation at 4 $^{\circ}$ C in the presence of 1:10,000 Enzyme:H₂O₂ molar ratio.