Metal-free $\mathrm{C}_{5} \mathbf{N}_{\mathbf{2}}$ doped with boron atom as an efficient electrocatalyst for nitrogen reduction reaction

Tingting Zhao, ${ }^{\text {a }}$ Yu Tian, ${ }^{\text {b }}$ Likai Yan ${ }^{* a}$ and Zhongmin Su ${ }^{\text {a }}$
${ }^{\text {a }}$ Institute of Functional Materials Chemistry, Key Laboratory of Polyoxometalate
Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
${ }^{\text {b }}$ Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052, China.

[^0]

Fig. S1 The optimized structures of (a) B_{C}, (b) B_{N}, (c) B_{H}, and (d) $\mathrm{B}_{\text {int }}$-doped $\mathrm{C}_{5} \mathrm{~N}_{2}$.

Table S1 Computed free energy changes of $* \mathrm{NHNH}_{2} \rightarrow * \mathrm{NH}_{2} \mathrm{NH}_{2}$ on $\mathrm{B}_{\text {int }}-$ doped $\mathrm{C}_{5} \mathrm{~N}_{2}$ using different supercell sizes.

Reaction	1×1	2×1
$* \mathrm{NHNH}_{2} \rightarrow * \mathrm{NH}_{2} \mathrm{NH}_{2}$	0.54	0.42

Table S2 The computed cohesive energies ($E_{\mathrm{c}}, \mathrm{eV}$), formation energies $\left(E_{\mathrm{f}}, \mathrm{eV}\right)$, and the shortest distance between B and its nearest N or C atom $\left(d_{\mathrm{B}-\mathrm{N} / \mathrm{C}}, \AA\right.$).

	$\mathrm{B}_{\mathrm{C}}-\mathrm{C}_{5} \mathrm{~N}_{2}$	$\mathrm{~B}_{\mathrm{N}}-\mathrm{C}_{5} \mathrm{~N}_{2}$	$\mathrm{~B}_{\mathrm{H}}-\mathrm{C}_{5} \mathrm{~N}_{2}$	$\mathrm{~B}_{\text {int }}-\mathrm{C}_{5} \mathrm{~N}_{2}$
E_{c}	-6.27	-6.30	-6.31	-6.30
E_{f}	-0.20	0.98	3.37	-0.23
$d_{\mathrm{B}-\mathrm{N} / \mathrm{C}}$	1.40	1.43	1.55	1.46

(a)

(b)

Fig. S2 Geometry snapshot (a) and variations of energy (b) against time for MD simulations of $\mathrm{B}_{\text {int }}$-doped $\mathrm{C}_{5} \mathrm{~N}_{2}$, and the simulation is run at 500 K for 10 ps with a time step of 1 fs .

Fig. S3 Electron localization function (ELF) map of the $\mathrm{B}_{\text {int }}-$ doped $\mathrm{C}_{5} \mathrm{~N}_{2}$. The blue and pink spheres represent N and $\mathrm{B}_{\text {int }}$ atoms, respectively.

Fig. S4 Band structures and DOS for (a) $\mathrm{C}_{5} \mathrm{~N}_{2}$, and (b) $\mathrm{B}_{\text {int }}-$ doped $\mathrm{C}_{5} \mathrm{~N}_{2}$. The black and red lines in Fig. S4b represent the band structure of the spin up and spin down states, respectively.

Fig. S5 Optimized structures of various reduction intermediates on $\mathrm{B}_{\text {int }}-$ doped $\mathrm{C}_{5} \mathrm{~N}_{2}$
through the distal pathway.

Fig. S6 Optimized structures of various reduction intermediates on $\mathrm{B}_{\text {int }}-$ doped $\mathrm{C}_{5} \mathrm{~N}_{2}$
through the alternating pathway.

Fig. S7 Optimized structures of various reduction intermediates on $\mathrm{B}_{\text {int }}$-doped $\mathrm{C}_{5} \mathrm{~N}_{2}$ through the enzymatic pathway.

Fig. S8 The variation of the $\mathrm{N}-\mathrm{N}$ bond length $\left(d_{\mathrm{N}-\mathrm{N}}\right)$ along the alternating pathway via end-on pathway on $\mathrm{B}_{\text {int }}$-doped $\mathrm{C}_{5} \mathrm{~N}_{2} .0,1,2,3,4$, and 5 represent the $* \mathrm{~N}_{2}, *{ }^{*} \mathrm{~N}_{2} \mathrm{H}, * \mathrm{NH}-$ $\mathrm{NH}, * \mathrm{NH}-\mathrm{NH}_{2},{ }^{*} \mathrm{NH}_{2}-\mathrm{NH}_{2}$, and $\left(* \mathrm{NH}_{2}+\mathrm{NH}_{3}\right)$.

Fig. S9 The charge difference density of N_{2} end-on adsorbed on the $\mathrm{B}_{\text {int }}$-doped $\mathrm{C}_{5} \mathrm{~N}_{2}$.

Fig. S10 The PDOS of B atoms in $\mathrm{B}_{\text {int }}$-doped $\mathrm{C}_{5} \mathrm{~N}_{2}$. The Fermi level is set to zero as shown by the black dotted line.

Table S3 The free energy changes of $* \mathrm{~N}_{2} \rightarrow * \mathrm{~N}_{2} \mathrm{H},{ }^{*} \mathrm{NHNH}_{2} \rightarrow{ }^{*} \mathrm{NH}_{2} \mathrm{NH}_{2},{ }^{*} \mathrm{NH}_{2} \rightarrow$ * NH_{3} on $\mathrm{B}_{\text {int }}$-doped $\mathrm{C}_{5} \mathrm{~N}_{2}$ after adding a water molecule.

Reaction	ΔG
$* \mathrm{~N}_{2} \rightarrow * \mathrm{~N}_{2} \mathrm{H}$	0.22
$* \mathrm{NHNH}_{2} \rightarrow * \mathrm{NH}_{2} \mathrm{NH}_{2}$	0.13
$* \mathrm{NH}_{2} \rightarrow * \mathrm{NH}_{3}$	0.31

Table S4 Computed free energy changes of ${ }^{*} \mathrm{~N}_{2} \rightarrow{ }^{*} \mathrm{~N}_{2} \mathrm{H},{ }^{*} \mathrm{NHNH}_{2} \rightarrow{ }^{*} \mathrm{NH}_{2} \mathrm{NH}_{2}$, ${ }^{*} \mathrm{NH}_{2} \rightarrow{ }^{*} \mathrm{NH}_{3}$ on $\mathrm{B}, \mathrm{B}_{2}, \mathrm{~B}_{3}$, and $\mathrm{B}_{4}-$ doped $\mathrm{C}_{5} \mathrm{~N}_{2}$.

Reaction	B	B_{2}	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$* \mathrm{~N}_{2} \rightarrow * \mathrm{~N}_{2} \mathrm{H}$	0.40	-0.08	0.19	0.18
$* \mathrm{NHNH}_{2} \rightarrow * \mathrm{NH}_{2} \mathrm{NH}_{2}$	0.54	0.32	0.68	0.91
$* \mathrm{NH}_{2} \rightarrow * \mathrm{NH}_{3}$	0.52	0.57	0.86	0.99

[^0]: *To whom correspondence should be addressed.
 E-mail:yanlk924@nenu.edu.cn(L.-K. Yan).

