Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Catalyst-Free Visible-Light-Induced Decarboxylative Amination of Glycine Derivatives with Azo Compounds

Cen Zhou,^{a,c} Xiaozhou Huang,^{b,c} Yaqing Hu,^b Junyan Wu,^b Ying Zheng,^b and Xiao Zhang*^b

^{*a*}Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China.

^bFujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China. E-mail: zhangxiao@fjnu.edu.cn ^cThese authors contributed equally.

Table of Contents

1. General methods	S1
2. General procedure for visible-light-induced decarboxylative amination of glycine derivatives with azo compounds	S2
3. Transformations of product 3a	S9
4. UV/Vis absorption spectra	S11
5. Emission spectra of the LED lamps	S12
6. References	S13
7. Copies of NMR spectra	S14

1. General methods

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry nitrogen atmosphere. All solvents were purified and dried according to standard methods prior to use.

¹H and ¹³C NMR spectra were recorded on a Bruker instrument (600 MHz, 400 MHz, 150 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). HRMS were obtained on an Agilent qtof 6540 LC-MS (ESI) mass spectrometer with the use of quadrupole analyzer. Fourier Transform Infrared spectra were recorded on a Nicolet iS50 FT-IR spectrophotometer. Melting points (M.p.) were determined in open capillaries without further correction.

Substrates 1 were synthesized according to the literature procedures.^[1] Substrates 2 were purchased from Energy-chemical, solvents were purchased from Aladdin, and used without further purification.

2. General procedure for visible-light-induced decarboxylative amination of glycine derivatives with azo compounds

To a flame-dried sealed tube were added **1** (0.3 mmol, 1.0 equiv), **2** (0.6 mmol, 2.0 equiv), Na₂HPO₄ (1.0 equiv) and acetone (3 mL). The reaction mixture was degassed via freeze-pump-thaw for 3 cycles. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 2~3 cm from 30 W blue LEDs. Then the reaction mixture was stirred at room temperature for the indicated time (monitored by TLC) under nitrogen atmosphere. Afterwards, the reaction mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 3/1) to afford the desired products **3**. The analytical data of the products **3a-3s** are summarized below.

3a, yellow liquid, 42.6 mg, 76% yield. ¹H NMR (600 MHz, DMSO- d_6 , 110 °C) δ 8.92 (br s, 1H), 7.10 (br s, 2H), 6.74 (br s, 2H), 6.63 (br s, 1H), 5.95 (br s, 1H), 4.82 (s, 2H), 4.14-4.06 (m, 4H), 1.23-1.17 (m, 6H). ¹³C NMR (150 MHz, DMSO- d_6 , 110 °C) δ 155.4, 155.2, 146.5, 128.0, 116.6, 112.6, 61.0, 60.2, 13.8. IR (thin film): vmax (cm⁻¹) = 3402, 1720, 1682, 1604, 1520, 1429, 1386, 1231, 1163, 1107, 1064, 1000, 857, 745, 691, 516. HRMS (ESI) calcd for C₁₃H₂₀N₃O₄ [M+H]⁺: 282.1454. Found: 282.1447.

3b, yellow liquid, 66.1 mg, 71% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.20-6.40 (m, 5H), 4.95-4.61 (m, 4H), 1.82-0.88 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 145.5, 129.2, 118.7, 113.5, 70.0, 58.7, 21.9, 21.8. IR (thin film): vmax (cm⁻¹) = 2980, 1695, 1604, 1500, 1414, 1374, 1245, 1180, 1105, 1044, 912, 752, 694. HRMS (ESI) calcd for C₁₅H₂₄N₃O₄ [M+H]⁺: 310.1767. Found: 310.1760.

3c, yellow liquid, 85.9 mg, 85% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.19-6.29 (m, 5H), 4.90-4.64 (m, 2H), 1.46 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 145.7, 129.2, 118.4, 113.5, 81.3, 58.4, 28.1, 27.9. IR (thin film): vmax (cm⁻¹) = 2980, 1695, 1604, 1500, 1414, 1374, 1245, 1180, 1105, 1044, 912, 752, 694. HRMS (ESI) calcd for C₁₇H₂₈N₃O₄ [M+H]⁺: 338.2080. Found: 338.2073.

3d, white solid, 76.7 mg, 63% yield. m.p. = 139.5-142.5 °C. Two rotamers were observed by NMR. ¹H NMR (400 MHz, DMSO- d_6) δ 7.36-7.05 (m, 12H), 6.71-6.54 (m, 3H), 5.75-5.05 (m, 6H). ¹³C NMR (100 MHz, DMSO- d_6) δ 155.9, 151.6, 146.8, 136.4, 135.2, 128.9, 128.5, 128.4, 128.0, 127.8, 127.8, 127.3, 116.9, 112.6, 68.6, 66.1. IR (thin film): vmax (cm⁻¹) = 3406, 3250, 3033, 1715, 1679, 1606, 1522, 1498, 1429, 1366, 1256, 1109, 1057, 967, 890, 747, 730, 691, 524. HRMS (ESI) calcd for C₂₃H₂₄N₃O₄ [M+H]⁺: 406.1767. Found: 406.1757.

3e, white solid, 112.7 mg, 79% yield. m.p. = 97.5-102.0 °C. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.27-6.60 (m, 13H), 5.18-4.53 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 145.1, 134.3, 133.8, 129.5, 129.3, 128.7, 119.0, 113.5, 66.9, 58.9. IR (thin film): vmax (cm⁻¹) = 3409, 3288, 1717, 1697, 1604, 1493, 1425, 1401, 1271, 1243, 1159, 1096, 1016, 895, 807, 749, 693, 544, 405. HRMS (ESI) calcd for C₂₃H₂₂Cl₂N₃O₄ [M+H]⁺: 474.0987. Found: 474.0986.

3f, yellow liquid, 47.6 mg, 51% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 6.86-6.39 (m, 5H), 5.11-4.16 (m, 7H), 3.83 (s, 3H), 1.37-1.26 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 147.0, 135.1, 121.2, 118.1, 111.1, 109.9, 62.1, 57.8, 55.4, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 2987, 2901, 1703, 1602, 1514, 1461, 1411, 1381, 1342, 1221, 1175, 1116, 1066, 1053, 740. HRMS (ESI) calcd for C₁₄H₂₂N₃O₅ [M+H]⁺: 312.1559. Found: 312.1557.

3g, yellow liquid, 52.6 mg, 59% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.17-6.49 (m, 4H), 5.02-3.66 (m, 6H), 2.32-1.85 (m, 3H), 1.66-0.88 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 143.4, 130.4, 127.1, 122.5, 118.4, 110.9, 62.1, 58.6, 17.4, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 2987, 2901, 1703, 1514, 1409, 1394, 1380, 1242, 1167, 1152, 1066, 1056, 1028, 750. HRMS (ESI) calcd for C₁₄H₂₂N₃O₄ [M+H]⁺: 296.1610. Found: 296.1614.

3h, yellow liquid, 47.1 mg, 50% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.10-6.32 (m, 4H), 4.94-3.57 (m, 9H), 1.26 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 155.9, 146.9, 130.0, 106.4, 104.2, 99.2, 62.1, 58.5, 55.0, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 3239, 2989, 1741, 1693, 1529, 1482, 1229, 1162, 1065, 1020, 782, 758, 731, 688, 648, 593. HRMS (ESI) calcd for C₁₄H₂₂N₃O₅ [M+H]⁺: 312.1559. Found: 312.1559.

3i, yellow liquid, 47.0 mg, 48% yield. Two rotamers were observed by NMR. ¹H NMR

(400 MHz, CDCl₃) δ 7.13-6.44 (m, 4H), 4.97-4.17 (m, 6H), 2.86-2.78 (m, 1H), 1.42-1.21 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 150.3, 145.4, 129.2, 117.1, 111.8, 111.0, 62.2, 58.6, 34.2, 34.0, 23.9, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 2968, 2901, 1703, 1607, 1593, 1480, 1467, 1409, 1394, 1381, 1230, 1196, 1172, 1151, 1066. HRMS (ESI) calcd for C₁₆H₂₆N₃O₄ [M+H]⁺: 324.1923. Found: 324.1924.

3j, yellow liquid, 66.2 mg, 70% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.10-6.59 (m, 4H), 4.94-4.14 (m, 6H), 1.38-1.18 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 146.8, 135.0, 130.3, 118.6, 113.4, 111.7, 62.3, 58.6, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 3387, 3295, 2985, 1696, 1601, 1515, 1480, 1377, 1224, 1151, 1066, 1019, 987, 866, 845, 762, 682, 591, 525, 442. HRMS (ESI) calcd for C₁₃H₁₉ClN₃O₄ [M+H]⁺: 316.1064. Found:316.1065.

3k, yellow liquid, 66.2 mg, 65% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.04-6.64 (m, 4H), 4.93-4.08 (m, 6H), 1.94-1.14 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 147.0, 130.5, 123.1, 121.5, 116.3, 112.06, 62.2, 58.50, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 3385, 3294, 2987, 2901, 1696, 1600, 1514, 1377, 1224, 1066, 984, 840, 761, 681, 664, 525, 437. HRMS (ESI) calcd for C₁₃H₁₉BrN₃O₄ [M+H]⁺: 360.0559. Found:360.0560.

31, yellow liquid, 64.8 mg, 72% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 6.92-6.65 (m, 4H), 4.92-3.66 (m, 6H), 1.42-1.23 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 156.0, 155.3, 141.7, 115.8, 115.6, 114.6, 62.6, 62.2, 59.2, 14.4, 14.3. ¹⁹F NMR (375 MHz, CDCl₃) δ -126.4. IR (thin film): vmax (cm⁻¹) = 3675, 3403, 3281, 2901, 2989, 1716, 1680, 1509, 1428, 1387, 1220, 1160, 1112, 1065,

1001, 859, 825, 769, 508. HRMS (ESI) calcd for $C_{13}H_{19}FN_3O_4$ [M+H]⁺: 300.1360. Found: 300.1363.

3m, yellow liquid, 64.4 mg, 68% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.15-6.65 (m, 4H), 4.91-4.14 (m, 6H), 1.94-1.14 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 144.1, 129.0, 123.3, 114.7, 62.6, 62.2, 58.7, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 3675, 3394, 3286, 2979, 2901, 1712, 1680, 1519, 1493, 1437, 1381, 1235, 1165, 1088, 1066, 1007, 906, 816, 764, 729, 629, 532, 504. HRMS (ESI) calcd for C₁₃H₁₉ClN₃O₄ [M+H]⁺: 316.1064. Found: 316.1064.

3n, yellow liquid, 73.6 mg, 68% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.30-6.58 (m, 4H), 4.91-4.11 (m, 6H), 1.42-1.14 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 144.6, 131.9, 115.2, 110.4, 62.6, 62.2, 58.5, 14.4, 14.3. IR (thin film): vmax (cm⁻¹) = 3394, 3287, 2978, 1711, 1680, 1597, 1517, 1489, 1437, 1381, 1235, 1157, 1096, 1074, 1007, 906, 814, 764, 730, 526, 501. HRMS (ESI) calcd for C₁₃H₁₉⁷⁹BrN₃O₄ [M+H]⁺: 360.0559. Found: 360.0562.

30, yellow liquid, 74.4 mg, 68% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.09-6.69 (m, 4H), 4.94-3.66 (m, 6H), 1.42-1.14 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 144.4, 141.4, 122.4, 121.9, 119.3, 114.0, 62.7, 62.3, 58.8, 14.4, 14.3. ¹⁹F NMR (375 MHz, CDCl₃) δ -58.5. IR (thin film): vmax (cm⁻¹) = 3675, 3397, 3281, 2988, 2901, 1718, 1678, 1525, 1270, 1221, 1152, 1118, 1093, 991, 838, 817, 767, 545. HRMS (ESI) calcd for C₁₄H₁₉F₃N₃O₅ [M+H]⁺: 366.1277. Found: 366.1278.

3p, yellow liquid, 52.1 mg, 50% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.42-6.77 (m, 4H), 4.99-4.18 (m, 6H), 1.34-1.23 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 155.2, 152.2, 148.4, 126.6, 126.5, 126.0, 123.3, 120.1, 112.8, 64.1, 62.5, 62.3, 58.1, 14.3, 14.0. ¹⁹F NMR (375 MHz, CDCl₃) δ -61.3. IR (thin film): vmax (cm⁻¹) = 2988, 2901, 1712, 1616, 1536, 1408, 1382, 1321, 1250, 1189, 1161, 1104, 1066, 830. HRMS (ESI) calcd for C₁₄H₁₉F₃N₃O₄ [M+H]⁺: 350.1328. Found: 350.1329.

3q, yellow liquid, 55.9 mg, 53% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.29-6.67 (m, 3H), 5.18-4.19 (m, 6H), 1.38-1.13 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 140.5, 128.9, 127.7, 122.9, 120.0, 113.2, 62.8, 62.3, 57.8, 14.4. IR (thin film): vmax (cm⁻¹) = 2988, 2901, 1702, 1508, 1410, 1394, 1381, 1228, 1163, 1066, 1028, 867. HRMS (ESI) calcd for C₁₃H₁₈Cl₂N₃O₄ [M+H]⁺: 350.0674. Found: 350.0675.

3r, yellow liquid, 94.2 mg, 71% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.64-6.79 (m, 3H), 5.00-4.14 (m, 6H), 1.85-1.12 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 143.9, 138.0, 129.2, 123.6, 112.3, 85.0, 62.8, 62.3, 58.4, 14.4. IR (thin film): vmax (cm⁻¹) = 2987, 2901, 1705, 1651, 1504, 1465, 1445, 1409, 1379, 1221, 1163, 1058, 869, 761, 731. HRMS (ESI) calcd for C₁₃H₁₈ClIN₃O₄ [M+H]⁺: 442.0031. Found: 442.0016.

3s, brown liquid, 92.3 mg, 93% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 6.88-6.42 (m, 3H), 4.88-3.66 (m, 9H), 1.38-1.22 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 155.9, 154.4, 152.0, 140.3, 115.6, 108.7, 102.6, 62.6, 62.1, 59.3, 57.2, 14.3, 14.3. ¹⁹F NMR (375 MHz, CDCl₃) δ -133.3. IR (thin film): vmax (cm⁻¹) = 2988, 1694, 1520, 1221, 1187, 1172, 1058, 1027, 759, 595, 449, 404. HRMS (ESI) calcd for C₁₄H₂₁FN₃O₅ [M+H]⁺: 330.1465. Found: 330.1462.

3. Transformations of product 3a

To a solution of **3a** (28.13 mg, 0.1 mmol) in CH₃CN (2 mL) were added ethyl 2bromoacetate (18.37 mg, 0.11 mmol) and Cs₂CO₃ (42.36 mg, 0.13 mmol) under air atmosphere. The reaction mixture was stirred at 50 °C for 5 h. After the reaction was complete (monitored by TLC), the suspension was filtered and washed with ethyl acetate. Then the filtrate was concentrated by rotary evaporation and the residue was purified by silica gel column chromatography (PE/EtOAc = 5/1) to afford the desired product **4**.

4, yellow liquid, 35.5 mg, 97% yield. Two rotamers were observed by NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.44-6.68 (m, 5H), 5.39-5.10 (m, 1H) 4.72-3.31 (m, 10H), 1.30-1.13 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 155.5, 155.4, 145.3, 129.2, 123.8, 118.6, 113.6, 113.5, 62.9, 62.4, 61.5, 61.4, 57.6, 53.5, 29.6, 14.5, 14.3, 14.1. IR (thin film): vmax (cm⁻¹) = 2988, 2915, 2848, 1713, 1604, 1409, 1394, 1378, 1331, 1303, 1249, 1057, 761. HRMS (ESI) calcd for C₁₇H₂₆N₃O₆ [M+H]⁺: 368.1822. Found: 368.1814.

To a solution of **3a** (63.6 mg, 0.36 mmol) in CH₃CN (7 mL) were added oxalyl chloride (45.17 mg, 0.36 mmol) and triethylamine (180 mg, 1.78 mmol) under air. The reaction mixture was stirred at 50 °C for 5 h. After the reaction was complete (monitored by TLC). Then the filtrate was concentrated by rotary evaporation and the residue was purified by silica gel column chromatography (PE/EtOAc = 2/1) to afford the desired product **5**.

5, yellow liquid, 63.6 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 2H), 7.38-7.35 (m, 3H), 5.67 (d, *J* = 13.2 Hz, 1H), 5.33 (d, *J* = 13.2 Hz, 1H), 4.44-4.30 (m, 4H), 1.39 (t, *J* = 7.2 Hz, 3H), 1.32 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 154.0, 153.9, 149.6, 137.1, 129.6, 128.2, 125.0, 64.8, 64.8, 63.0, 14.1, 14.0. IR (thin film): vmax (cm⁻¹) = 1795, 1743, 1695, 1493, 1370, 1210, 1080, 1021, 847, 761, 730, 695, 503, 420, 411. HRMS (ESI) calcd for C₁₅H₁₈N₃O₆ [M+H]⁺: 336.1196. Found: 336.1189.

4. UV/Vis absorption spectra

UV/vis absorption spectra based on **1a** (0.01 M in acetone), **2a** (0.01 M in acetone), the mixture of **1a** and **2a** (**1a**:**2a** = 1:1, 0.01 M in acetone) and the mixture of **1a**, **2a** and Na₂HPO₄ (**1a**:**2a**:Na₂HPO₄ = 1:1:1, 0.01 M in acetone) were recorded respectively in 1 cm path quartz cuvettes using Pgeneral TU-1901 UV/Vis spectrometer.

Figure S1. UV/vis spectra of 1a, 2a, the mixture of 1a and 2a, and the mixture of 1a, 2a and Na₂HPO₄.

5. Emission spectra of the LED lamps

The following spectra were recorded on EVERFINE Corporation HAAS-2000_VIS_V2 High-precision fast spectroradiometer. The forward current of the LEDs is 25 mA. Electroluminescence (EL) measurements of the LED lamps were carried out at room temperature using Everfine HAAS-2000. For the light collection, the LEDs were placed inside a 30 cm-diameter integrating sphere coupled to a high accuracy array spectroradiometer (wavelength accuracy <0.3 nm) and a programmable test power LED300E.

Figure S2. Emission spectra of the blue LEDs lamp.

Figure S3. Emission spectra of the purple LEDs lamp.

6. References

[1] (a) Z. Yao, X. Wu, X. Zhang, Q. Xiong, S. Jiang and Z. Yu, Synthesis and evaluation of photo-activatable β-diarylsydnone-l-alanines for fluorogenic photoclick cyclization of peptides. *Org. Biomol. Chem.*, 2019, **17**, 6777-6781; (b) N. Pe´try, T. Vanderbeeken, A. Malher, Y. Bringer, P. Retailleau, X. Bantreil and F. Lamaty, Mechanosynthesis of sydnone-containing coordination complexes, *Chem. Commun.*, 2019, **55**, 9495-9498.

7. Copies of NMR spectra

¹H NMR Spectrum of **3a**

¹H NMR Spectrum of **3b**

¹H NMR Spectrum of **3c**

¹H NMR Spectrum of 3d

110 100 f1 (ppm)

110 100 f1 (ppm)

¹H NMR Spectrum of 3f

¹H NMR Spectrum of **3g**

1 H NMR Spectrum of **3h**

¹H NMR Spectrum of **3i**

¹H NMR Spectrum of **3j**

S23

¹H NMR Spectrum of **3k**

S24

¹H NMR Spectrum of **3**l

---126.41

¹H NMR Spectrum of **3m**

¹³C NMR Spectrum of **3m**

¹H NMR Spectrum of **3n**

S27

¹³C NMR Spectrum of **3n**

¹H NMR Spectrum of **30**

¹³C NMR Spectrum of **30**

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 f1 (ppm)

¹H NMR Spectrum of **3p**

¹⁹F NMR Spectrum of **3p**

---61.31

¹H NMR Spectrum of **3**q

¹³C NMR Spectrum of **3**q

¹³C NMR Spectrum of **3r**

S33

¹³C NMR Spectrum of **3s**

Ó -80 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -90 -100 -110 -120 -130 -140 -150 -16

¹H NMR Spectrum of 4

