Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Information

Hierarchically porous graphene/wood-derived carbon activated using ZnCl₂ and decorated with in situ grown NiCo₂O₄ for high–performance asymmetric supercapacitors

Mei-Jiao Zeng^{a,b}, Xiaofeng Li^{a,*}, Shu-Meng Hao^{b,c}, Jin Qu^a, Wei Li^a, Jing Wu^a, Tianyu Zhao^b, Zhong-Zhen Yu^{b,*}

^a Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China

^b State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^c School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA,
30332, United States

E-mails: <u>xfli@mail.buct.edu.cn</u> (X. Li); <u>yuzz@mail.buct.edu.cn</u> (Z.-Z. Yu)

Fig. S1. Digital images of wood slice, RGO/wood aerogel, and GWC.

Fig. S2. (a) Top-view and (b) side-view SEM images of hardwood carbon. (c) Top-view and (d) side-view SEM images of hardwood carbon filled with RGO.

Fig. S3. (a) XPS C 1s and (d) O 1s spectra of AGWC. (b) XPS C 1s and (e) O 1s spectra of GWC. (c) XPS C 1s and (f) O 1s spectra of WC. (g) Percentages of oxygen-containing species, and (h) contact angles of water on WC, GWC, and AGWC.

Fig. S4. CV curves of AWC and AGWC electrodes in the range of -1 - 0 V at 5 mV s⁻¹.

Fig. S5. Charge-discharge profile of the AGWC electrode for 10 cycles at 10 mA cm⁻².

Fig. S6. XPS O 1s spectrum of the NCO@GWC.

Fig. S7. Charge-discharge profile of the NCO@GWC electrode for 10 cycles at 10 mA cm⁻².

Fig. S8. SEM images of the as-assembled (a, b) AGWC and (c, d) NCO@GWC electrodes after cycling.

Samples	Size (mm ³)	Density (g cm ⁻³)
Wood	$20 \times 20 \times 3$	0.37
WC	$12 \times 15 \times 2$	0.30
GWC	$12 \times 15 \times 2$	0.32

Table S1. Sizes and densities of wood, WC, and GWC.

Table S2. Comparison of capacitances of AGWC with those of other GO-based electrodes.

Electrodes	Electrolytes	Performances	Ref.
Graphene ribbon	6 M KOH	6700 mF cm ⁻² at 5 mA cm ⁻²	[56]
films		318 F g ⁻¹ at 5 mA cm ⁻²	
Hydroxyl-rich	$1 \text{ M H}_2\text{SO}_4$	2675 mF cm ⁻² at 1 mA cm ⁻²	[57]
graphene hydrogels		260 F g ⁻¹ at 1 A g ⁻¹	
Chlorine-doped	6 M KOH	2312 mF cm ⁻² at 1 mA cm ⁻²	[58]
graphene films		210 F g ⁻¹ at 1 A g ⁻¹	
AGWC-1	6 M KOH	9462 mF cm ⁻² at 1 mA cm ⁻²	This work
		158 F g ⁻¹ at 1 mA cm ⁻²	
AGWC-2	6 M KOH	$10965 \text{ mF cm}^{-2} \text{ at } 1 \text{ mA cm}^{-2}$	This work
		183 F g ⁻¹ at 1 mA cm ⁻²	
AGWC-3	6 M KOH	10127 mF cm ⁻² at 1 mA cm ⁻²	This work
		168 F g ⁻¹ at 1 mA cm ⁻²	

 Table S3. Densities and areal mass loadings of different NCO@GWC samples.

Sample	Density (g cm ⁻³)	Areal mass loading (mg cm ⁻²)
NCO@GWC-1	0.33	7.5
NCO@GWC-2	0.35	10
NCO@GWC-3	0.36	12.9
NCO@WC	0.33	8.5

Table S4. Comparison of the capacitances of NCO@GWC with those of other $NiCo_2O_4$ -based electrodes reported.

Electrodes	Electrolytes	Performances	Ref.
NiCo ₂ O ₄ @Ni-S	1 M NaOH	1850 mF cm ⁻² at 8 mA cm ⁻²	[64]
		926 F g ⁻¹ at 8 mA cm ⁻²	
Oxygen-vacancies-	6 M KOH	$3800 \text{ mF cm}^{-2} \text{ at } 2 \text{ mA cm}^{-2}$	[65]
enabled NiCo ₂ O ₄		338.5 F g ⁻¹ at 2 mA cm ⁻²	
NiCo ₂ O ₄ @RGO	6 M KOH	$3600 \text{ mF cm}^{-2} \text{ at } 5 \text{ mA cm}^{-2}$	[66]
		1125 F g ⁻¹ at 5 mA cm ⁻²	
NCO@GWC-1	6 M KOH	$1927 \text{ mF cm}^{-2} \text{ at } 1 \text{ mA cm}^{-2}$	This work
		257 F g ⁻¹ at 1 mA cm ⁻²	
NCO@GWC-2	6 M KOH	8540 mF cm ⁻² at 1 mA cm ⁻²	This work
		854 F g^{-1} at 1 mA cm ⁻²	
NCO@GWC-3	6 M KOH	4179 mF cm ⁻² at 1 mA cm ⁻²	This work
		$324 \text{ F g}^{-1} \text{ at } 1 \text{ mA cm}^{-2}$	
NCO@WC-2	6 M KOH	$3480 \text{ mF cm}^{-2} \text{ at } 1 \text{ mA cm}^{-2}$	This work
		409 F g ⁻¹ at 1 mA cm ⁻²	

asymmetric supercapacitors.					
Materials		Areal Capacitance	Energy Density	Power Density	Ref.
Cathodes	Anodes	Capacitance	Density	Density	
NiCo ₂ O ₄ @TiN NFs		82 mF cm ⁻²	0.083 mWh cm ⁻³	5.005 mW cm ⁻³	[67]
NiCo ₂ O ₄ @Ni ₃ S ₂ NWAs 3000 mF cm ⁻²	Activated carbon	1380 mF cm ⁻²	1.89 mWh cm ⁻³	5.81 mW cm ⁻³	[68]
CoP NW	MnO ₂ NW		0.69 mWh cm ⁻³	10.15 mW cm ⁻³	[69]
MnO ₂ @WC 4155 mF cm ⁻²	AWC 3204 mF cm ⁻²	3600 mF cm ⁻²	1.6 mWh cm ⁻²	1.04 mW cm ⁻²	[35]
Co(OH) ₂ @CW 3723cm ⁻²	CW	2200 mF cm ⁻²	4.45 mWh cm ⁻³	7.51 mW cm ⁻³	[36]
WG@Ni(OH) ₂ /Co(OH) ₂ 5306 mF cm ⁻²	Graphitized wood 3060 mF cm ⁻²	2409 mF cm ⁻²	0.75 mWh cm ⁻²	0.75 mW cm ⁻²	[37]
NCO@GWC 8540 mF cm ⁻²	AGWC 10965 mF cm ⁻²	7116 mF cm ⁻²	4.9 mWh cm ⁻³	11.7 mW cm ⁻³	This work

 Table S5. Comparison of electrochemical performances of wood-based or carbon-based

 asymmetric supercapacitors.