Two new photochromic supramolecular compositions based on viologen: photocontrolled fluorescence, aniline detection and inkless erasable printing performance

Bai-Li Zhu^a, Yun-Peng Jin^a, Jian Jiang^a, Ming-Hui Zuo^a, Shu-Xin Cui^{a,*}

^a Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, People's Republic of China.

* Corresponding author

Synthesis of 3-BCBPY ·2Cl and 4-BCBPY ·2Cl.

3-BCBPY·2Cl: Dissolve 4,4'-bipyridine (10 mmol, 1.56 g) and 3-cyanobenzyl chloride (20 mmol, 3.92 g) in 25mL of N, N'-dimethylformamide (DMF), and stir at 110°C for 6h. Filtration yielded a light yellow product. The obtained product was washed 3 times with hot DMF and recrystallized with methanol to finally obtain a pale yellow solid. The yield was 90%.

4-BCBPY·2Cl: The synthesis process is similar to 3-BCBPY·2Cl except that 4cyanobenzyl chloride (20 mmol, 3.92 g) is used instead of 4-cyanobenzyl chloride (20 mmol, 3.92 g). A yellow solid is obtained. The yield was 90%.

Figure S1. The ¹H NMR spectrum of 3-BCBPY 2Cl in D₂O (600 MHz).

Figure S2. The ¹H NMR spectrum of 4-BCBPY \cdot 2Cl in D₂O (600 MHz).

Figure S3. (a) Schematic diagram of partial hydrogen bond of Compound 1; (b) The hydrogen

bond network of Compound 1.

Figure S4. ET distances for Compound 1.

Figure S5. (a) Schematic diagram of partial hydrogen bond of Compound 2; (b) The hydrogen

bond network of Compound 2.

Figure S6. ET distances for Compound 2.

Figure S7. The PXRD spectra before and after irradiation for 1(a) and 2(b).

Figure S8. FT-IR spectra of Compounds 1(a) and 2(b).

Figure S9. Thermogravimetric curves of Compounds 1(a) and 2(b).

Figure S10. (a) UV-Vis spectra of 3-BCBPY.2Cl and compound 1; (b) UV-Vis spectra of 4-

BCBPY.2Cl and compound 2.

LUMO

HOMO-1

LUMO+1

Compound 2

Compound 1

НОМО

LUMO+4

Figure S11. Caluclated HOMO and LUMO orbitals of compounds 1 and 2.

Figure S12. Photographs of Compound 2 before and after exposure to different amines.

Figure S13. The UV-Vis spectra of Compounds 1 and 1@Aniline.

Figure S14. FT-IR spectra of Compound 1 and 1@Aniline.

Figure S15. ESR spectra of Compounds 1 and 1@Aniline.

Figure S16. Photograph of 1@ethanol after repeated printing.

Figure S17. The asymmetric units of the structures (thermal ellipsoids) for Compound 1.

Figure S18. The asymmetric units of the structures (thermal ellipsoids) for Compound $\bf 2$

(Symmetry code: ¹2-x, -y, -z).

Compound	1	2
Empirical formula	$C_{46}H_{29.58}N_4O_{16}$	$C_{46}H_{35}N_2O_{21}$
Formula weight	894.32	951.76
Temperature/K	296.15	296.15
Crystal system	triclinic	monoclinic
Space group	P-1	$P2_l/c$
a/Å	9.7493(16)	9.6809(14)
b/Å	14.816(2)	15.526(2)
$c/{ m \AA}$	14.827(2)	13.6809(17)
$\alpha / ^{\circ}$	81.262(3)	90
$eta /^{\circ}$	81.825(3)	94.407(3)
$\gamma^{\prime \circ}$	72.098(3)	90
Volume/Å ³	2003.9(5)	2050.2(5)
Ζ	2	2
$\rho_{calc}g/cm^3$	1.482	1.542
µ/mm⁻¹	0.114	0.124
2θ range for data collection/°	2.908 to 54.868	3.974 to 55.382
Goodness-of-fit on F^2	1.036	1.062
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0910, wR_2 = 0.2500$	$R_1 = 0.0896, wR_2 = 0.1823$
Final R indexes [all data]	$R_1 = 0.1507, wR_2 = 0.2980$	$R_1 = 0.2066, wR_2 = 0.2192$

Table S1. Crystal data and structure refinement for 1 and 2.

	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
Compound 1	C13-H13O5 ¹	0.93	2.34	3.175(5)	148.6
	C13-H13O1 ²	0.93	2.63	3.201(6)	120.1
	C12-H12O1 ²	0.93	2.55	3.161(6)	123.5
	C12-H12O1A ²	0.93	2.24	3.143(9)	163.3
	C10-H10O13 ³	0.93	2.16	3.088(6)	173.1
	C18-H18O82	0.93	2.23	3.120(5)	159.6
	C7-H7O5 ¹	0.93	2.57	3.402(6)	149.3
	C7-H7O3 ¹	0.93	2.58	3.313(6)	135.9
	С9-Н9О94	0.93	2.31	3.220(6)	165.2
	C15-H15O12 ³	0.93	2.42	3.332(6)	165.5
	C15-H15O13 ³	0.93	2.75	3.380(7)	126.0
	C8-H8AO5 ¹	0.97	2.59	3.389(5)	139.3
	С17-Н17О3	0.93	2.42	3.043(7)	124.1
	O1-H1O4 ⁴	0.82	1.62	2.373(6)	151.7
	C16-H16N4 ⁵	0.93	2.35	3.219(10)	156.0
	C5-H5O9 ⁴	0.93	2.59	3.351(6)	139.6
	O16-H16AO9	1.04(5)	1.34(5)	2.364(5)	168(4)
	O6-H6O10	0.88(6)	1.76(6)	2.627(4)	170(6)
	O11-H11O15 ²	1.00(7)	1.72(7)	2.704(4)	168(6)
	O11-H11O16 ²	1.00(7)	2.52(7)	3.152(5)	121(5)
	O14-H14O2 ⁶	0.86(2)	1.79(2)	2.649(6)	177(7)
	O14-H14O1 ⁶	0.86(2)	2.54(6)	3.093(7)	123(5)
	O14-H14O2A ⁶	0.86(2)	2.03(4)	2.797(10)	148(6)
	O14-H14O1A ⁶	0.86(2)	2.36(5)	3.009(9)	133(6)
	O7-H7AO4 ⁷	0.84(2)	1.91(5)	2.678(4)	152(9)
Compound 2	OW1-HW1AO51	0.85	1.86	2.685(5)	162.3
	OW1-HW1BO6 ²	0.85	1.99	2.798(4)	158.3
	O2-H2AO4	0.82	1.91	2.697(8)	159.6
	O8-H8AOW1	0.92(5)	1.77(6)	2.644(5)	158(5)
	O10-H10O6 ³	0.84(6)	1.74(6)	2.572(4)	171(6)
	O3-H3AO1	0.98(7)	1.75(7)	2.727(5)	176(6)

Table S2. O/C–H···O interactions Geometry (Å, °) for 1 and 2.

Symmetry codes of 1: ¹2-x, 1-y, 1-z; ²1+x, +y, +z; ³+x, -1+y, 1+z; ⁴1-x, 1-y, 1-z; ⁵1-x, -y, 1-z; ⁶+x, 1+y, -1+z; ⁷-1+x, +y, +z.

Symmetry codes of 2: ¹1-x, 2-y, 1-z; ²1-x, 1/2+y, 1/2-z; ³-1+x, +y, +z.

	Atom	Occupancy	
Compound 1	01	0.584(8)	
	O1A	0.416(8)	
	O2	0.584(8)	
	O2A	0.416(8)	
	H1	0.584(8)	
Compound 2	C13A	0.497(11)	
	C13B	0.503(11)	
	O2	0.5	
	H2A	0.5	

Table S3. Atomic Occupancy for 1 and 2.

	Excited states	Orbital description	λ_{max} / nm		f
			Exp.	Calc.	1
Compound 1	8	HOMO ₋₁ →LUMO (51.20%)	404	364	0.0034
	2	HOMO ₋₁ →LUMO ₊₁ (54.24%)	618	514	0.0001
Compound 2	8	HOMO→LUMO ₊₄ (64.78%)	406	377	0.0737
	7	HOMO ₋₁ →LUMO ₊₃ (46.67%)		379	0.0651
	1	HOMO→LUMO (70.67%)	624	622	0.0001

Table S4. Results of the TDDFT/B3LYP-lanl2dz calculations related to 1 and 2.