Supplementary Material (ESI) for New Journal chemistry

Developing Electropositive Citric Acid-Polyethylenimine Carbon Quantum Dot for Labeling and Tracing Mesenchymal Stem Cells in vitro and in vivo

Bo Jianga,, Hui Yangb,, Ying Guoc, Cong Liub, Hua Songd, Panpan Zhoub, Haiwei Zhange, Kangxin Zhoua, Yong Guoc,*, Hongwei Chena,b,*

\textit{a. Department of Rheumatology and Immunology, The affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P.R. China.}

\textit{b. Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.}

\textit{c. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P.R. China.}

\textit{d. Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, P.R. China.}

\textit{e. Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, P.R. China}

\textcopyright The authors made equal contribution to this paper.

* Corresponding e-mail: chenhw@nju.edu.cn (H.C) or guoyong@hhu.edu.cn (Y.G).
Table. S1. The parameters for calculating the quantum yield of CA-PEI CQD.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Integrated emission intensity (I)</th>
<th>Optical density at 320 nm (Å)</th>
<th>Refractive index of the solvent (n)</th>
<th>Quantum yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinine sulfate</td>
<td>505524.292</td>
<td>0.048</td>
<td>1.33</td>
<td>55.7%</td>
</tr>
<tr>
<td>CA-PEI</td>
<td>90454.111</td>
<td>0.048</td>
<td>1.33</td>
<td>9.966%</td>
</tr>
</tbody>
</table>

Fig. S1. The optimized CA-PEI CQD model, which contains 170 carbon atoms, 8 nitrogen atoms, 28 oxygen atoms and the edges of CA-PEI CQD model were saturated with hydrogen atoms.

Fig. S2. The full XPS spectra of CA-PEI CQD.
Fig. S3. The fluorescence lifetime decay of CA-PEI CQD

Fig. S4. The image of the deionized water (left) and the image of the deionized water under UV light irradiation (360 nm).
Fig S5. Time-lapse photography shows an active absorption process of CQD from the sender MSCs (triangles) pre-labeled with CA-PEI CQD to unlabeled receiver MSCs (stars). Magnification: x200 (a). Expression of EEA1 (green, early endosome marker) detected by immunofluorescence in the MSCs incubated with 200 μg/ml CA-PEI CQD (blue) for 8 hours (b). Nuclei were stained by propidium iodide (PI). Scale bar: 100 μm.