Metal-free C₅N₂ doped with boron atom as an efficient electrocatalyst for nitrogen

reduction reaction

Tingting Zhao,^a Yu Tian,^b Likai Yan^{*a} and Zhongmin Su^a

^a Institute of Functional Materials Chemistry, Key Laboratory of Polyoxometalate

Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University,

Changchun, 130024, China

^b Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering

Normal University, Changchun, 130052, China.

^{*}To whom correspondence should be addressed. E-mail:yanlk924@nenu.edu.cn(L. -K. Yan).

Fig. S1 The optimized structures of (a) B_C , (b) B_N , (c) B_H , and (d) B_{int} -doped C_5N_2 .

Table S1 Computed free energy changes of $*NHNH_2 \rightarrow *NH_2NH_2$ on B_{int} -doped C_5N_2 using different supercell sizes.

Reaction	1×1	2 × 1
$*NHNH_2 \rightarrow *NH_2NH_2$	0.54	0.42

	B_{C} - $C_{5}N_{2}$	B _N -C ₅ N ₂	B _H -C ₅ N ₂	B _{int} -C ₅ N ₂
E _c	-6.27	-6.30	-6.31	-6.30
E_{f}	-0.20	0.98	3.37	-0.23
$d_{ ext{B-N/C}}$	1.40	1.43	1.55	1.46

Table S2 The computed cohesive energies (E_c , eV), formation energies (E_f , eV), and the shortest distance between B and its nearest N or C atom ($d_{B-N/C}$, Å).

Fig. S2 Geometry snapshot (a) and variations of energy (b) against time for MD simulations of B_{int} -doped C_5N_2 , and the simulation is run at 500 K for 10 ps with a time step of 1 fs.

Fig. S3 Electron localization function (ELF) map of the B_{int} -doped C_5N_2 . The blue and pink spheres represent N and B_{int} atoms, respectively.

Fig. S4 Band structures and DOS for (a) C_5N_2 , and (b) B_{int} -doped C_5N_2 . The black and red lines in Fig. S4b represent the band structure of the spin up and spin down states, respectively.

Fig. S5 Optimized structures of various reduction intermediates on B_{int} -doped C_5N_2 through the distal pathway.

Fig. S6 Optimized structures of various reduction intermediates on B_{int} -doped C_5N_2 through the alternating pathway.

Fig. S7 Optimized structures of various reduction intermediates on B_{int} -doped C_5N_2 through the enzymatic pathway.

Fig. S8 The variation of the N–N bond length (d_{N-N}) along the alternating pathway *via* end-on pathway on B_{int}–doped C₅N₂. 0, 1, 2, 3, 4, and 5 represent the *N₂, *N₂H, *NH-NH, *NH-NH₂, *NH₂-NH₂, and (*NH₂ + NH₃).

Fig. S9 The charge difference density of N_2 end–on adsorbed on the B_{int} -doped C_5N_2 .

Fig. S10 The PDOS of B atoms in B_{int} -doped C_5N_2 . The Fermi level is set to zero as shown by the black dotted line.

Table S3 The free energy changes of $*N_2 \rightarrow *N_2H$, $*NHNH_2 \rightarrow *NH_2NH_2$, $*NH_2 \rightarrow *NH_3$ on B_{int} -doped C_5N_2 after adding a water molecule.

Reaction	ΔG
$*N_2 \rightarrow *N_2H$	0.22
*NHNH ₂ \rightarrow *NH ₂ NH ₂	0.13
$*NH_2 \rightarrow *NH_3$	0.31

Table S4 Computed free energy changes of $*N_2 \rightarrow *N_2H$, $*NHNH_2 \rightarrow *NH_2NH_2$, $*NH_2 \rightarrow *NH_3$ on B, B₂, B₃, and B₄-doped C₅N₂.

Reaction	В	B_2	B ₃	B_4
$*N_2 \rightarrow *N_2H$	0.40	-0.08	0.19	0.18
*NHNH ₂ \rightarrow *NH ₂ NH ₂	0.54	0.32	0.68	0.91
$*NH_2 \rightarrow *NH_3$	0.52	0.57	0.86	0.99