Supplementary Material (ESI) for New Journal chemistry

Developing Electropositive Citric Acid-Polyethylenimine Carbon Quantum Dot for Labeling and Tracing Mesenchymal Stem Cells *in vitro* and *in vivo*

Bo Jiang^a [∞], Hui Yang^b [∞], Ying Guo^c, Cong Liu^b, Hua Song^d, Panpan Zhou^b, Haiwei Zhang^e, Kangxin Zhou^a, Yong Guo^c*, Hongwei Chen^{a,b}*

- a. Department of Rheumatology and Immunology, The affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P.R. China.
- b. Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- c. Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, P.R. China.
- d. Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, P.R. China.
- e. Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, P.R. China

 \boxtimes The authors made equal contribution to this paper.

* Corresponding e-mail: chenhw@nju.edu.cn (H.C) or guoyong@hhu.edu.cn (Y.G).

Sample	Integrated emission intensity (I)	Optical density at 320 nm (A)	Refractive index of the solvent (n)	Quantum yield (%)
Quinine sulfate	505524.292	0.048	1.33	55.7%
CA-PEI	90454.111	0.048	1.33	9.966%

Table. S1 The parameters for calculating the quantum yield of CA-PEI CQD.

Fig. S1. The optimized CA-PEI CQD model, which contains 170 carbon atoms, 8 nitrogen atoms, 28 oxygen atoms and the edges of CA-PEI CQD model were saturated with hydrogen atoms.

Fig. S2. The full XPS spectra of CA-PEI CQD.

Fig. S3. The fluorescence lifetime decay of CA-PEI CQD

Fig. S4. The image of the deionized water (left) and the image of the deionized water under UV light irradiation (360 nm).

Fig S5. Time-lapse photography shows an active absorption process of CQD from the sender MSCs (triangles) pre-labeled with CA-PEI CQD to unlabeled receiver MSCs (stars). Magnification: x200 (a). Expression of EEA1 (green, early endosome marker) detected by immunofluorescence in the MSCs incubated with 200 μ g/ml CA-PEI CQD (blue) for 8 hours (b). Nuclei were stained by propidium iodide (PI). Scale bar: 100 μ m.