Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

# Electronic Supplementary Information for

# Substituent effects on the electronic structure of the flat Blatter radical: Correlation analysis of experimental and computational data

Paulina Bartos,<sup>†</sup> Aniket A. Hande,<sup>†,§</sup> Anna Pietrzak,<sup>¶</sup> Anna Chrostowska<sup>§</sup> and Piotr Kaszyński,<sup>†,d,e,\*</sup>

<sup>†</sup> Faculty of Chemistry, University of Łódź, 91-403 Łódź, Poland

<sup>§</sup> Université de Pau et des Pays de l'Adour E2S UPPA, CNRS, IPREM 64000, Pau, France

<sup>9</sup> Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-024, Łódź, Poland

<sup>‡</sup> Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Łódź, Poland

<sup>1</sup> Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA

## Table of Content:

| 1. Additional synthetic details                             |             |  |  |  |  |  |
|-------------------------------------------------------------|-------------|--|--|--|--|--|
| 2. NMR spectra                                              | S5          |  |  |  |  |  |
| 3. XRD data collection and refinement                       |             |  |  |  |  |  |
| 4. Electronic absorption spectroscopy                       | S24         |  |  |  |  |  |
| 5. Electrochemical results                                  | S29         |  |  |  |  |  |
| 6. EPR spectra                                              | <b>S</b> 31 |  |  |  |  |  |
| 7. Computational details and results                        | \$36        |  |  |  |  |  |
| a) geometry optimization                                    | S36         |  |  |  |  |  |
| b) hfcc calculations                                        | S39         |  |  |  |  |  |
| c) spin delocalization                                      | \$43        |  |  |  |  |  |
| d) N–H bond dissociation energy and resonance stabilization | \$43        |  |  |  |  |  |
| e) oxidation potentials for radicals <b>1</b>               | S44         |  |  |  |  |  |
| f) electronic excitations                                   | S48         |  |  |  |  |  |
| g) partial output data for TD-DFT calculations              | S51         |  |  |  |  |  |
| 8. Archive for DFT results                                  | S75         |  |  |  |  |  |
| 9. References                                               | S109        |  |  |  |  |  |

### 1. Additional synthetic details

### Preparation of intermediates

**2-Amino-4-iodophenol.**<sup>1</sup> 2-Amino-4-iodophenol was obtained according to literature procedure.<sup>2</sup> Thus, *to* the solution of 4-iodo-2-nitrophenol (1.068 g, 4.0 mmol) in EtOH (20 mL), SnCl<sub>2</sub> (4.513 g, 20 mmol) was added in one portion and the reaction mixture was stirred for 1.5 hr at 70 °C under ambient atmosphere. The reaction mixture was poured into sat. NaHCO<sub>3</sub> (100 mL), filtered through Celite, which was washed well with EtOAc. The organic layer was separated, washed with H<sub>2</sub>O (2×30 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). The solvent was removed under vacuum to give 760 mg (3.2 mmol) of 4-iodo-2-aminophenol as brownish solid, which was used for the next step without further purification: mp 126–128 °C (lit.<sup>1</sup> mp 139 °C); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.27 (bs, 1H), 6.87 (d, *J* = 2.1 Hz, 1H), 6.65 (dd, *J*<sub>1</sub> = 8.2 Hz, *J*<sub>2</sub> = 2.1 Hz, 1H), 6.43 (d, *J* = 8.2 Hz, 1H), 4.74 (bs, 2H); <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  143.0, 139.2, 124.3, 121.8, 116.4, 81.7; IR (ATR) v 3381, 3207, 3191, 1581, 1492, 1443, 1257, 1198, 905, 853, 769 cm<sup>-1</sup>; HRMS (ESI-TOF) [M+H]<sup>+</sup> *m/z* calcd for C<sub>6</sub>H<sub>7</sub>INO: 235.9572; found: 235.9574. Anal. Calcd for C<sub>6</sub>H<sub>6</sub>INO: C, 30.66; H, 2.57; N, 5.96. Found C, 30.71; H, 2.52; N, 6.03.

**2-Amino-4-benzyloxyphenol.**<sup>3</sup> The phenol was obtained in 69% yield as grey powder by reduction of 4-benzyloxy-2-nitrophenol with Zn in AcOH according to a literature procedure<sup>3</sup> and used in the next step without further purification: <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.50 (s, 1H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 2H), 7.30 (t, *J* = 6.7 Hz, 1H), 6.50 (d, *J* = 8.6 Hz, 1H), 6.27 (d, *J* = 2.8 Hz, 1H), 6.03 (dd, *J*<sub>1</sub> = 8.5 Hz, *J*<sub>2</sub> = 2.8 Hz, 1H), 4.90 (s, 2H), 4.54 (bs, 2H); IR (KBr) v 3384, 3293, 1521, 1233, 1182, 1017, 734, 695 cm<sup>-1</sup>; HRMS (ESI-TOF) [M+H]<sup>+</sup> *m/z* calcd for C<sub>13</sub>H<sub>14</sub>NO<sub>2</sub>: 216.1025; found: 216.1026.

**3-Amino-4-hydroxyphenyl acetate.** It was obtained in 87% yield as a brown solid by catalytic reduction of 4-hydroxy-3-nitrophenyl acetate in a THF–EtOH mixture (1:1) at ambient temperature in the presence of 10% Pd/C at 2 bars and used to the next step without further purification: <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  9.01 (s, 1H), 6.57 (d, *J* = 8.3 Hz, 1H), 6.29 (d, *J* = 2.3 Hz, 1H), 6.08 (dd, *J*<sub>1</sub> = 8.3 Hz, *J*<sub>2</sub> = 2.3 Hz, 1H), 4.68 (bs, 2H), 2.17 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.5, 143.4, 141.5, 137.4, 113.9, 108.2, 107.4, 20.8; IR (KBr) *v* 

3384, 3293, 1601, 1521, 1233, 1183, 1017, 794, 734, 695 cm<sup>-1</sup>. Anal. Calcd for C<sub>8</sub>H<sub>9</sub>NO<sub>3</sub>: C, 57.48; H, 5.43; N, 8.38. Found C, 57.49; H, 5.72; N, 8.17.

**4-Iodo-2-nitrophenol.**<sup>4</sup> 4-Iodo-2-nitrophenol was obtained according to a literature procedure.<sup>5</sup> Thus, NaNO<sub>2</sub> (4.56 g, 66.0 mmol) dissolved in H<sub>2</sub>O (24 mL) was added dropwise *to a* suspension of 4-amino-2-nitro*phenol* (9.25 g, 60 mmol) in 32 mL conc. HCl (32 mL) at 0 °C. After 20 min of stirring, KI (100 g, 600 mmol) dissolved in H<sub>2</sub>O (140 mL) was added and the reaction mixture, which was allowed to warm up to room temperature. The stirring was continued for 12 hrs. H<sub>2</sub>O (200 mL) was added to the reaction mixture and the resulting mixture was extracted with EtOAc (3×100 mL). The organic extracts were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated under vacuum to give crude product which was purified by column chromatography (SiO<sub>2</sub>, pet. ether/CH<sub>2</sub>Cl<sub>2</sub> 1:1), giving 9.82 g (62% yield) of the phenol as yellow crystals: mp 78–79 °C (lit.<sup>4</sup> mp 81 °C); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  11.3 (bs, 1H), 8.12 (d, *J* = 2.1 Hz, 1H), 7.80 (dd, *J*<sub>1</sub> = 8.7 Hz, *J*<sub>2</sub> = 2.1 Hz, 1H), 6.94 (d, *J* = 8.7 Hz, 1H); <sup>13</sup>C {<sup>1</sup>H</sup> NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  152.1, 143.5, 138.7, 133.2, 121.8, 80.4; IR (ATR) *v* 1605, 1567, 1513, 1465, 1404, 1228, 1158, 831, 655, 610, 538 cm<sup>-1</sup>; HRMS (ESI-TOF) [M-H]<sup>+</sup> *m/z* calcd for C<sub>6</sub>H<sub>3</sub>INO<sub>3</sub> 263.9158; found: 263.9158. Anal. Calcd for C<sub>6</sub>H<sub>4</sub>INO<sub>3</sub>: C, 27.19; H, 1.52; N, 5.29. Found C, 27.15 H, 1.46; N, 15.31.

**4-Benzyloxy-2-nitrophenol.**<sup>6</sup> It was obtained as yellow crystals in 85% yield by selective debenzylation of 1,4-dibenzyloxy-2-nitrobenzene with TFA in CH<sub>2</sub>Cl<sub>2</sub> according to a literature procedure:<sup>7</sup> mp 65–66 °C (EtOH, lit.<sup>6</sup> mp 68–70); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.35 (s, 1H), 7.60 (d, *J* = 3.1 Hz, 1H), 7.43 (t, *J* = 6.8 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.0 Hz, 1H), 7.29 (dd, *J*<sub>1</sub> = 9.2 Hz, *J*<sub>2</sub> = 3.1 Hz, 1H), 7.09 (d, *J* = 9.2 Hz, 1H), 5.06 (s, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  151.7, 150.3, 136.0, 133.1, 128.9, 128.5, 128.0, 127.8, 121.0, 107.3, 71.0; IR (KBr) *v* 3235, 1537, 1485, 1431, 1330, 1248, 1022, 747, 700 cm<sup>-1</sup>; HRMS (ESI-TOF) [M–2H]<sup>-</sup> *m/z* calcd for C<sub>13</sub>H<sub>9</sub>NO<sub>4</sub>: 243.0532; found: 243.0534. Anal. Calcd for C<sub>13</sub>H<sub>11</sub>NO<sub>4</sub>: C, 63.67; H, 4.52; N, 5.71. Found C, 63.73; H, 4.76; N, 5.45.

**4-Hydroxy-3-nitrophenyl acetate.**<sup>8</sup> It was obtained as yellow crystals in 53% yield by nitration of 4-acetoxyphenol<sup>9</sup> with HNO<sub>3</sub> in AcOH according to a literature procedure:<sup>9</sup> mp 79–80 °C

(MeOH, lit.<sup>8</sup> mp 84 °C); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.74 (s, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 7.16 (d, *J* = 8.8 Hz, 1H), 2.27 (s, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.3, 149.8, 141.6, 136.2, 129.1, 119.6, 118.2, 20.7; IR (KBr) *v* 3301, 1757, 1537, 1430, 1196, 950, 915 cm<sup>-1</sup>. Anal. Calcd for C<sub>8</sub>H<sub>7</sub>NO<sub>5</sub>: C, 48.74; H, 3.58; N, 7.10. Found C, 48.51; H, 3.63; N, 7.22.

**1,4-Dibenzyloxy-2-nitrobenzene.**<sup>10</sup> It was obtained as yellow crystals in 94% yield by nitration of 1,4-di(benzyloxy)benzene with conc. HNO<sub>3</sub> in AcOH according to a literature procedure:<sup>7</sup> mp 77–78 °C (MeOH; lit.<sup>10</sup> mp 80–81 °C); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.49 (d, *J* = 3.0 Hz, 1H), 7.45 (d, *J* = 7.4 Hz, 2H), 7.37–7.42 (m, 6H), 7.31–7.36 (m, 2H), 7.13 (dd, *J*<sub>1</sub> = 9.1 Hz, *J*<sub>2</sub> = 3.0 Hz, 1H), 7.05 (d, *J* = 9.1 Hz, 1H), 5.18 (s, 2H), 5.05 (s, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  152.4, 146.5, 140.4, 136.1, 136.0, 128.9, 128.8, 128.5, 128.3, 127.7, 127.3, 121.6, 117.4, 111.3, 72.2, 71.1; IR (KBr) *v* 1522, 1451, 1386, 1341, 1227, 1016, 756, 733, 694 cm<sup>-1</sup>; HRMS (ESI-TOF) [M+Na]<sup>+</sup> *m/z* calcd for C<sub>20</sub>H<sub>17</sub>NO<sub>4</sub>Na: 358.1055; found: 358.1051. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>NO<sub>4</sub>: C, 71.63; H, 5.11; N, 4.18. Found C, 71.60; H, 5.06; N, 4.32.

**1,4-Di(benzyloxy)benzene**.<sup>10</sup> It was obtained in 47% yield as yellow crystals by benzylation of hydroquinone with benzyl bromide in DMF according to a literature procedure:<sup>7</sup> mp 127–128 °C (EtOH) (lit.<sup>10</sup> mp 127-128 °C); <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.43 (d, *J* = 7.4 Hz, 4H), 7.39 (t, *J* = 7.5 Hz, 4H), 7.32 (t, *J* = 7.2 Hz, 2H), 6.91 (s, 4H), 5.02 (s, 4H); <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  153.3, 137.4, 128.7, 128.0, 127.6, 115.9, 70.8; IR (KBr) *v* 2902, 1509, 1238, 1018, 813, 733, 696 cm<sup>-1</sup>; HRMS (ESI-TOF) [M]<sup>+</sup> *m/z* calcd for C<sub>20</sub>H<sub>18</sub>O<sub>2</sub>: 290.1307; found: 290.1312. Anal. Calcd for C<sub>20</sub>H<sub>18</sub>O<sub>2</sub>: C, 82.73; H, 6.27. Found C, 82.78; H, 6.28.

### 2. NMR spectra



**Figure S1**. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 8-(2-amino-4-iodo-1-phenyloxy)-3-phenylbenzo[e][1,2,4]triazine (**2n**) recorded in DMSO-*d6* at 500 and 125 MHz, respectively.



**Figure S2.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 8-(2-amino-4-benzyloxy-1-phenyloxy)-3-phenylbenzo[e][1,2,4]triazine (**2p**) recorded in DMSO-*d6* at 600 and 151 MHz, respectively.



**Figure S3.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 8-(2-nitro-4-benzyloxy-1-phenyloxy)-3-phenylbenzo[e][1,2,4]triazine (**5p**) recorded in CDCl<sub>3</sub> at 600 and 151 MHz, respectively.



**Figure S4.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 2-amino-4-iodophenol recorded in DMSO-*d6* at 500 and 125 MHz, respectively.



**Figure S5.** <sup>1</sup>H NMR spectrum for 2-amino-4-benzyloxyphenol recorded in DMSO- $d_6$  at 600 MHz.



**Figure S6.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 3-amino-4-hydroxyphenyl acetate recorded in DMSO- $d_6$  at 600 and 151 MHz, respectively.



**Figure S7.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 4-benzyloxy-2-nitrophenol recorded in DMSO- $d_6$  at 600 and 151 MHz, respectively.



**Figure S8.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 4-hydroxy-3-nitrophenyl acetate recorded in DMSO- $d_6$  at 600 and 151 MHz, respectively.



**Figure S9.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 4-iodo-2-nitrophenol recorded in DMSO- $d_6$  at 500 and 125 MHz, respectively.



**Figure S10.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 2-nitrohydroquinone dibenzyl ether recorded in DMSO- $d_6$  at 600 and 151 MHz, respectively.



**Figure S11.** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra for 1,4-di(benzyloxy)benzene recorded in DMSO- $d_6$  at 600 and 151 MHz, respectively.

### **3. XRD data collection and refinement**

Single-crystal XRD measurements for **1n**, **1q**, and **1s** were performed with a Rigaku XtalAB Synergy, Pilatus 300K diffractometer. The measurements were conducted at 100.0(1) K using the Cu $K_{\alpha}$  radiation ( $\lambda$ =1.54184 Å). The data was integrated using CrysAlisPro program.<sup>11</sup> Intensities for absorption were corrected using multi-scan method as in SCALE3 ABSPACK scaling algorithm implemented in CrysAlisPro program.<sup>11</sup> Additional crystal and refinement information are listed in Table S1.

CCDC: Files 2007763-2007765 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

|                                         | 1n                                                | 1q                                               | <b>1</b> s                                       |
|-----------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                                         | CCDC: 2007765                                     | CCDC: 2007764                                    | CCDC: 2007763                                    |
| Formula                                 | C <sub>19</sub> H <sub>11</sub> IN <sub>3</sub> O | C <sub>25</sub> H <sub>16</sub> N <sub>3</sub> O | C <sub>27</sub> H <sub>16</sub> N <sub>3</sub> O |
| Formula Weight                          | 424.21                                            | 374.41                                           | 398.43                                           |
| Crystal System                          | Orthorhombic                                      | Monoclinic                                       | Monoclinic                                       |
| Space Group                             | Pccn                                              | $P2_{1}/c$                                       | $P2_{1}/c$                                       |
| a/Å                                     | 28.8753(2)                                        | 21.5515(6)                                       | 18.3724(7)                                       |
| b/Å                                     | 13.0456(1)                                        | 5.0208(1)                                        | 13.2094(5)                                       |
| $c/\text{\AA}$                          | 8.0244(1)                                         | 18.0754(5)                                       | 8.0305(3)                                        |
| $lpha/^{\circ}$                         | 90                                                | 90                                               | 90                                               |
| $eta/^{\circ}$                          | 90                                                | 113.476(3)                                       | 97.937(4)                                        |
| $\gamma/^{\circ}$                       | 90                                                | 90                                               | 90                                               |
| Volume/Å <sup>3</sup>                   | 3022.76(5)                                        | 1793.97(9)                                       | 1930.2(1)                                        |
| Ζ                                       | 8                                                 | 4                                                | 4                                                |
| 20 range for data                       | 7.436 to 157.34                                   | 8.948 to 140.106                                 | 8.272 to 134.146                                 |
| collection/°                            |                                                   |                                                  |                                                  |
| Index ranges                            | $-28 \le h \le 36, -16 \le k$                     | $-25 \leq h \leq 26, -6 \leq$                    | $-21 \leq h \leq 21, -15 \leq$                   |
|                                         | $\leq 16, -10 \leq l \leq 9$                      | $k \le 6, -22 \le l \le 21$                      | $k \le 13, -9 \le l \le 9$                       |
| No. of measured,                        | 34519, 3242, 3014                                 | 32411, 3393, 2842                                | 17388, 3441, 2334                                |
| independent, and observed               |                                                   |                                                  |                                                  |
| $[I > 2\sigma(I)]$ reflections          |                                                   |                                                  |                                                  |
| Rint                                    | 0.0376                                            | 0.0440                                           | 0.0385                                           |
| Goodness-of-fit on $F^2$                | 1.097                                             | 1.060                                            | 1.235                                            |
| Final R indexes                         | $R_1 = 0.0234,$                                   | $R_1 = 0.0637,$                                  | $R_1 = 0.0655,$                                  |
| $[F^2 > 2\sigma(F^2)]$                  | wR2=0.0632                                        | wR2=0.1753                                       | wR <sub>2</sub> =0.1685                          |
| Final R indexes                         | $R_1 = 0.0252,$                                   | $R_1 = 0.0724,$                                  | $R_1 = 0.0973,$                                  |
| [all data]                              | wR2 = 0.0642                                      | wR2 = 0.1824                                     | $wR_2 = 0.1923$                                  |
| Data/restraints/parameters              | 3242/0/217                                        | 3393/151/287                                     | 3441/0/274                                       |
| Largest diff. peak/hole Å <sup>-3</sup> | 0.98/-0.44                                        | 0.41/-0.40                                       | 0.65/-0.26                                       |

## Table S1. Selected structural data for 1n, 1q and 1s

# Structure solution and refinement

The structures were solved with the ShelXT<sup>12</sup> structure solution program using Intrinsic Phasing and refined in the ShelXle by the full-matrix least-squares minimization on  $F^2$  with the ShelXL<sup>13</sup> refinement package. All non-hydrogen atoms were refined anisotropically and C–H hydrogens were generated geometrically using the HFIX command as in ShelXL. Hydrogen atoms were refined isotropically and constrained to ride on their parent atoms.

The phenyl group in **1q** is disordered over two orientations with occupancy ratio 0.524(4):0.476(4). The phenyl ring of the first component of disordered structure is rotated around 59.8° with respect to the orientation of the first component. Sums of occupancies of relevant sites were set equal to 1 and refined using free variables. PART instruction was applied to exclude bonding between equivalent disordered atoms. Anisotropic displacement parameters of neighboring disordered atoms were restrained using SIMU and RIGU procedures as in ShelXL. The crystal data and structure refinement descriptors are presented in Table S1. Partial packing diagrams for **1n**, **1q** and **1s** are shown in Figures S12–S17, while selected geometrical parameters are listed in Table S2 and compared to those of **1a**,<sup>14</sup> **1d**,<sup>15</sup> and **1e**.<sup>16</sup>



Figure S12. Unit cell packing diagram for 1n.



**Figure S13**. Slipped stacks of **1n**. Angles between the adjacent stacks are 74.8 and 8.7°. Close contacts within the stacks:

# <u>C(11)</u><sup>...</sup>C(6a) 3.262 Å (-0.138 Å inside VDW separation) <u>C(3a')</u><sup>...</sup>C(6) 3.386 Å (-0.014 Å inside VDW separation)

Close contacts between the stacks: I<sup>...</sup>H-C(Ph) 3.140 Å (-0.040 Å inside VDW separation) C(4)-H<sup>...</sup>O(7) 2.563 Å (-0.157 Å inside VDW separation) C(5)-H<sup>...</sup>C(Ph) 3.383 Å (-0.017 Å inside VDW separation)

<u>Slippage angle</u> - of 23.1° was calculated as an angle defined by O(7)<sup>...</sup>O(7)<sup>...</sup>N(12) minus 90°. The two oxygen atoms used for the measurements were for two molecules in the stack with same orientation.



Figure S14. Unit cell packing diagram for 1q.



Figure S15. Two slipped stacks of 1q. The angle between the stacks is 80.6°.

Close contacts within the stacks:

Close contacts between the heterocyclic cores C(2)···C(11a) 3.281 Å (-0.119 Å inside VDW separation) C(3a)···O(7) 3.386 Å (-0.051 Å inside VDW separation) Close contacts between the C(10)–Ph groups C(m)-H···C(m') 2.773 Å (-0.627 Å inside VDW separation) C(o)-H···C(o') 2.184 Å (-0.716 Å inside VDW separation) C(m')-H···C(m) 2.183 Å (-0.717 Å inside VDW separation) C(o')-H···C(o) 2.122 Å (-0.778 Å inside VDW separation)

<u>Slippage angle</u> - of 36.8° was calculated as an angle defined by  $O(7)^{\dots}O(7)^{\dots}N(12)$  minus 90°. The two oxygen atoms used for the measurements were for two molecules in the stack with same orientation.



Figure S16. Packing diagram for unit cell of 1s.



Figure S17. Two slipped stacks of 1s. Angle between the stacks is 0°.

Close contacts within the stacks:

C(6a)<sup>...</sup>C(11a) 3.207 Å (-0.193 Å inside VDW separation) C(11a)<sup>...</sup>C(11) 3.336 Å (-0.064 Å inside VDW separation) C(7a)-H<sup>...</sup>C(11) 3.369 Å (-0.031 Å inside VDW separation) Close contacts between the stacks:

C(4)-H<sup>...</sup>O(7) 2.577 Å (-0.143 Å inside VDW separation)

<u>Slippage angle</u> - of 23.1° was calculated as an angle defined by  $O(7)^{\dots}O(7)^{\dots}N(12)$  minus 90°. The two oxygen atoms used for the measurements were for two molecules in the stack with same orientation.

| $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ | 9<br>10<br>11<br>11<br>11<br>11<br>12<br>10<br>11<br>11<br>12<br>12<br>10<br>11<br>11<br>12<br>12<br>10<br>11<br>11<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | NO <sub>2</sub><br>N <sub>N</sub><br>Ph | CF3<br>CF3<br>CF3<br>CF3<br>Ph |          | Ph<br>O<br>N<br>N<br>Ph |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|----------|-------------------------|----------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a<br>1a <sup>b</sup>                                                                                                                                                | 1d<br>1d <sup>c</sup>                   | 1e<br>1e <sup>d</sup>          | 1n<br>1n | 1q<br>1q                | 1s<br>1s |
| <i>d</i> <sub>N1-N12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.35(1)                                                                                                                                                             | 1.358(2)                                | 1.354(1)                       | 1.356(3) | 1.360(2)                | 1.360(3) |
| $d_{ m N1-C2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.32(1)                                                                                                                                                             | 1.343(2)                                | 1.343(1)                       | 1.343(3) | 1.346(3)                | 1.340(3) |
| $d_{\text{C2-N3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.364(9)                                                                                                                                                            | 1.340(2)                                | 1.337(1)                       | 1.340(3) | 1.326(3)                | 1.346(4) |
| $d_{ m N3-C3a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.38(1)                                                                                                                                                             | 1.373(2)                                | 1.375(1)                       | 1.376(3) | 1.378(3)                | 1.382(3) |
| $d_{ m C3a-C3a'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.38(1)                                                                                                                                                             | 1.409(2)                                | 1.407(1)                       | 1.407(3) | 1.410(3)                | 1.404(4) |
| $d_{ m C3a'-C6a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.36(1)                                                                                                                                                             | 1.392(2)                                | 1.393(2)                       | 1.396(3) | 1.402(3)                | 1.391(4) |
| $d_{ m C6a-O7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.39(1)                                                                                                                                                             | 1.382(2)                                | 1.381(1)                       | 1.380(3) | 1.389(3)                | 1.384(3) |
| $d_{ m O7-C7a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.381(9)                                                                                                                                                            | 1.367(2)                                | 1.379(1)                       | 1.381(3) | 1.371(3)                | 1.388(4) |
| $d_{ m N12-C11a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.42(1)                                                                                                                                                             | 1.398(2)                                | 1.401(1)                       | 1.400(3) | 1.405(3)                | 1.399(3) |
| $d_{	ext{C2-Ph}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.50(1)                                                                                                                                                             | 1.491(2)                                | 1.485(1)                       | 1.486(3) | 1.489(3)                | 1.479(4) |
| $d_{ m C10-NO2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                     | 1.465(2)                                |                                |          |                         |          |
| $lpha_{ m N12-N1-C2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114.1(6)                                                                                                                                                            | 114.8(1)                                | 115.06(1)                      | 114.9(2) | 114.4(2)                | 115.5(2) |
| $lpha_{ m N1-C2-N3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130.2(7)                                                                                                                                                            | 128.7(1)                                | 128.47(9)                      | 128.7(2) | 128.7(2)                | 128.1(3) |
| $lpha_{ m C7a-O7-C6a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.5(6)                                                                                                                                                            | 117.8(1)                                | 117.67(8)                      | 118.1(2) | 117.7 (2)               | 117.8(2) |
| $lpha_{ m C3a'-N12-C11a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118.6(6)                                                                                                                                                            | 118.8(1)                                | 119.09(1)                      | 119.0(2) | 119.8(2)                | 119.4(2) |
| $\theta_{\text{N12-N1-C2-N3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1(1)                                                                                                                                                                | 0.8(2)                                  | 2.6(1)                         | 0.0(3)   | -0.4(3)                 | 1.1(4)   |
| $	heta_{ m C3a'-C6a-O7-C7a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0(1)                                                                                                                                                                | -1.1(2)                                 | 5.5(1)                         | -1.0(3)  | -3.0(3)                 | 2.0(4)   |
| $eta_{	ext{triazine-(C2)Ph}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.9                                                                                                                                                                 | 4.7                                     | 4.0                            | 22.3     | 2.95                    | 25.8     |

**Table S2.** Selected interatomic distances and angles for planar benzo[e][1,2,4]triazin-4-yl radicals.<sup>*a*</sup>

<sup>a</sup> *d* - interatomic distance,  $\alpha$  - interatomic angle,  $\theta$  - dihedral angle,  $\beta$  - inter-ring angle. <sup>b</sup> Ref <sup>14</sup>. <sup>c</sup> Ref <sup>15</sup>. <sup>d</sup> Ref <sup>16</sup>.

The intramolecular inter-ring angle was calculated as the angle between two planes: one was defined by all seventeen C and N atoms of the heterocyclic core and the second by six C atom of the Ph substituent. The mean plane of the heterocyclic core (defined by seventeen C and N atoms) was used to measure the intermolecular separation within the stack and also to measure the angle between the two neighboring stacks.

## 4. Electronic absorption spectroscopy

Electronic absorption spectra for radicals 1 were recorded in spectroscopic grade  $CH_2Cl_2$  at concentrations in a range  $1.5-10 \times 10^{-5}$  M and fitted to the Beer–Lambert law. Results are shown in Figures S18–S24.



**Figure S18.** Clockwise: electronic absorption spectra for **1n** (X = I) in CH<sub>2</sub>Cl<sub>2</sub> for four concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda = 267.5$  nm (best fit function:  $\varepsilon = 25111 \times \text{conc}$ ,  $r^2 = 0.9991$ ), molar extinction *log* ( $\varepsilon$ ) plot, and onset of absorption (optical band-gap).



**Figure S19.** Clockwise: electronic absorption spectra for **1p** (X = OBn) in CH<sub>2</sub>Cl<sub>2</sub> for three concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda = 264.5$  nm (best fit function:  $\varepsilon = 22313 \times \text{conc}$ ,  $r^2 = 0.9997$ ), molar extinction *log* ( $\varepsilon$ ) plot, and onset of absorption (optical band-gap).





**Figure S20.** Clockwise: electronic absorption spectra for **1q** (X = Ph) in CH<sub>2</sub>Cl<sub>2</sub> for three concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda = 273$  nm (best fit function:  $\varepsilon = 35137 \times \text{conc}$ ,  $r^2 = 0.9998$ ), molar extinction  $log(\varepsilon)$  plot, and onset of absorption (optical band-gap).



**Figure S21.** Clockwise: electronic absorption spectra for 1r (X = 2-thienyl) in CH<sub>2</sub>Cl<sub>2</sub> for four concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda$  = 294.5 nm (best fit function:  $\varepsilon$  = 30573×conc,  $r^2$  = 0.9989), molar extinction log ( $\varepsilon$ ) plot, and onset of absorption (optical band-gap).



**Figure S22.** Clockwise: electronic absorption spectra for **1s** (X = CCPh) in CH<sub>2</sub>Cl<sub>2</sub> for four concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda = 280$  nm (best fit function:  $\varepsilon = 32701 \times \text{conc}$ ,  $r^2 = 0.9978$ ), molar extinction  $log(\varepsilon)$  plot, and onset of absorption (optical band-gap).





**Figure S23**. Clockwise: electronic absorption spectra for 1u (X = NHCOCF<sub>3</sub>) in CH<sub>2</sub>Cl<sub>2</sub> for three concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda$  = 270.5 nm (best fit function:  $\varepsilon$  = 30788×conc,  $r^2$  = 0.9999), molar extinction log ( $\varepsilon$ ) plot, and onset of absorption (optical band-gap).



**Figure S24**. Clockwise: electronic absorption spectra for  $\mathbf{1v}$  (X = NHCOOMe) in CH<sub>2</sub>Cl<sub>2</sub> for three concentrations, determination of molar extinction coefficient  $\varepsilon$  at  $\lambda$  = 266 nm (best fit function:  $\varepsilon$  = 53718×conc,  $r^2$  = 0.9999), molar extinction  $log(\varepsilon)$  plot, and onset of absorption (optical band-gap).

### 5. Electrochemical results

The electrochemical characterization of selected radicals was conducted using Autolab PGSTAT128N potentiostat/galvanostat instrument in dry and degassed  $CH_2Cl_2$  (concentration 0.5 mM) in the presence of  $[n-Bu_4N]^+[PF_6]^-$  as an electrolyte (concentration 50 mM) using glassy carbon as the working electrode and Ag/AgCl as the reference electrode with a scan rate of 50 mV s<sup>-1</sup> at *ca*. 20 °C. In the end of each measurement decamethylferrocene (FcMe\_{10}) was added and the peak potentials were referenced to the FcMe\_{10}/FcMe\_{10}^+ couple. The oxidation potential for the FcMe\_{10}/FcMe\_{10}^+ couple was established at -0.56 V vs the Fc/Fc<sup>+</sup> couple.<sup>17</sup>

Cyclic voltammetry (CV) plots are shown in Figures S25–S32 and numerical result are shown in Table 3 in the main text.



**Figure S25**. Cyclic voltammogram for ferrocene (Fc) and decamethylferrocene (FeMe<sub>10</sub>). The small peak at about 0.05 V is related to some impurity in the commercial  $FeMe_{10}$ .





Figure S26. Cyclic voltammogram for 1n.





### 6. EPR spectra

EPR spectra for radicals 1 were recorded on an X-band EMX-Nano EPR spectrometer at ambient temperature on dilute and degassed solutions in distilled benzene in a concentration range of  $2-5\times10^{-4}$  M. Acid 1f showed insufficient solubility to record its isotropic EPR spectrum. The microwave power was set with the Power Sweep program below the saturation of the signal, modulation frequency of 100 kHz, modulation amplitude of 0.5 G<sub>pp</sub> and spectral width of 100 G. Accurate *g*-values were obtained using TEMPO as EMX-Nano internal standard.

Simulations of the spectra were performed with the EasySpin (Matlab) using all EPRactive nuclei and DFT results as the starting point for simulations. The chemically equivalent nuclei (H in the Ph substituent) were treated as a group of 2 identical nuclei. The resulting *hfcc* values were perturbed several times until a global minimum for the fit was achieved. Experimental and simulated spectra are shown in Figures S33–S39 and resulting *hfcc* are listed in Table S3. The *hfcc* values were assigned to the nitrogen nuclei in **1** on the basis of trends in DFT results (section 7.b; *vide infra*).



Figure S33. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for 1n (X = I) recorded in benzene at *ca* 20 °C.



**Figure S34**. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for 1p (X = OBn) recorded in benzene at *ca* 20 °C.



Figure S35. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for 1q (X = Ph) recorded in benzene at *ca* 20 °C.



**Figure S36**. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for 1r (X = 2-thienyl) recorded in benzene at *ca* 20 °C.



**Figure S37**. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for **1s** (X = CCPh) recorded in benzene at *ca* 20 °C.



**Figure S38**. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for 1u (X = NHCOCF<sub>3</sub>) recorded in benzene at *ca* 20 °C.



**Figure S39**. Experimental (black, left), simulated (blue, right) and difference (red, right) spectra for 1v (X = NHCOOMe) recorded in benzene at *ca* 20 °C.

| atom               | <b>1a</b><br>H | 1b<br>COOMe | 1c<br>CN | <b>1d</b><br>NO <sub>2</sub> | <b>1e</b><br>CF <sub>3</sub> | 1f<br>OMe | <b>1g</b><br>F | <b>1h</b><br>C1 | <b>1i</b><br>Br | <b>1j</b><br>Ac |
|--------------------|----------------|-------------|----------|------------------------------|------------------------------|-----------|----------------|-----------------|-----------------|-----------------|
| a <sub>N(12)</sub> | 7.51           | 7.29        | 7.03     | 6.95                         | 7.11                         | 7.37      | 7.15           | 7.15            | 7.15            | 7.24            |
| $a_{N(1)}$         | 4.28           | 4.44        | 4.50     | 4.55                         | 4.50                         | 4.29      | 4.40           | 4.46            | 4.42            | 4.41            |
| a <sub>N(3)</sub>  | 4.42           | 4.52        | 4.70     | 4.66                         | 4.53                         | 4.37      | 4.44           | 4.54            | 4.48            | 4.52            |
| a <sub>N</sub>     | _              | -           | 1.81     | 1.06                         | -                            | -         | -              | -               | -               | -               |
| a <sub>H/F</sub>   | -              | -           | -        | -                            | 2.04                         | -         | 2.02           | -               | -               | -               |
| a <sub>H</sub>     | 1.94           | 0.87        | 1.51     | 2.07                         | 1.58                         | 2.14      | 1.76           | 2.08            | 1.98            | 2.02            |
| $a_{H}$            | 1.11           | 1.84        | 1.49     | 0.78                         | 1.04                         | 1.57      | 1.39           | 1.76            | 1.76            | 1.61            |
| $a_{H}$            | 0.72           | 1.98        | 1.44     | 0.96                         | 0.82                         | 1.12      | 0.75           | 1.49            | 1.01            | 0.78            |
| $a_{H}$            | 0.60           | 1.13        | 0.67     | 0.67                         | 0.44                         | 0.71      | 0.57           | 1.44            | 0.89            | 0.44            |
| a <sub>H</sub>     | 0.39           | 0.62        | 0.57     | 0.34                         | 0.41                         | 0.71      | 0.44           | 0.71            | 0.31            | 0.40            |
| a <sub>H</sub>     | 0.29           | 0.23        | 0.39     | 0.41                         | 0.23                         | 0.37      | 0.13           | 0.45            | 0.18            | 0.30            |
| $a_{H}$            | 0.11           | 0.27        | 0.17     | 0.32                         | 0.07                         | 0.33      | 0.10           | 0.29            | 0.17            | 0.20            |
| $a_{H}$            | 0.10           | 0.33        | 0.10     | 0.17                         | 0.00                         | 0.23      | 0.08           | 0.05            | 0.08            | 0.14            |
| $a_{H}$            | 0.09           | 0.37        | 0.07     | 0.66                         | 0.05                         | 0.09      | 0.03           | 0.01            | 0.28            | 0.05            |
|                    |                |             |          |                              |                              |           |                |                 |                 |                 |
| g                  | 2.0036         | 2.0037      | 2.0035   | 2.0039                       | 2.0039                       | 2.0038    | 2.0035         | 2.0038          | 2.0034          | 2.0039          |

**Table S3**. Experimental hyperfine coupling constants (G) and g values for radicals in series 1 recorded in benzene at 22  $^{\circ}$ C.

| atom               | 11              | 1m     | 1n     | 1p     | 1q     | 1r      | 1s     | 1u                  | 1v      |
|--------------------|-----------------|--------|--------|--------|--------|---------|--------|---------------------|---------|
|                    | NH <sub>2</sub> | NHAc   | 1      | OBn    | Ph     | Thienyl | CCPh   | NHCOCF <sub>3</sub> | NHCOOMe |
| a <sub>N(12)</sub> | 7.26            | 7.43   | 7.15   | 7.60   | 7.42   | 7.35    | 7.18   | 7.22                | 7.34    |
| $a_{N(1)}$         | 4.18            | 4.32   | 4.46   | 4.15   | 4.30   | 4.39    | 4.30   | 4.42                | 4.30    |
| a <sub>N(3)</sub>  | 4.34            | 4.35   | 4.54   | 4.33   | 4.35   | 4.42    | 4.35   | 4.50                | 4.53    |
| $a_N$              | 1.52            | 1.32   | -      | -      | -      | -       | -      | 1.36                | 1.38    |
| $a_{\rm H/F}$      | -               | -      | -      | -      | -      | -       | -      | -                   | -       |
| $a_{H}$            | 1.43            | 0.71   | 2.08   | 1.99   | 1.92   | 1.70    | 1.82   | 1.77                | 1.50    |
| $a_{H}$            | 1.05            | 0.73   | 1.76   | 1,00   | 1.84   | 1.93    | 1.80   | 0.57                | 1.06    |
| $a_{H}$            | 0.74            | 0.75   | 1.49   | 0.90   | 1.11   | 0.85    | 1.06   | 0.51                | 0.76    |
| $a_{H}$            | 0.71            | 0.40   | 1.44   | 0.65   | 0.71   | 0.14    | 0.71   | 0.69                | 0.67    |
| $a_{H}$            | 0.75            | 1.08   | 0.71   | 0.50   | 0.79   | 0.40    | 0.72   | 0.69                | 0.73    |
| $a_{H}$            | 0.68            | 0.36   | 0.45   | 0.31   | 0.59   | 0.39    | 0.30   | 0.69                | 0.73    |
| $a_{H}$            | 0.41            | 0.41   | 0.29   | 0.40   | 0.42   | 0.28    | 0.37   | 0.40                | 0.69    |
| $a_{\rm H}$        | 0.27            | 0.38   | 0.01   | 0.18   | 0.32   | 0.27    | 0.36   | 0.23                | 0.46    |
| $a_{H}$            | 0.40            | 0.31   | 0.05   | 0.07   | 0.30   | 0.42    | 0.17   | 0.52                | 0.42    |
| 8                  | 2.035           | 2.0039 | 2.0036 | 2.0040 | 2.0037 | 2.0035  | 2.0034 | 2.0036              | 2.0036  |

Table S3. Continues

### 7. Computational details and results

## a) geometry optimization

Quantum-mechanical calculations were carried out using Gaussian 09 suite of programs.<sup>18</sup> Geometry optimizations were undertaken at the UB3LYP/6-31G(2d,p) level of theory for radicals and at the B3LYP/6-31G(2d,p) level for closed-shell systems using tight convergence limits and appropriate symmetry constraints ( $C_1$  or  $C_s$ ). For derivatives containing COR, OR, NHCOR, 2-thienyl and OAc at least two orientations of the functional group relative to the heterocyclic ring were tested in an attempt at location of the global minimum. Vibrational frequencies were used to characterize the nature of the stationary points and to obtain thermodynamic parameters.
For all calculations involving Br and I atoms LANL2DZdp basis set and ECP were used (available from Basis Set Exchange v 1.2.2) requested with the *gen* keyword. Selected bond lengths for radicals in series **1** are listed in Table S4.

 Table S4. Selected interatomic distances for radicals in series 1.<sup>a</sup>



|                               | N12-N1  | N1-C2  | C2-N3   | N12-C3a' | C6a–O7  | O7–C7a  | C11a-N12 |
|-------------------------------|---------|--------|---------|----------|---------|---------|----------|
|                               | /Å      | /Å     | /Å      | /Å       | /Å      | /Å      | /Å       |
| <b>1a</b> , X=H               | 1.3521  | 1.3429 | 1.3345  | 1.3883   | 1.3725  | 1.3748  | 1.4024   |
| 1b, X=COOMe                   | 1.3518  | 1.3432 | 1.3349  | 1.3876   | 1.3758  | 1.3688  | 1.4034   |
| 1c, X=CN                      | 1.35165 | 1.3443 | 1.3349  | 1.38785  | 1.3775  | 1.3669  | 1.4005   |
| <b>1d</b> , X=NO <sub>2</sub> | 1.3513  | 1.3444 | 1.3353  | 1.38745  | 1.3787  | 1.3648  | 1.4005   |
| <b>1e</b> , X=CF <sub>3</sub> | 1.3517  | 1.3438 | 1.3348  | 1.3882   | 1.37575 | 1.3699  | 1.4009   |
| 1f, X=OMe                     | 1.3527  | 1.3429 | 1.3338  | 1.3896   | 1.3697  | 1.3781  | 1.4007   |
| <b>1g</b> , X=F               | 1.3519  | 1.3435 | 1.3344  | 1.3890   | 1.3718  | 1.3759  | 1.3993   |
| 1h, X=Cl                      | 1.3518  | 1.3436 | 1.3345  | 1.3888   | 1.3737  | 1.3730  | 1.4000   |
| 1i, X=Br                      | 1.3516  | 1.3439 | 1.3349  | 1.3888   | 1.3731  | 1.3715  | 1.4002   |
| 1j, X=COMe                    | 1.3522  | 1.3436 | 1.3346  | 1.3876   | 1.3758  | 1.3685  | 1.4032   |
| <b>11</b> , X=NH <sub>2</sub> | 1.3527  | 1.3426 | 1.3338  | 1.3894   | 1.3683  | 1.3793  | 1.4010   |
| 1m, X=NHAc                    | 1.3527  | 1.3432 | 1.3338  | 1.3887   | 1.3704  | 1.3763  | 1.4009   |
| <b>1n</b> , X=I               | 1.3515  | 1.3438 | 1.3349  | 1.3885   | 1.3736  | 1.3712  | 1.4005   |
| <b>10</b> , X=OH              | 1.3527  | 1.3432 | 1.3338  | 1.3894   | 1.3694  | 1.3784  | 1.3996   |
| 1p, X=OBn                     | 1.3527  | 1.3430 | 1.3338  | 1.3897   | 1.3698  | 1.3778  | 1.4007   |
| 1q, X=Ph                      | 1.3521  | 1.3429 | 1.3345  | 1.3884   | 1.3726  | 1.3736  | 1.4027   |
| 1r, X=Thioph                  | 1.3520  | 1.3431 | 1.3344  | 1.3884   | 1.3729  | 1.3729  | 1.4026   |
| 1s, X=CCPh                    | 1.3521  | 1.3430 | 1.33475 | 1.3881   | 1.3737  | 1.37165 | 1.4027   |
| 1t, X=OAc                     | 1.3520  | 1.3433 | 1.3343  | 1.3887   | 1.3723  | 1.3749  | 1.4005   |
| 1u, X=NHCOCF <sub>3</sub>     | 1.3525  | 1.3439 | 1.3339  | 1.3886   | 1.3725  | 1.3734  | 1.3997   |
| 1v, X=NHCOOMe                 | 1.3525  | 1.3432 | 1.3338  | 1.3890   | 1.3703  | 1.3766  | 1.4006   |

<sup>*a*</sup> UB3LYP/6-31G(2d,p) level of theory in vacuum.

## b) hfcc calculations

Isotropic Fermi contact coupling constants for radicals **1** were calculated using the UCAM-B3LYP/EPR-III // UB3LYP/6-31G(2d,p) method in benzene dielectric medium requested with the SCRF(Solvent=Benzene) keyword (PCM model<sup>19</sup>). For calculations involving heavier elements two different basis sets were requested with the *gen* keyword: EPR-III for light elements (H–F) and triple zeta for heaver elements. Thus, 6-311+G(2df) basis set for Cl and S atoms and LANL2DZdp basis set and ECP for Br and I atoms. The resulting *hfcc* values are shown in Table S5 and spin densities are listed in Table S6.

**Table S5**. Calculated hyperfine coupling constants (G) for radicals in series 1 in benzene.<sup>a</sup>

| hfcc                     | 1a <sup>b</sup> | 1b    | 1c    | 1d     | 1e              | 1f    | 1g    | 1h    | 1i    | 1j    |
|--------------------------|-----------------|-------|-------|--------|-----------------|-------|-------|-------|-------|-------|
| /G                       | Н               | COOMe | CN    | $NO_2$ | CF <sub>3</sub> | OMe   | F     | Cl    | Br    | COMe  |
| a <sub>N(12)</sub>       | 6.13            | 5.98  | 5.64  | 5.55   | 5.77            | 6.19  | 5.84  | 5.83  | 5.84  | 6.02  |
| a <sub>N(1)</sub>        | 3.95            | 4.08  | 4.26  | 4.31   | 4.18            | 3.85  | 4.07  | 4.10  | 4.10  | 4.07  |
| a <sub>N(3)</sub>        | 4.16            | 4.23  | 4.28  | 4.31   | 4.25            | 4.09  | 4.20  | 4.22  | 4.22  | 4.20  |
| $a_{\mathrm{H}(4)}$      | -0.49           | -0.59 | -0.69 | -0.73  | -0.63           | -0.39 | -0.53 | -0.56 | -0.57 | -0.56 |
| a <sub>H(5)</sub>        | -0.92           | -0.85 | -0.73 | -0.70  | -0.78           | -0.93 | -0.83 | -0.81 | -0.81 | -0.88 |
| a <sub>H(6)</sub>        | -0.80           | -0.95 | -1.09 | -1.15  | -1.00           | -0.68 | -0.88 | -0.92 | -0.93 | -0.92 |
| a <sub>H(8)</sub>        | 1.05            | 0.95  | 0.92  | 0.85   | 0.96            | 1.11  | 1.03  | 1.02  | 1.02  | 0.96  |
| a <sub>H(9)</sub>        | -2.43           | -2.17 | -2.22 | -2.05  | -2.29           | -2.85 | -2.60 | -2.52 | -2.51 | -2.19 |
| a <sub>H(10)</sub>       | 1.11            | -     | -     | -      | -               | -     | -     | -     | -     | _     |
| a <sub>H(11)</sub>       | -2.46           | -2.60 | -2.68 | -2.74  | -2.59           | -2.05 | -2.39 | -2.52 | -2.55 | -2.53 |
| a <sub>H(2-0)</sub> avrg | 0.52            | 0.54  | 0.57  | 0.58   | 0.56            | 0.50  | 0.54  | 0.55  | 0.55  | 0.54  |
| a <sub>H(2-m)avrg</sub>  | -0.31           | -0.32 | -0.34 | -0.34  | -0.33           | -0.31 | -0.32 | -0.32 | -0.32 | -0.32 |
| a <sub>H(2-p)</sub>      | 0.44            | 0.46  | 0.49  | 0.50   | 0.48            | 0.42  | 0.46  | 0.46  | 0.46  | 0.46  |
| a <sub>N</sub>           | _               | -     | -0.12 | 0.21   | -               | _     | -     | -     | -     | -     |
| $a_{\rm F}$              |                 |       |       |        | -1.00<br>avg    | -     | -2.63 | -     | -     |       |

<sup>*a*</sup> CAM-B3LYP/EPR-III // B3LYP/6-31G(2d,p) in benzene dielectric medium.

# Table S5. Continues



| hfcc                      | <b>11</b> <sup>b</sup> | 1m <sup>b</sup> | 1n    | 10    | 1p    | 1q    | 1r     | 1s    | 1t    | 1u                | 1v                 |
|---------------------------|------------------------|-----------------|-------|-------|-------|-------|--------|-------|-------|-------------------|--------------------|
| /G                        | $NH_2$                 | NHAc            | Ι     | OH    | OBn   | Ph    | Thioph | PhCC  | OAc   | NH                | NH                 |
|                           |                        |                 |       |       |       |       |        |       |       | COCF <sub>3</sub> | CO <sub>2</sub> Me |
| a <sub>N(12)</sub>        | 6.16                   | 6.09            | 5.86  | 6.07  | 6.17  | 6.12  | 6.06   | 6.00  | 6.00  | 5.86              | 606                |
| a <sub>N(1)</sub>         | 3.84                   | 3.94            | 4.08  | 3.92  | 3.87  | 3.96  | 3.99   | 4.03  | 4.01  | 4.09              | 3.95               |
| a <sub>N(3)</sub>         | 4.10                   | 4.14            | 4.22  | 4.12  | 4.09  | 4.17  | 4.18   | 4.20  | 4.18  | 4.19              | 4.14               |
| a <sub>H(4)</sub>         | -0.39                  | -0.44           | -0.56 | -0.41 | -0.39 | -0.49 | -0.51  | -0.55 | -0.50 | -0.53             | -0.44              |
| a <sub>H(5)</sub>         | -0.95                  | -0.94           | -0.83 | -0.92 | -0.93 | -0.91 | -0.89  | -0.86 | -0.88 | -0.85             | -0.92              |
| a <sub>H(6)</sub>         | -0.67                  | -0.76           | -0.92 | -0.73 | -0.69 | -0.81 | -0.84  | -0.89 | -0.83 | -0.89             | -0.77              |
| a <sub>H(8)</sub>         | 1.08                   | 1.03            | 1.02  | 1.08  | 1.11  | 1.05  | 1.04   | 1.04  | 1.05  | 0.99              | 1.04               |
| a <sub>H(9)</sub>         | -2.77                  | -2.60           | -2.50 | -2.76 | -2.85 | -2.45 | -2.46  | -2.44 | -2.51 | -2.50             | -2.63              |
| a <sub>H(10)</sub>        | -                      | -               | -     | -     | -     | -     | -      | -     | -     | -                 | -                  |
| a <sub>H(11)</sub>        | -2.15                  | -2.31           | -2.56 | -2.14 | -2.05 | -2.45 | -2.51  | -2.58 | -2.40 | -2.43             | -2.30              |
| a <sub>H(2-0)</sub> avrg  | 0.50                   | 0.52            | 0.55  | 0.52  | 0.51  | 0.52  | 0.52   | 0.53  | 0.50  | 0.55              | 0.52               |
| a <sub>H(2-m)avrg</sub>   | -0.30                  | -0.31           | -0.32 | -0.30 | -0.30 | -0.31 | -0.31  | -0.31 | -0.29 | -0.32             | -0.31              |
| a <sub>H(2-p)</sub>       | 0.42                   | 0.44            | 0.46  | 0.43  | 0.42  | 0.44  | 0.44   | 0.45  | 0.45  | 0.46              | 0.44               |
| a <sub>N</sub>            | -0.35                  | 0.05            | -     | -     | -     | -     | -      | -     | -     | 0.13              | 0.04               |
| a <sub>H(10-0)</sub> avrg |                        |                 | -     |       |       | 0.18  | 0.33   | 0.13  |       | -                 | -                  |
| a <sub>H(10-m)avrg</sub>  |                        |                 | -     |       |       | -0.09 | -0.10  | -0.07 |       | -                 | -                  |
| a <sub>H(10-p)</sub>      |                        |                 | -     |       |       | 0.16  | 0.21   | 0.14  |       | -                 | -                  |

<sup>*a*</sup> CAM-B3LYP/EPR-III // B3LYP/6-31G(2d,p) in benzene dielectric medium.

Table S6. DFT calculated spin densities for radicals in series 1.<sup>a</sup>



| Spin<br>density      | <b>1</b> а<br>Н | 1b<br>COOMe  | 1c<br>CN      | 1d<br>NO <sub>2</sub> | 1e<br>CF <sub>3</sub>       | 1f<br>OMe     | <b>1g</b><br>F | <b>1h</b><br>Cl | 1k<br>Br | 1j<br>Ac       |
|----------------------|-----------------|--------------|---------------|-----------------------|-----------------------------|---------------|----------------|-----------------|----------|----------------|
| ρ <sub>N(12)</sub>   | 0.241           | 0.233        | 0.225         | 0.221                 | 0.228                       | 0.241         | 0.231          | 0.231           | 0.230    | 0.235          |
| ρ <sub>N(1)</sub>    | 0.280           | 0.290        | 0.298         | 0.302                 | 0.295                       | 0.273         | 0.286          | 0.287           | 0.288    | 0.288          |
| ρ <sub>C(2)</sub>    | -0.056          | -0.058       | -0.065        | -0.064                | -0.064                      | -0.056        | -0.060         | -0.061          | -0.058   | -0.060         |
| ρ <sub>N(3)</sub>    | 0.280           | 0.285        | 0.289         | 0.291                 | 0.286                       | 0.275         | 0.283          | 0.284           | 0.284    | 0.283          |
| $\rho_{C(3a)}$       | 0.014           | 0.014        | 0.012         | 0.008                 | 0.013                       | 0.017         | 0.012          | 0.012           | 0.010    | 0.016          |
| ρ <sub>C(4)</sub>    | 0.004           | 0.008        | 0.011         | 0.014                 | 0.009                       | -0.001        | 0.006          | 0.008           | 0.009    | 0.006          |
| ρ <sub>C(5)</sub>    | 0.029           | 0.027        | 0.022         | 0.022                 | 0.025                       | 0.031         | 0.026          | 0.026           | 0.026    | 0.028          |
| ρ <sub>C(6)</sub>    | 0.020           | 0.026        | 0.032         | 0.034                 | 0.029                       | 0.016         | 0.023          | 0.025           | 0.025    | 0.025          |
| ρ <sub>C(6a)</sub>   | 0.027           | 0.022        | 0.017         | 0.015                 | 0.018                       | 0.028         | 0.022          | 0.022           | 0.020    | 0.023          |
| ρ <sub>C(3a')</sub>  | 0.073           | 0.071        | 0.077         | 0.076                 | 0.076                       | 0.078         | 0.080          | 0.078           | 0.075    | 0.073          |
| ρ <sub>O(7)</sub>    | 0.027           | 0.026        | 0.024         | 0.023                 | 0.025                       | 0.031         | 0.027          | 0.026           | 0.026    | 0.026          |
| $\rho_{C(7a)}$       | 0.087           | 0.080        | 0.080         | 0.073                 | 0.080                       | 0.107         | 0.091          | 0.089           | 0.090    | 0.082          |
| ρ <sub>C(8)</sub>    | -0.053          | -0.045       | -0.043        | -0.041                | -0.046                      | -0.054        | -0.052         | -0.050          | -0.050   | -0.047         |
| ρ <sub>C(9)</sub>    | 0.089           | 0.077        | 0.076         | 0.069                 | 0.081                       | 0.102         | 0.096          | 0.090           | 0.087    | 0.076          |
| ρ <sub>C(10)</sub>   | -0.047          | -0.038       | -0.040        | -0.035                | -0.044                      | -0.045        | -0.047         | -0.046          | -0.044   | -0.036         |
| ρ <sub>C(11)</sub>   | 0.082           | 0.076        | 0.087         | 0.083                 | 0.078                       | 0.062         | 0.077          | 0.081           | 0.084    | 0.077          |
| ρc(11a)              | -0.065          | -0.056       | -0.062        | -0.056                | -0.060                      | -0.070        | -0.068         | -0.068          | -0.067   | -0.059         |
| ρ <sub>C(2-Ph)</sub> | 0.006           | 0.007        | 0.008         | 0.008                 | 0.007                       | 0.006         | 0.007          | 0.008           | 0.007    | 0.006          |
| $\rho_{C(2-o) avrg}$ | -0.022          | -0.023       | -0.024        | -0.024                | -0.023                      | -0.021        | -0.023         | -0.023          | -0.024   | -0.023         |
| $\rho_{C(2-m) avrg}$ | 0.011           | 0.013        | 0.013         | 0.013                 | 0.012                       | 0.011         | 0.012          | 0.012           | 0.013    | 0.012          |
| ρ <sub>C(2-p)</sub>  | -0.018          | -0.019       | -0.020        | -0.020                | -0.019                      | -0.017        | -0.018         | -0.019          | -0.019   | -0.018         |
| $\rho_x^{b}$         |                 | 0.001<br>(C) | -0.014<br>(N) | 0.005<br>(N)          | 0.003<br>(CF <sub>3</sub> ) | -0.003<br>(O) | -0.001<br>(F)  | -0.002<br>(Cl)  | -        | 0.004<br>(C=O) |

<sup>*a*</sup> CAM-B3LYP/EPR-III // B3LYP/6-31G(2d,p) in benzene dielectric medium. Densities on the hydrogen atoms summed up to the adjacent carbon atoms. <sup>*b*</sup> Density of atom at the C(10) position.

# Table S6. Continuation

| Spin                        | 11            | 1m            | 1n     | 10            | 1p            | 1q           | 1r           | 1s           | 1t           | 1u                | 1v           |
|-----------------------------|---------------|---------------|--------|---------------|---------------|--------------|--------------|--------------|--------------|-------------------|--------------|
| density                     | $NH_2$        | NHAc          | Ι      | OH            | OBn           | Ph           | Thioph       | CCPh         | OAc          | NH                | NH           |
| 5                           |               |               |        |               |               |              |              |              |              | COCF <sub>3</sub> | $CO_2Me$     |
| ρ <sub>N(12)</sub>          | 0.240         | 0.237         | 0.232  | 0.238         | 0.240         | 0.237        | 0.236        | 0.236        | 0.234        | 0.230             | 0.236        |
| ρ <sub>N(1)</sub>           | 0.274         | 0.281         | 0.287  | 0.277         | 0.272         | 0.282        | 0.284        | 0.285        | 0.284        | 0.289             | 0.281        |
| ρ <sub>C(2)</sub>           | -0.058        | -0.058        | -0.058 | -0.056        | -0.061        | -0.060       | -0.061       | -0.058       | -0.060       | -0.060            | -0.057       |
| $\rho_{N(3)}$               | 0.276         | 0.278         | 0.284  | 0.277         | 0.276         | 0.280        | 0.281        | 0.283        | 0.281        | 0.283             | 0.278        |
| $\rho_{C(3a)}$              | 0.017         | 0.018         | 0.011  | 0.014         | 0.018         | 0.017        | 0.017        | 0.014        | 0.016        | 0.015             | 0.016        |
| ρ <sub>C(4)</sub>           | 0.001         | 0.000         | 0.008  | 0.002         | 0.001         | 0.002        | 0.003        | 0.004        | 0.004        | 0.002             | 0.002        |
| ρ <sub>C(5)</sub>           | 0.033         | 0.031         | 0.027  | 0.031         | 0.032         | 0.030        | 0.029        | 0.028        | 0.028        | 0.027             | 0.032        |
| ρ <sub>C(6)</sub>           | 0.015         | 0.019         | 0.025  | 0.018         | 0.016         | 0.021        | 0.022        | 0.025        | 0.022        | 0.024             | 0.019        |
| ρ <sub>C(6a)</sub>          | 0.027         | 0.023         | 0.021  | 0.026         | 0.026         | 0.025        | 0.024        | 0.024        | 0.023        | 0.020             | 0.023        |
| ρ <sub>C(3a')</sub>         | 0.077         | 0.074         | 0.077  | 0.080         | 0.076         | 0.072        | 0.073        | 0.074        | 0.076        | 0.076             | 0.077        |
| ρ <sub>O(7)</sub>           | 0.029         | 0.028         | 0.026  | 0.029         | 0.031         | 0.027        | 0.027        | 0.027        | 0.027        | 0.026             | 0.028        |
| ρ <sub>C(7a)</sub>          | 0.101         | 0.094         | 0.088  | 0.101         | 0.105         | 0.087        | 0.088        | 0.089        | 0.091        | 0.088             | 0.092        |
| ρ <sub>C(8)</sub>           | -0.056        | -0.049        | -0.050 | -0.056        | -0.054        | -0.049       | -0.049       | -0.049       | -0.049       | -0.047            | -0.049       |
| ρ <sub>C(9)</sub>           | 0.105         | 0.090         | 0.086  | 0.098         | 0.104         | 0.091        | 0.090        | 0.086        | 0.091        | 0.085             | 0.090        |
| ρ <sub>C(10)</sub>          | -0.045        | -0.036        | -0.045 | -0.044        | -0.046        | -0.043       | -0.041       | -0.041       | -0.045       | -0.035            | -0.039       |
| ρ <sub>C(11)</sub>          | 0.067         | 0.070         | 0.085  | 0.071         | 0.057         | 0.071        | 0.074        | 0.081        | 0.074        | 0.074             | 0.070        |
| ρ <sub>C(11a)</sub>         | -0.067        | -0.063        | -0.068 | -0.071        | -0.065        | -0.058       | -0.058       | -0.064       | -0.063       | -0.061            | -0.065       |
| $\rho_{C(2-Ph)}$            | 0.006         | 0.007         | 0.007  | 0.007         | 0.005         | 0.006        | 0.006        | 0.006        | 0.007        | 0.007             | 0.006        |
| ρ <sub>C(2-0)</sub><br>avrg | -0.022        | -0.022        | -0.023 | -0.023        | -0.020        | -0.022       | -0.022       | -0.022       | -0.022       | -0.022            | -0.022       |
| ρ <sub>C(2-m)</sub><br>avrg | 0.011         | 0.012         | 0.012  | 0.012         | 0.012         | 0.019        | 0.012        | 0.011        | 0.011        | 0.011             | 0.011        |
| ρ <sub>C(2-p)</sub>         | -0.017        | -0.018        | -0.018 | -0.017        | -0.017        | -0.018       | -0.018       | -0.018       | -0.018       | -0.018            | -0.017       |
| $\rho_x^{\ b}$              | -0.005<br>(N) | 0.0002<br>(N) | -      | -0.004<br>(O) | -0.001<br>(O) | 0.008<br>(C) | 0.012<br>(C) | 0.014<br>(C) | 0.001<br>(O) | 0.005<br>(N)      | 0.001<br>(N) |

<sup>*a*</sup> CAM-B3LYP/EPR-III // B3LYP/6-31G(2d,p) in benzene dielectric medium. Densities on the hydrogen atoms summed up to the adjacent carbon atoms. <sup>*b*</sup> Density of the atom at the C(10) position.

#### c) spin delocalization

Spin delocalization parameter RDV (Radical Delocalization Value) was calculated according to the formula Eq S1:<sup>20</sup>

$$RDV = \sum_{i=1}^{n} (\rho_i)^2 \qquad \text{eq S1}$$

where spin concentration  $\rho_i$  on each heavy atoms *i* (hydrogen atoms summed up to heavy atoms) is obtained with the CAM-B3LYP/EPR-III // UB3LYP/6-31G(2d,p) method in benzene dielectric medium using the PCM model<sup>19</sup> [keywords: SCRF(Solvent=benzene)].

For the purpose of this work, the inverse is reported:  $RDV^{-1} = 1/RDV$ , since now the larger value corresponds to the greater delocalization. A graphical correlation of the calculated  $RDV^{-1}$  values with the  $\sigma_m$  substituent parameters is shown in Figure S40.

#### d) N-H bond dissociation energy and resonance stabilization

The N–H bond dissociation enthalpy (BDE) in the *leuco* form (1-*leuco*) of the radicals was calculated at the (U)B3LYP/6-311++G(2d,p) // (U)B3LYP/6-31G(2d,p) level of theory in benzene dielectric medium (requested with the SCRF(Solvent=benzene) keyword; PCM model<sup>19</sup>) as a change of enthalpy  $\Delta$ H in an isodesmic reaction with the structurally similar phenoxazin-10-yl radical (Scheme S1) and referenced to the experimental C–H *BDE* of phenoxazine in benzene (77.2±0.3 kcal mol<sup>-1</sup>).<sup>21</sup> The thermodynamic parameters for radicals 1, *leuco* forms 1-*leuco*, phenoxazin-10-yl and phenoxazine in benzene were obtained at the (U)B3LYP/6-31G(2d,p) level of theory in vacuum, as described above. Results are shown in Table S7.



Scheme S1. Isodesmic reaction to calculate the N-H BDE in 1-leuco.

Resonance stabilization energy (RSE, Table S7) was obtained by comparing BDE in **1***leuco* to that in  $CH_3$ -H (104.9 kcal mol<sup>-1</sup>)<sup>22</sup> in vacuum according to formula Eq S2.

$$RSE = BDE_{CH4} - BDE_{1-leuco}$$
 eq S2

## e) oxidation potentials for radicals 1

The oxidation potential  $E_{1/2}^{0/+1}$  for radicals **1** was calculated at the (U)B3LYP/6-31++G(2d,p) // (U)B3LYP/6-31G(2d,p) level of theory in CH<sub>2</sub>Cl<sub>2</sub> dielectric medium (single point calculations) using the following process and equation S3:

$$\mathbf{1} \to \mathbf{1}^+$$
  $E_{1/2}^{0/+1} = \Delta G_{298}/23.016 - (4.44V + 0.71V)$  eq S3

where  $\Delta G_{298}$  is the free energy change in kcal mol<sup>-1</sup>, 23.016 is conversion of kcal mol<sup>-1</sup> to eV, 4.44±0.02 V is the absolute potential of standard H<sup>+</sup>/H electrode, (SHE),<sup>23</sup> and 0.71 V is the relative standard potential of the Fc/Fc<sup>+</sup> electrode (*vs* SHE).

Thermodynamic corrections were obtained at the (U)B3LYP/6-31G(2d,p) level of theory in vacuum. The results are shown in Table S7.

**Table S7**. Bond dissociation enthalpy (BDE) for **1**-*leuco*, resonance stabilization energy (*RSE*) and radical delocalization value (RDV) in radicals **1**, and oxidation potential  $E_{1/2}^{0/+1}$  for **1** *vs* SCE.

|                          | BDE in                      | RSE in $1^{a}$          | $RDV^1$ in $1^{b}$ | $E_{1/2}^{0/+1}$ in 1 <sup>c</sup> |
|--------------------------|-----------------------------|-------------------------|--------------------|------------------------------------|
| 1-leuco                  | <b>1-leuco</b> <sup>a</sup> |                         |                    |                                    |
| 1 101100                 | /kcal mol <sup>-1</sup>     | /kcal mol <sup>-1</sup> | /1                 | /V                                 |
|                          | 68.521                      | 36.38                   | 3.8579             | -0.331                             |
|                          |                             |                         |                    |                                    |
| Ph                       |                             |                         |                    |                                    |
| <sup>н</sup> а           |                             |                         |                    |                                    |
| СООМе                    | 69.262                      | 35.64                   | 3.8915             | -0.244                             |
|                          |                             |                         |                    |                                    |
| N Ph                     |                             |                         |                    |                                    |
| нb                       |                             |                         |                    |                                    |
| CN                       | 70.561                      | 34.34                   | 3.7796             | -0.143                             |
| N N                      |                             |                         |                    |                                    |
| Ph                       |                             |                         |                    |                                    |
| н с                      |                             |                         |                    |                                    |
| NO <sub>2</sub>          | 70.865                      | 34.04                   | 3.8123             | -0.088                             |
|                          |                             |                         |                    |                                    |
| N Ph                     |                             |                         |                    |                                    |
| H d                      |                             |                         |                    |                                    |
| CF <sub>3</sub>          | 70.051                      | 34.85                   | 3.8216             | -0.192                             |
| O N                      |                             |                         |                    |                                    |
| N Ph                     |                             |                         |                    |                                    |
| <sup>H</sup> e           |                             |                         |                    |                                    |
| OMe                      | 68.114                      | 36.79                   | 3.8795             | -0.377                             |
|                          |                             |                         |                    |                                    |
| N.N.                     |                             |                         |                    |                                    |
| l → N' `Ph<br>H <b>f</b> |                             |                         |                    |                                    |
| F                        | 69 352                      | 35.55                   | 3 8038             | -0.245                             |
| o l                      | 09.332                      | 55.55                   | 5.0050             | -0.243                             |
| N N                      |                             |                         |                    |                                    |
| $H \sigma$               |                             |                         |                    |                                    |
| 5                        |                             |                         |                    |                                    |

<sup>*a*</sup> Obtained at the (U)B3LYP/6-31G(2d,p) level of theory in vacuum. <sup>*b*</sup> Obtained at CAM-B3LYP/EPR-III // B3LYP/6-31G(2d,p) in benzene dielectric medium. <sup>*c*</sup> Obtained at (U)B3LYP/6-31++G(2d,p) // (U)B3LYP/6-31G(2d,p) level of theory in CH<sub>2</sub>Cl<sub>2</sub> dielectric medium using eq S3.

Table S7. Continues.

|                 | BDE in                  | <i>RSE</i> in $1^{a}$   | $RDV^1$ in 1 <sup>b</sup> | $E_{1/2}^{0/+1}$ in <b>1</b> <sup>c</sup> |
|-----------------|-------------------------|-------------------------|---------------------------|-------------------------------------------|
| 1-leuco         | 1-leuco <sup>a</sup>    |                         |                           |                                           |
| 1 101100        | /kcal mol <sup>-1</sup> | /kcal mol <sup>-1</sup> | /1                        | /V                                        |
| CI              | 69.545                  | 35.36                   | 3.8051                    | -0.234                                    |
|                 |                         |                         |                           |                                           |
|                 |                         |                         |                           |                                           |
| H h             |                         |                         |                           |                                           |
| Br              | 69.502                  | 35.40                   | 3.8221                    | -0.246                                    |
|                 |                         |                         |                           |                                           |
|                 |                         |                         |                           |                                           |
| н i             |                         |                         |                           |                                           |
| COMe            | 69.389                  | 35.51                   | 3.8906                    | -0.235                                    |
|                 |                         |                         |                           |                                           |
|                 |                         |                         |                           |                                           |
| j j             |                         |                         |                           |                                           |
| NH <sub>2</sub> | 67.913                  | 36.99                   | 3.8763                    | -0.447                                    |
|                 |                         |                         |                           |                                           |
| N Ph            |                         |                         |                           |                                           |
| H I             |                         |                         |                           |                                           |
| NHAc            | 68.742                  | 36.16                   | 3.9221                    | -0.309                                    |
|                 |                         |                         |                           |                                           |
| N Ph            |                         |                         |                           |                                           |
| <sup>+</sup> m  |                         |                         |                           |                                           |
|                 | 69.494                  | 35.41                   | 3.8180                    | -0.253                                    |
|                 |                         |                         |                           |                                           |
| N Ph            |                         |                         |                           |                                           |
| н п             |                         |                         |                           |                                           |
| OH              | 68.343                  | 36.47                   | 3.8590                    | -                                         |
|                 |                         |                         |                           |                                           |
|                 |                         |                         |                           |                                           |
|                 |                         |                         |                           |                                           |

<sup>*a*</sup> Obtained at the (U)B3LYP/6-31G(2d,p) level of theory in vacuum. <sup>*b*</sup> Obtained at CAM-B3LYP/EPR-III // B3LYP/6-31G(2d,p) in benzene dielectric medium. <sup>*c*</sup> Obtained at (U)B3LYP/6-31++G(2d,p) // (U)B3LYP/6-31G(2d,p) level of theory in CH<sub>2</sub>Cl<sub>2</sub> dielectric medium using eq S3.

Table S7. Continues.

|                                          | BDE in                  | RSE in $1^{a}$          | $RDV^1$ in $1^b$ | $E_{1/2}^{0/+1}$ in 1 <sup>c</sup> |
|------------------------------------------|-------------------------|-------------------------|------------------|------------------------------------|
| 1-leuco                                  | 1-leuco <sup>a</sup>    |                         |                  |                                    |
| 1-10400                                  | /kcal mol <sup>-1</sup> | /kcal mol <sup>-1</sup> | /1               | /V                                 |
| OBn<br>O<br>N<br>N<br>Ph<br>H<br>Ph      | 68.156                  | 36.74                   | 3.9025           | -0.418                             |
| Ph<br>Ph<br>N<br>Ph<br>H<br>Ph<br>H<br>Q | 68.541                  | 36.36                   | 3.8948           | -0.343                             |
| Thiophen                                 | 68.686                  | 36.21                   | 3.8758           | -0.331                             |
| CCPH<br>CCPH<br>N<br>N<br>Ph<br>H<br>S   | 69.042                  | 35.86                   | 3.8346           | -0.321                             |
|                                          | 69.412                  | 35.49                   | 3.8626           | _                                  |
| NHCOCF <sub>3</sub>                      | 69.696                  | 35.20                   | 3.8809           | -0.193                             |
| NHCOOMe<br>N<br>N<br>N<br>Ph<br>H<br>V   | 68.619                  | 36.28                   | 3.9102           | -0.324                             |

<sup>*a*</sup> Obtained at the (U)B3LYP/6-31G(2d,p) level of theory in vacuum. <sup>*b*</sup> Obtained at CAM-B3LYP/EPR-III // B3LYP/6-31G(2d,p) in benzene dielectric medium. <sup>*c*</sup> Obtained at (U)B3LYP/6-31++G(2d,p) // (U)B3LYP/6-31G(2d,p) level of theory in CH<sub>2</sub>Cl<sub>2</sub> dielectric medium using eq S3.



**Figure S40**. Inverse of Radical Delocalization Value  $(RDV)^{-1}$  for series 1 *vs* Hammett substituent  $\sigma_m$  parameter. For data see Table S7.

# f) electronic excitations

Electronic excitation energies in  $CH_2Cl_2$  dielectric medium were obtained for selected derivatives 1 at the UCAM-B3LYP/6-31++G(2d,p) // UB3LYP/6-31G(2d,p) level of theory using the time-dependent TD-DFT method<sup>24</sup> supplied in the Gaussian 09 package. Solvation models in calculations were implemented with the PCM model<sup>19</sup> using the SCRF(solvent=CH2CL2) keyword. Three lowest excitation energies, classified as  $\pi \rightarrow \pi^*$ transitions, and also energy of the  $n \rightarrow \pi^*$  transition are listed in Table S8. Energies of MOs involved in low energy transitions are listed in Table S9 and their correlations with the  $\sigma_m$ substituent parameters are shown in Figures S41 and S42.

| radical                                 | π→π*<br>β-HOMO→ | $\pi \rightarrow \pi^*$<br>a-HOMO $\rightarrow$ | π →π*<br>α-HOMO→                  | n→π*<br>β-HOMO–5→                 |
|-----------------------------------------|-----------------|-------------------------------------------------|-----------------------------------|-----------------------------------|
|                                         | β-LUMO          | α-LUMO                                          | α-LUMO+1                          | β-LUMO                            |
|                                         | /nm (f)         | /nm ( <i>f</i> )                                | /nm ( <i>f</i> )                  | /nm (f)                           |
| Blatter                                 | 445.0 (0.040)   | 515.9 (0.005)                                   | 381.0 (0.010)                     | 387.7 (0.002)                     |
| <b>1a</b> , H                           | 541.2 (0.044)   | 517.3 (0.032)                                   | 411.8 (0.017)                     | 371.7 (0.001)                     |
| $\mathbf{1b}, \mathrm{CO}_2\mathrm{Me}$ | 537.8 (0.035)   | 517.4 (0.038) <sup>b</sup>                      | 442.1 (0.012)                     | 376.5 (0.001)                     |
| <b>1c</b> , CN                          | 538.2 (0.043)   | 514.5 (0.024)                                   | 446.1 (0.017)                     | 381.8 (0.001)                     |
| <b>1d</b> , NO <sub>2</sub>             | 534.1 (0.060)   | 563.6 (0.002)                                   | 481.0 (0.017)                     | 383.8 (0.001)                     |
| <b>1e</b> , CF <sub>3</sub>             | 538.5 (0.044)   | 510.2 (0.024)                                   | 422.3 (0.021)                     | 378.9 (0.001)                     |
| 1f, OMe                                 | 563.9 (0.073)   | 519.7 (0.012)                                   | 418.0 (0.019)                     | 369.4 (0.001)                     |
| <b>1g,</b> F                            | 550.0 (0.057)   | 510.9 (0.016)                                   | 412.9 (0.024)                     | 376.2 (0.001)                     |
| <b>1h</b> , Cl                          | 545.7 (0.056)   | 511.8 (0.018)                                   | 419.1 (0.022)                     | 377.2 (0.001)                     |
| <b>1i,</b> Br                           | 546.1 (0.056)   | 512.7 (0.019)                                   | 420.5 (0.022)                     | 377.4 (0.001)                     |
| 1j, COMe                                | 538.9 (0.032)   | 521.7 (0.040) <sup><i>b</i></sup>               | 455.5 (0.013)                     | 375.5 (0.001)                     |
| <b>11</b> , NH <sub>2</sub>             | 576.4 (0.080)   | 521.8 (0.10)                                    | 417.5 (0.014)                     | 369.3 (0.001)                     |
| 1m, NHAc                                | 557.2 (0.073)   | 517.4 (0.016)                                   | 416.0 (0.013)                     | 372.5 (0.001)                     |
| <b>1n,</b> I                            | 545.3 (0.056)   | 513.8 (0.021)                                   | 421.0 (0.022)                     | 377.1 (0.001)                     |
| <b>10</b> , OH                          | 563.4 (0.071)   | 516.9 (0.013)                                   | 413.8 (0.018)                     | 371.5 (0.001)                     |
| 1p, OBn                                 | 563.4 (0.075)   | 519.2 (0.012)                                   | 418.3 (0.021)                     | 369.8 (0.001) <sup><i>c</i></sup> |
| <b>1q,</b> Ph                           | 545.8 (0.063)   | 519.7 (0.025)                                   | 431.3 (0.016)                     | 372.8 (0.001)                     |
| 1r, Thioph                              | 548.7 (0.070)   | 521.8 (0.017)                                   | 473.2 (0.009) <sup><i>d</i></sup> | 373.8 (0.001)                     |
| 1s CCPh                                 | 546.0 (0.076)   | 525.2 (0.015)                                   | 486.7 (0.014) <sup>d</sup>        | 375.2 (0.001)                     |
| 1t, OAc                                 | 546.5 (0.058)   | 514.2 (0.020)                                   | 415.0 (0.020)                     | 374.3 (0.001)                     |
| 1u, NHCOCF <sub>3</sub>                 | 551.0 (0.067)   | 513.4 (0.015)                                   | 425.44 (0.013)                    | 376.4 (0.001)                     |
| 1v, NHCOOMe                             | 558.3 (0.074)   | 516.8 (0.015)                                   | 414.9 (0.014)                     | 372.7 (0.001)                     |

**Table S8**. Calculated electronic transition energies and oscillator strength values with the indicated main electronic transition.<sup>a</sup>

<sup>*a*</sup> Obtained with the TD CAM-B3LYP/6-31++G(2d,p)//UB3LYP/6-31G(2d,p) method in CH<sub>2</sub>Cl<sub>2</sub> dielectric medium. <sup>*b*</sup> Comparable contribution from  $\beta$ -HOMO  $\rightarrow \beta$ -LUMO transition. <sup>*c*</sup> Main contribution from  $\beta$ -HOMO–7 $\rightarrow \beta$ -LUMO transition. <sup>*d*</sup> Several weak transitions.

| radical                                 | $\alpha$ -HOMO, $\pi$ | $\alpha$ -LUMO, $\pi^*$ | $\alpha$ -LUMO+1, $\pi^*$ | β-HOMO–5, n | $\beta$ -HOMO, $\pi^*$ | $\beta$ -LUMO, $\pi^*$ |
|-----------------------------------------|-----------------------|-------------------------|---------------------------|-------------|------------------------|------------------------|
|                                         | /eV                   | /eV                     | /eV                       | /eV         | /eV                    | /eV                    |
| Blatter                                 | -6.243                | -0.468                  | 0.201                     | -9.026      | -7.648                 | -1.694                 |
| <b>1</b> a, H                           | -6.209                | -0.607                  | 0.111                     | -9.076      | -7.211                 | -1.834                 |
| $\mathbf{1b}, \mathrm{CO}_2\mathrm{Me}$ | -6.315                | -0.779                  | -0.531                    | -9.147      | -7.337                 | -1.927                 |
| <b>1c</b> , CN                          | -6.415                | -0.850                  | -0.597                    | -9.263      | -7.420                 | -2.031                 |
| 1d, NO <sub>2</sub>                     | -6.446                | -1.801                  | -0.715                    | -9.362      | -7.471                 | -2.077                 |
| <b>1e,</b> CF <sub>3</sub>              | -6.359                | -0.702                  | -0.228                    | -9.238      | -7.375                 | -1.974                 |
| 1f, OMe                                 | -6.176                | -0.595                  | 0.221                     | -9.073      | -7.000                 | -1.838                 |
| <b>1g,</b> F                            | -6.298                | -0.652                  | 0.042                     | -9.137      | -7.234                 | -1.937                 |
| <b>1h,</b> Cl                           | -6.316                | -0.671                  | -0.057                    | -9.147      | -7.267                 | -1.948                 |
| <b>1i,</b> Br                           | -6.317                | -0.675                  | -0.076                    | -9.145      | -7.266                 | -1.949                 |
| 1j, COMe                                | -6.317                | -0.912                  | -0.603                    | -9.119      | -7.335                 | -1932                  |
| <b>11</b> , NH <sub>2</sub>             | -6.130                | -0.571                  | 0.239                     | -9.041      | -6.821                 | -1.806                 |
| 1m, NHAc                                | -6.227                | -0.630                  | 0.069                     | -9.102      | -7.050                 | -1.878                 |
| <b>1n,</b> I                            | -6.304                | -0.671                  | -0.079                    | -9.043      | -7.246                 | -1.938                 |
| <b>10</b> , OH                          | -6.211                | -0.613                  | 0.157                     | -9.091      | -7.042                 | -1.870                 |
| 1p, OBn                                 | -6.184                | -0.601                  | 0.127                     | -8.606      | -7.015                 | -1.847                 |
| <b>1q,</b> Ph                           | -6.215                | -0.630                  | -0.216                    | -8.820      | -7.115                 | -1.854                 |
| 1r, Thioph                              | -6.231                | -0.666                  | -0.402                    | -8.872      | -7.032                 | -1.877                 |
| 1s, CCPh                                | -6.257                | -0.794                  | -0.567                    | -8.921      | -7.049                 | -1.899                 |
| 1t, OAc                                 | -6.266                | -0.639                  | 0.018                     | -9.118      | -7.216                 | -1.898                 |
| 1u, NHCOCF <sub>3</sub>                 | -6.266                | -0.696                  | -0.346                    | -9.158      | -7.206                 | -1.956                 |
| 1v, NHCO <sub>2</sub> Me                | -6.227                | -0.626                  | 0.102                     | -9.103      | -7.045                 | -1.879                 |

**Table S9**. Energies of MOs involved in low energy transitions.<sup>a</sup>

 $^a$  Obtained with the TD CAM-B3LYP/6-31++G(2d,p)// UB3LYP/6-31G(2d,p) method in  $\rm CH_2Cl_2$  dielectric medium.



**Figure S41**. Correlation of TD-DFT calculated energies of the lowest unoccupied MOs for radicals **1**. Best fitting lines:  $E_{\text{\tiny P-LUMO}} = -1.841(8) - 0.30(2) \times \sigma_{\text{m}}$ ,  $r^2 = 0.907$  (blue);  $E_{\text{\tiny e-LUMO}} = -0.614(27) - 0.32(9) \times \sigma_{\text{m}}$ ,  $r^2 = 0.43$  (red, data for NO<sub>2</sub> shown as an open circle is omitted);  $E_{\text{\tiny e-LUMO}} = -1.005(9) - 0.92(27) \times \sigma_{\text{\tiny m}}$ ,  $r^2 = 0.40$  (black).



**Figure S42**. Correlation of TD-DFT calculated energies of the highest occupied MOs for radicals **1**. Best fitting lines:  $E_{\text{\tiny P-HOMO}} = -7.009(27) - 0.70(8) \times \sigma_{\text{m}}$ ,  $r^2 = 0.814$  (blue);  $E_{\text{\tiny a-HOMO}} = -6.187(9) - 0.352(27) \times \sigma_{\text{m}}$ ,  $r^2 = 0.912$  (black).

#### g) partial output data for TD-DFT calculations

```
CAM-B3LYP/6-31++G(2d,p) TD(NStates=20) SCF=tight Geom(NoAngle, noDistance,
check)
#P guess=check SCRF(Solvent=CH2Cl2)
1a (X=H)
Excited State
                1:
                    2.293-A'
                                  2.2907 eV
                                            541.24 nm
                                                        f=0.0437
<S**2>=1.064
     77A -> 79A
                       -0.15220
     77A -> 80A
                        0.10520
     78A -> 79A
                        0.43813
     77B -> 78B
                        0.80918
     77B -> 79B
                        0.10044
 This state for optimization and/or second-order correction.
 Total Energy, E(TD-HF/TD-KS) = -970.177418364
```

| Excited Stat        | ce 2:      | 2.0     | 87-A'     | 2.3968   | eV    | 517.29   | nm    | f=0.0316 |
|---------------------|------------|---------|-----------|----------|-------|----------|-------|----------|
| <5^^2/=0.035        | 707        |         | 0 70010   |          |       |          |       |          |
| 70A                 | 79A<br>907 |         | 0.10210   |          |       |          |       |          |
| 78A ->              | 00A<br>997 |         | 0.10313   |          |       |          |       |          |
| 76R ->              | 79B        |         | 0.17700   |          |       |          |       |          |
| 70B ->              | 70B<br>78B | _       | 0.15152   |          |       |          |       |          |
| //B <b>-</b> >      | 100        | _       | 0.40055   |          |       |          |       |          |
| Excited Sta         | ate 3      | 8: 2.   | 690-A'    | 3.011    | 1 eV  | 411.76   | 5 nm  | f=0.0171 |
| <5^^2>=1.300        | 0.07       |         | 0 16265   |          |       |          |       |          |
| 73A ->              | 92A<br>027 |         | 0.10205   |          |       |          |       |          |
| 74A ->              | 02A<br>707 |         | 0.17200   |          |       |          |       |          |
| 70A ->              | 802        | _       | 0.10091   |          |       |          |       |          |
| 788 ->              | 70A        | _       | 0.23405   |          |       |          |       |          |
| 70A ->              | 802        | _       | 0.20045   |          |       |          |       |          |
| 73B ->              | 78B        |         | 0.19866   |          |       |          |       |          |
| 73B ->              | 95B        |         | 0.10485   |          |       |          |       |          |
| 74B ->              | 78B        | _       | 0.13790   |          |       |          |       |          |
| 74B ->              | 84B        |         | 0.12343   |          |       |          |       |          |
| 76B ->              | 79B        |         | 0.12583   |          |       |          |       |          |
| 77B ->              | 80B        | _       | 0.25241   |          |       |          |       |          |
| Excited Sta         | ate 4      | : 3.    | 361-A'    | 3.2320   | бeV   | 383.54   | l nm  | f=0.0086 |
| <s**2>=2.575</s**2> | 5          |         |           |          |       |          |       |          |
| 75A ->              | 85A        |         | 0.28227   |          |       |          |       |          |
| 76A ->              | 79A        | _ (     | 0.36730   |          |       |          |       |          |
| 76A ->              | 88A        |         | 0.18967   |          |       |          |       |          |
| 77A ->              | 79A        | _ (     | 0.33056   |          |       |          |       |          |
| 78A ->              | 80A        | _       | 0.13435   |          |       |          |       |          |
| 78A ->              | 88A        | (       | 0.10495   |          |       |          |       |          |
| 71B ->              | 89B        | _       | 0.11300   |          |       |          |       |          |
| 75B <b>-</b> >      | 84B        | _       | 0.16462   |          |       |          |       |          |
| 75B ->              | 85B        | _       | 0.22363   |          |       |          |       |          |
| 76B ->              | 78B        |         | 0.19985   |          |       |          |       |          |
| 76B ->              | 79B        |         | 0.36660   |          |       |          |       |          |
| 76B ->              | 89B        | _ (     | 0.20091   |          |       |          |       |          |
| 77B ->              | 78B        | _ (     | 0.15100   |          |       |          |       |          |
| 77B ->              | 79B        |         | 0.38609   |          |       |          |       |          |
| Excited Sta         | ate 5      | 5: 2.   | 096-A"    | 3.3352   | 2 eV  | 371.74   | l nm  | f=0.0014 |
| <s**2>=0.848</s**2> | 3          |         |           |          |       |          |       |          |
| 72B ->              | 78B        |         | 0.96233   |          |       |          |       |          |
| 72B ->              | 95B        | _       | 0.13389   |          |       |          |       |          |
| 1b (X=COOMe)        | )          |         |           |          |       |          |       |          |
| Excited Stat        | .e 1:      | 2.2     | 98-A'     | 2.3055   | eV    | 537.77   | nm    | f=0.0346 |
| <s**2>=1.070</s**2> | )          |         |           |          |       |          |       |          |
| 92A ->              | 95A        | _       | 0.16872   |          |       |          |       |          |
| 93A ->              | 94A        | _       | 0.46926   |          |       |          |       |          |
| 93A ->              | 95A        | (       | 0.26414   |          |       |          |       |          |
| 93A ->              | 96A        |         | 0.10604   |          |       |          |       |          |
| 92B ->              | 93B        |         | 0.73414   |          |       |          |       |          |
| This state          | for op     | otimiza | ation and | /or seco | ond-o | order co | orrec | ction.   |
| Total Energ         | ду, Е(І    | D-HF/   | TD-KS) =  | -1197.9  | 9940  | 5228     |       |          |

| Copying<br>density. | the exc        | ited       | state  | density      | for t  | his | state | as the | e 1-particle | RhoCI |
|---------------------|----------------|------------|--------|--------------|--------|-----|-------|--------|--------------|-------|
| Excited <\$**2>=0   | State<br>899   | 2:         | 2.144- | -A' :        | 2.3964 | eV  | 517.3 | 8 nm   | f=0.0377     |       |
| 93A                 | -> 94A         |            | 0.05   | 9007         |        |     |       |        |              |       |
| 93A                 | -> 95A         |            | -0.20  | 5700         |        |     |       |        |              |       |
| 93A                 | -> 96A         |            | -0.10  | 530          |        |     |       |        |              |       |
| 93A<br>01D          | ->103A         |            | -0.10  | 0141<br>1570 |        |     |       |        |              |       |
| 918                 | -> 93B         |            | -0.14  | ± 3 / U      |        |     |       |        |              |       |
| 926                 | -/ 938         |            | 0.55   | 909          |        |     |       |        |              |       |
| Excited             | State          | 3:         | 2.663- | -A'          | 2.8046 | eV  | 442.0 | 7 nm   | f=0.0123     |       |
| <s**2>=1.</s**2>    | .523           |            |        |              |        |     |       |        |              |       |
| 88A                 | -> 94A         |            | -0.12  | 2688         |        |     |       |        |              |       |
| 89A                 | -> 96A         |            | 0.13   | 3248         |        |     |       |        |              |       |
| 91A                 | -> 94A         |            | -0.13  | 3440         |        |     |       |        |              |       |
| 92A                 | -> 94A         |            | 0.21   | L690         |        |     |       |        |              |       |
| 92A                 | -> 95A         |            | 0.16   | 5807         |        |     |       |        |              |       |
| 93A                 | -> 94A         |            | 0.18   | 3879         |        |     |       |        |              |       |
| 93A                 | -> 95A         |            | 0.74   | 1999         |        |     |       |        |              |       |
| 93A                 | -> 96A         |            | -0.17  | 7383         |        |     |       |        |              |       |
| 87B                 | -> 93B         |            | -0.12  | 2780         |        |     |       |        |              |       |
| 87B                 | -> 95B         |            | 0.13   | 3037         |        |     |       |        |              |       |
| 89B                 | -> 97B         |            | -0.11  | L325         |        |     |       |        |              |       |
| 91B                 | -> 94B         |            | 0.12   | 2592         |        |     |       |        |              |       |
| 92B                 | -> 94B         |            | -0.15  | 5755         |        |     |       |        |              |       |
| 92B                 | -> 95B         |            | -0.18  | 3168         |        |     |       |        |              |       |
| Excited <\$**2>=2.  | State<br>560   | 4:         | 3.353- | -A'          | 3.2223 | eV  | 384.7 | 7 nm   | f=0.0039     |       |
| 90A                 | ->100A         |            | -0.27  | 7317         |        |     |       |        |              |       |
| 90A                 | ->105A         |            | 0.10   | 0843         |        |     |       |        |              |       |
| 91A                 | -> 94A         |            | -0.24  | 4581         |        |     |       |        |              |       |
| 91A                 | -> 95A         |            | 0.26   | 5984         |        |     |       |        |              |       |
| 91A                 | ->103A         |            | -0.21  | L685         |        |     |       |        |              |       |
| 92A                 | -> 94A         |            | -0.27  | 7290         |        |     |       |        |              |       |
| 92A                 | <b>-</b> > 95A |            | 0.22   | 2912         |        |     |       |        |              |       |
| 93A                 | -> 94A         |            | -0.10  | 0747         |        |     |       |        |              |       |
| 93A                 | -> 96A         |            | -0.14  | 4161         |        |     |       |        |              |       |
| 86B                 | ->104B         |            | 0.11   | L651         |        |     |       |        |              |       |
| 90B                 | ->100B         |            | -0.28  | 3187         |        |     |       |        |              |       |
| 91B                 | <b>-</b> > 93B |            | -0.15  | 5493         |        |     |       |        |              |       |
| 91B                 | <b>-</b> > 94B |            | 0.28   | 3428         |        |     |       |        |              |       |
| 91B                 | -> 95B         |            | -0.23  | 3782         |        |     |       |        |              |       |
| 91B                 | ->104B         |            | 0.20   | )729         |        |     |       |        |              |       |
| 92B                 | -> 93B         |            | 0.16   | 5770         |        |     |       |        |              |       |
| 92B                 | -> 94B         |            | 0.32   | 2908         |        |     |       |        |              |       |
| 92B                 | -> 95B         |            | -0.22  | 2257         |        |     |       |        |              |       |
| Excited <\$**2>=0   | State<br>847   | 5 <b>:</b> | 2.094- | -A"          | 3.2935 | eV  | 376.4 | 5 nm   | f=0.0014     |       |
| 88B                 | -> 93B         |            | 0.96   | 5081         |        |     |       |        |              |       |
| 88B                 | ->107B         |            | 0.14   | 1261         |        |     |       |        |              |       |

1c (X=CN)

Excited State 1: 2.303-A' 2.3036 eV 538.21 nm f=0.0431 <S\*\*2>=1.076 83A -> 86A 0.16703 84A -> 85A -0.36688 84A -> 86A -0.22716 80B -> 84B 0.10880 83B -> 84B 0.80432 83B -> 86B -0.10394 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1062.38566981Excited State 2: 2.173-A' 2.4098 eV 514.50 nm f=0.0235 <S\*\*2>=0.930 83A -> 86A -0.10153 84A -> 85A 0.75546 84A -> 86A 0.20519 84A -> 87A -0.19032 84A -> 92A -0.16260 82B -> 84B -0.15659 83B -> 84B 0.44287 Excited State 3: 2.671-A' 2.7795 eV 446.07 nm f=0.0166 <S\*\*2>=1.533 78A -> 95A -0.10508 80A -> 85A -0.10225 80A -> 87A -0.12611 82A -> 85A 0.13615 83A -> 85A -0.22739 83A -> 86A 0.15888 84A -> 85A -0.15160 84A -> 86A 0.76040 84A -> 87A 0.12303 78B -> 84B 0.13658 78B -> 86B 0.11049 80B -> 87B 0.12068 82B -> 85B -0.13062 83B -> 84B 0.10370 83B -> 85B 0.16027 83B -> 86B -0.18368 Excited State 4: 3.339-A' 3.2149 eV 385.65 nm f=0.0029 <S\*\*2>=2.538 81A -> 91A -0.25951 81A -> 95A 0.11228 82A -> 85A -0.21469 82A -> 86A -0.25551 82A -> 92A -0.21779 83A -> 85A -0.27331 83A -> 86A -0.24475 84A -> 85A -0.11269 84A -> 87A -0.18415 84A -> 92A -0.10143 77B -> 95B 0.11419 81B -> 91B -0.27689 82B -> 84B -0.14612 82B -> 85B 0.26754

82B -> 86B 0.23605 0.20641 82B -> 95B 83B -> 84B 0.16913 83B -> 85B 0.33033 83B -> 86B 0.23017 Excited State 5: 2.095-A" 3.2477 eV 381.76 nm f=0.0014 <S\*\*2>=0.847 0.95994 79B -> 84B 79B -> 96B 0.14870 1d  $(X=NO_2)$ Excited State 1: 2.374-A' 2.2001 eV 563.55 nm f=0.0023 <S\*\*2>=1.159 -0.13524 83A -> 90A 88A -> 90A 0.17488 0.80011 89A -> 90A 89A -> 91A -0.36715 89A -> 92A -0.19590 89A -> 94A -0.13412 88B -> 90B -0.12815 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1174.64073138 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.301-A' 2.3212 eV 534.14 nm f=0.0602 <S\*\*2>=1.074 88A -> 91A -0.13566 89A -> 90A 0.15794 89A -> 91A 0.22745 85B -> 89B 0.10112 88B -> 89B 0.85155 88B -> 90B -0.21441 88B -> 91B 0.11015 Excited State 3: 2.230-A' 2.5774 eV 481.04 nm f=0.0171 <S\*\*2>=0.994 83A -> 90A -0.10597 88A -> 90A 0.13764 89A -> 90A 0.29466 89A -> 91A 0.78688 89A -> 98A 0.16106 87B -> 89B 0.17138 88B -> 89B -0.29929 Excited State 4: 3.452-A' 2.8752 eV 431.21 nm f=0.0013 <S\*\*2>=2.729 80A -> 90A 0.65388 80A -> 94A 0.17075 80A ->104A -0.13269 84A -> 90A 0.15333 89A -> 92A -0.12073 79B -> 89B -0.19517 79B -> 90B -0.61443 79B -> 92B -0.10849 79B -> 95B -0.14096

| 79B -> 97B               |     | 0.10111             |        |          |        |    |          |
|--------------------------|-----|---------------------|--------|----------|--------|----|----------|
| 79B ->106B               |     | 0.10590             |        |          |        |    |          |
| 85B -> 90B               |     | 0.12073             |        |          |        |    |          |
| 80A <- 90A               |     | 0.16805             |        |          |        |    |          |
| 79B <- 90B               |     | -0.16290            |        |          |        |    |          |
| 150 . 500                |     | 0.10250             |        |          |        |    |          |
| Excited State            | 5:  | 2.916-A'            | 3,0841 | eV       | 402.01 | nm | f=0.0276 |
| <s**2>=1.875</s**2>      |     | 20020 11            |        |          |        |    |          |
| 80A -> 90A               |     | 0.16199             |        |          |        |    |          |
| 832 ->1042               |     | 0 10091             |        |          |        |    |          |
| 842 -> 902               |     | _0 20852            |        |          |        |    |          |
| 847 > 927                |     | 0 13144             |        |          |        |    |          |
| 94A = 92A                |     | -0.13144            |        |          |        |    |          |
| 04A => 94A               |     | 0.12002             |        |          |        |    |          |
| 86A -> 90A               |     | -0.11482            |        |          |        |    |          |
| 88A -> 90A               |     | -0.1/5/6            |        |          |        |    |          |
| 88A -> 91A               |     | -0.11/94            |        |          |        |    |          |
| 88A -> 92A               |     | 0.13988             |        |          |        |    |          |
| 89A -> 90A               |     | 0.36293             |        |          |        |    |          |
| 89A -> 92A               |     | 0.47643             |        |          |        |    |          |
| 79B -> 90B               |     | -0.14512            |        |          |        |    |          |
| 82B -> 90B               |     | -0.15630            |        |          |        |    |          |
| 83B -> 89B               |     | 0.11210             |        |          |        |    |          |
| 83B -> 90B               |     | -0.13029            |        |          |        |    |          |
| 85B -> 89B               |     | -0.22348            |        |          |        |    |          |
| 85B -> 92B               |     | -0.13280            |        |          |        |    |          |
| 85B <b>-</b> > 95B       |     | 0.11416             |        |          |        |    |          |
| 87B -> 90B               |     | -0.14023            |        |          |        |    |          |
| 88B -> 90B               |     | 0.31023             |        |          |        |    |          |
| 88B -> 92B               |     | -0.16977            |        |          |        |    |          |
|                          |     |                     |        |          |        |    |          |
| Excited State            | 6:  | 3.331-A'            | 3.2101 | eV       | 386.23 | nm | f=0.0009 |
| <s**2>=2.523</s**2>      |     |                     |        |          |        |    |          |
| 86A -> 91A               |     | 0.23341             |        |          |        |    |          |
| 86A -> 97A               |     | 0.24203             |        |          |        |    |          |
| 87A -> 91A               |     | 0.23549             |        |          |        |    |          |
| 87A -> 97A               |     | -0.10764            |        |          |        |    |          |
| 87A -> 98A               |     | -0.21226            |        |          |        |    |          |
| 88A -> 90A               |     | 0.13956             |        |          |        |    |          |
| 88A -> 91A               |     | -0.32806            |        |          |        |    |          |
| 89A -> 91A               |     | -0.10501            |        |          |        |    |          |
| 89A -> 92A               |     | 0.18230             |        |          |        |    |          |
| 86B -> 95B               |     | 0.14493             |        |          |        |    |          |
| 86B -> 97B               |     | 0.22812             |        |          |        |    |          |
| 87B -> 89B               |     | 0.13311             |        |          |        |    |          |
| 87B -> 91B               |     | 0.33908             |        |          |        |    |          |
| 87B ->100B               |     | -0.18951            |        |          |        |    |          |
| 88B -> 89B               |     | -0.19529            |        |          |        |    |          |
| 888 -> 908               |     | -0.23069            |        |          |        |    |          |
| 88B -> 91B               |     | 0.35904             |        |          |        |    |          |
|                          |     | 0.00904             |        |          |        |    |          |
| Excited State            | 7:  | 2.094-A"            | 3,2309 | eV       | 383.75 | nm | f=0.0014 |
| <s**2>=0.846</s**2>      | . • |                     | 0.2009 | <u> </u> | 555.75 |    |          |
| 84R -> 80R               |     | 0.93980             |        |          |        |    |          |
| 848 -> 010<br>848 -> 010 |     | -0 19636            |        |          |        |    |          |
|                          |     | -0.19030<br>0 19907 |        |          |        |    |          |
| 04D -/100B               |     | 0.12391             |        |          |        |    |          |

1e ( $X=CF_3$ ) Excited State 1: 2.301-A 2.3023 eV 538.52 nm f=0.0435 <S\*\*2>=1.073 0.13852 93A -> 95A 93A -> 96A -0.11920 94A -> 95A -0.40869 93B -> 94B 0.82269 93B -> 95B -0.10625 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1307.17331534Excited State 2: 2.103-A 2.4301 eV 510.20 nm f=0.0237 <S\*\*2>=0.856 94A -> 95A 0.79822 94A -> 96A 0.14928 94A -> 97A 0.12899 94A ->103A 0.17137 92B -> 94B -0.16478 93B -> 94B 0.42938 Excited State 3: 2.658-A 2.9361 eV 422.28 nm f=0.0213 <S\*\*2>=1.516 88A ->106A 0.14181 90A -> 97A -0.17479 92A -> 96A -0.10021 93A -> 96A 0.25381 94A -> 95A -0.18829 94A -> 96A 0.76147 94A -> 97A 0.14439 88B -> 94B -0.15832 90B -> 94B 0.10790 90B -> 97B -0.13090 92B -> 95B 0.10631 93B -> 96B -0.23991 Excited State 4: 3.375-A 3.2272 eV 384.19 nm f=0.0055 <S\*\*2>=2.597 0.11686 91A -> 95A 91A ->101A 0.28281 92A -> 95A -0.32971 92A -> 96A 0.10141 92A ->103A 0.22441 93A -> 95A -0.35712 94A ->103A 0.10337 87B ->104B 0.10534 91B ->101B 0.28914 92B -> 94B -0.17385 92B -> 95B 0.35441 92B ->104B -0.21302 93B -> 94B 0.15540 93B -> 95B 0.39962 5: 2.095-A Excited State 3.2722 eV 378.91 nm f=0.0014 <S\*\*2>=0.847 89B -> 94B 0.96052 89B ->108B -0.14555

1f (X=OMe)

Excited State 1: 2.233-A' 2.1987 eV 563.89 nm f=0.0731 <S\*\*2>=0.996 86A -> 87A 0.15113 83B -> 86B 0.14628 85B -> 86B 0.92169 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1084.66955492Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.123-A' 2.3856 eV 519.71 nm f=0.0121 <S\*\*2>=0.877 85A -> 87A -0.19955 86A -> 87A 0.86368 86A -> 88A 0.22041 86A -> 96A 0.17776 84B -> 86B 0.10139 85B -> 86B -0.17760 Excited State 3: 2.744-A' 2.9664 eV 417.96 nm f=0.0193 <S\*\*2>=1.632 81A -> 92A -0.12116 84A -> 87A -0.12281 85A -> 88A 0.22582 86A -> 87A -0.25101 86A -> 88A 0.69721 81B -> 86B -0.21668 83B -> 86B 0.14070 84B -> 86B 0.13204 84B -> 87B 0.11672 85B -> 87B 0.10875 85B -> 88B -0.28711 Excited State 4: 3.278-A' 3.2087 eV 386.40 nm f=0.0151 <S\*\*2>=2.437 -0.17355 82A -> 87A 82A -> 96A 0.10387 83A -> 92A -0.12558 83A -> 93A -0.20988 83A -> 96A -0.10125 84A -> 87A -0.31931 84A -> 93A -0.1151484A -> 96A 0.11316 85A -> 87A -0.28636 86A -> 88A -0.24246 79B -> 97B -0.10234 82B -> 92B 0.24233 83B -> 87B -0.16339 83B -> 97B 0.12723 84B -> 86B 0.25883 84B -> 87B 0.32761 84B -> 94B -0.14035 84B -> 97B -0.12101 85B -> 86B -0.16658 85B -> 87B 0.37811

Excited State 5: 2.099-A" 3.3565 eV 369.38 nm f=0.0013 <S\*\*2>=0.852 80B -> 86B 0.96178 1g (X=F) Excited State 1: 2.271-A' 2.2541 eV 550.04 nm f=0.0573 <S\*\*2>=1.039 81A -> 83A -0.12718 82A -> 83A 0.24177 78B -> 82B -0.13132 81B -> 82B 0.89845 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1069.40437026Excited State 2: 2.101-A' 2.4269 eV 510.87 nm f=0.0159 <S\*\*2>=0.853 81A -> 83A -0.13445 82A -> 83A 0.85201 82A -> 84A 0.22407 82A -> 92A 0.17906 80B -> 82B 0.14151 81B -> 82B -0.26713 Excited State 3: 2.709-A' 3.0029 eV 412.88 nm f=0.0235 <S\*\*2>=1.584 -0.14470 77A -> 96A 78A -> 86A 0.11538 80A -> 83A -0.11164 81A -> 84A 0.21847 81A -> 86A 0.10678 82A -> 83A -0.24247 82A -> 84A 0.72582 77B -> 82B -0.25321 78B -> 87B -0.11814 80B -> 83B 0.12328 81B -> 84B -0.25088 Excited State 4: 3.354-A' 3.2237 eV 384.60 nm f=0.0096 <S\*\*2>=2.562 79A -> 89A 0.27791 80A -> 83A -0.36300 80A -> 86A 0.11382 80A -> 92A 0.18945 81A -> 83A -0.32707 82A -> 84A -0.15254 75B -> 92B -0.11183 79B -> 87B 0.11706 79B -> 89B 0.25582 0.20458 80B -> 82B 80B -> 83B 0.36484 80B -> 92B -0.20015 81B -> 82B -0.15030 81B -> 83B 0.38536 Excited State 5: 2.096-A" 3.2954 eV 376.24 nm f=0.0014 <S\*\*2>=0.849 76B -> 82B 0.96054

76B -> 98B 0.12121 1h (X=C1)Excited State 1: 2.282-A' 2.2720 eV 545.70 nm f=0.0557 <S\*\*2>=1.052 85A -> 87A -0.13342 0.28585 86A -> 87A 82B -> 86B 0.14536 85B -> 86B 0.87820 85B -> 87B 0.10190 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1429.77511300Excited State 2: 2.103-A' 2.4228 eV 511.75 nm f=0.0179 <S\*\*2>=0.855 85A -> 87A -0.11649 86A -> 87A 0.84046 86A -> 88A 0.20666 86A -> 95A 0.17892 84B -> 86B 0.13696 85B -> 86B -0.31086 Excited State 3: 2.723-A' 2.9585 eV 419.08 nm f=0.0224 <S\*\*2>=1.604 81A -> 89A -0.10724 81A -> 99A -0.14033 82A -> 89A -0.13526 84A -> 87A -0.10539 85A -> 88A 0.25001 86A -> 87A -0.22629 86A -> 88A 0.73150 81B -> 86B -0.23394 82B -> 90B 0.14925 84B -> 87B 0.11259 85B -> 88B -0.26899 Excited State 4: 3.370-A' 3.2222 eV 384.78 nm f=0.0072 <S\*\*2>=2.590 83A -> 93A 0.27770 84A -> 87A -0.36183 84A -> 89A 0.10916 84A -> 95A 0.19206 85A -> 87A -0.33488 79B -> 96B -0.11513 83B -> 93B 0.27547 84B -> 86B 0.19312 84B -> 87B 0.36509 84B -> 96B -0.20192 85B -> 86B -0.15973 0.39057 85B -> 87B Excited State 5: 2.096-A" 3.2870 eV 377.19 nm f=0.0014 <S\*\*2>=0.848 80B -> 86B 0.96045 80B -> 90B 0.10219 80B ->101B -0.13633

Excited State 1: 2.288-A' 2.2706 eV 546.05 nm f=0.0557 <S\*\*2>=1.059 -0.13577 80A -> 82A 81A -> 82A 0.29952 77B -> 81B 0.15272 80B -> 81B 0.86979 80B -> 82B 0.10268 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -982.703252787Excited State 2: 2.103-A' 2.4183 eV 512.69 nm f=0.0190 <S\*\*2>=0.855 80A -> 82A -0.11317 81A -> 82A 0.83557 81A -> 83A 0.20209 0.17929 81A -> 90A 79B -> 81B 0.12978 80B -> 81B -0.32568 Excited State 3: 2.720-A' 2.9486 eV 420.49 nm f=0.0223 <S\*\*2>=1.599 76A -> 84A -0.12382 76A -> 94A -0.12917 77A -> 84A -0.11469 -0.10664 79A -> 82A 80A -> 83A 0.25192 81A -> 82A -0.22518 81A -> 83A 0.73228 76B -> 81B -0.22903 77B -> 85B 0.13298 79B -> 82B 0.11231 80B -> 83B -0.26886 Excited State 4: 3.371-A' 3.2134 eV 385.84 nm f=0.0071 <S\*\*2>=2.591 0.11371 77A -> 82A 78A -> 89A 0.27666 -0.35784 79A -> 82A 79A -> 84A 0.10649 79A -> 90A 0.18546 80A -> 82A -0.33116 74B -> 92B -0.1130478B -> 89B -0.27133 79B -> 81B 0.18846 79B -> 82B 0.36262 79B -> 92B -0.19944 80B -> 81B -0.16193 80B -> 82B 0.38725 3.2854 eV 377.38 nm f=0.0014 5: 2.096-A" Excited State <S\*\*2>=0.849 75B -> 81B 0.96012 75B -> 85B 0.10215 75B -> 96B 0.12697

1i (X=Br)

1j (X=COMe)

Excited State 1: 2.298-A' 2.3008 eV 538.88 nm f=0.0315 <S\*\*2>=1.070 88A -> 91A 0.18479 89A -> 90A -0.39955 89A -> 91A -0.40924 89A -> 92A 0.12172 88B -> 89B 0.70455 88B -> 91B 0.10909 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1122.77515629Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.187-A' 2.3764 eV 521.74 nm f=0.0401 <S\*\*2>=0.946 0.60090 89A -> 90A 89A -> 91A 0.33596 89A -> 92A -0.17342 89A -> 98A -0.13992 85B -> 89B 0.10491 87B -> 89B -0.13616 88B -> 89B 0.58852 88B -> 90B -0.10866 3: 2.655-A' Excited State 2.7220 eV 455.48 nm f=0.0131 <S\*\*2>=1.512 83A -> 90A 0.17037 84A -> 92A -0.11607 87A -> 90A 0.13912 88A -> 90A -0.26386 89A -> 90A -0.36003 89A -> 91A 0.68374 89A -> 92A 0.13737 83B -> 89B 0.11301 83B -> 90B -0.13735 87B -> 90B -0.12731 88B -> 89B 0.13725 88B -> 90B 0.21202 88B -> 91B 0.10588 Excited State 4: 3.336-A' 3.2177 eV 385.32 nm f=0.0037 <S\*\*2>=2.532 86A -> 96A 0.26157 86A ->100A -0.1121987A -> 90A 0.15421 87A -> 91A 0.32792 87A -> 98A 0.17457 87A ->100A -0.11939 88A -> 90A 0.17999 88A -> 91A 0.30647 89A -> 90A 0.11376 89A -> 92A 0.18235 81B ->100B -0.11182 86B -> 96B 0.27532 87B -> 89B 0.14314 87B -> 90B -0.18750

| 87B -> 91B               |         | 0.31862       |            |              |          |
|--------------------------|---------|---------------|------------|--------------|----------|
| 87B ->100B               |         | -0.19646      |            |              |          |
| 88B -> 89B               |         | -0.17186      |            |              |          |
| 88B -> 90B               |         | -0.22333      |            |              |          |
| 88B -> 91B               |         | 0.32697       |            |              |          |
| Excited State            | 5:      | 2.096-A"      | 3.3023 e   | V 375.45 nm  | f=0.0014 |
| <s**2>=0.848</s**2>      |         | 0 00455       |            |              |          |
| 82B -> 89B               |         | 0.83475       |            |              |          |
| 82B ->101B<br>84B -> 89B |         | 0.12579       |            |              |          |
|                          |         | 0.1/0/0       |            |              |          |
| 11 (X=NH <sub>2</sub> )  |         |               |            |              |          |
| Excited State            | 1:      | 2.213-A       | 2.1509 eV  | 576.42 nm    | f=0.0801 |
| <s**2>=0.975</s**2>      |         |               |            |              |          |
| 82A -> 83A               |         | 0.10062       |            |              |          |
| 79B -> 82B               |         | -0.13882      |            |              |          |
| 80B -> 82B               |         | 0.20319       |            |              |          |
| 81B -> 82B               |         | 0.91942       | , .        |              |          |
| This state for           | opt:    | imization and | /or second | -order corre | ction.   |
| Total Energy, 1          | Ξ ( TD- | -HF/TD-KS) =  | -1025.526  | 47378        |          |
| Excited State            | 2:      | 2.134-A       | 2.3760 e   | V 521.82 nm  | f=0.0100 |
| <s**2>=0.889</s**2>      |         |               |            |              |          |
| 81A -> 83A               |         | 0.23450       |            |              |          |
| 82A -> 83A               |         | 0.86504       |            |              |          |
| 82A -> 84A               |         | 0.20271       |            |              |          |
| 82A -> 92A               |         | 0.17514       |            |              |          |
| 81B -> 82B               |         | -0.13286      |            |              |          |
| Excited State            | 3:      | 2.820-A       | 2.9700 e   | V 417.45 nm  | f=0.0143 |
| <s**2>=1.739</s**2>      |         |               |            |              |          |
| 80A -> 83A               |         | 0.14680       |            |              |          |
| 81A -> 84A               |         | -0.21727      |            |              |          |
| 82A -> 83A               |         | -0.25057      |            |              |          |
| 82A -> 84A               |         | 0.60654       |            |              |          |
| 77B -> 82B               |         | -0.19326      |            |              |          |
| 79B -> 82B               |         | -0.13513      |            |              |          |
| 79B -> 83B               |         | -0.12044      |            |              |          |
| 80B -> 82B               |         | 0.30337       |            |              |          |
| 80B -> 83B               |         | -0.12589      |            |              |          |
| 81B -> 83B               |         | -0.14537      |            |              |          |
| 81B -> 84B               |         | -0.30272      |            |              |          |
| Excited State            | 4:      | 2.926-A       | 3.1171 e   | V 397.76 nm  | f=0.0117 |
| <s**2>=1.891</s**2>      |         |               |            |              |          |
| 77A -> 88A               |         | 0.11223       |            |              |          |
| 78A -> 83A               |         | 0.11405       |            |              |          |
| 79A -> 89A               |         | -0.10086      |            |              |          |
| 80A -> 83A               |         | 0.13381       |            |              |          |
| 80A -> 88A               |         | -0.13414      |            |              |          |
| 81A -> 83A               |         | 0.19869       |            |              |          |
| A88 <- A18               |         | 0.16731       |            |              |          |
| 82A -> 84A               |         | -0.33302      |            |              |          |
| //B -> 82B               |         | 0.21095       |            |              |          |
| //B -> 84B               |         | 0.11078       |            |              |          |
| /8B -> 88B               |         | -0.12143      |            |              |          |

| 79B -> 83B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.14091          |              |              |               |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|--------------|---------------|-------|
| 80B -> 82B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50431           |              |              |               |       |
| 80B -> 83B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.11369          |              |              |               |       |
| 80B -> 90B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10297           |              |              |               |       |
| 80B -> 91B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.12464          |              |              |               |       |
| 81B -> 82B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.21745          |              |              |               |       |
| 81B -> 83B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |              |               |       |
| 81B -> 88B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0 10851          |              |              |               |       |
| $\begin{array}{ccc} 01D & - & 00D \\ 01D & > & 00D \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 12604           |              |              |               |       |
| 81B -> 91B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15565           |              |              |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |              |               |       |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5: 3.164-A        | 3.3010 eV    | 375.59 nm    | f=0.0021      |       |
| (S**2>=2.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |              |              |               |       |
| 78A -> 83A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.22497          |              |              |               |       |
| 78A -> 89A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.14491           |              |              |               |       |
| 78A -> 92A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10051           |              |              |               |       |
| 79A -> 83A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10520           |              |              |               |       |
| 79A -> 88A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.13923          |              |              |               |       |
| 79A -> 89A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.18421           |              |              |               |       |
| 79A -> 92A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.12214          |              |              |               |       |
| 80A -> 83A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.31364          |              |              |               |       |
| 81A -> 83A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.12523          |              |              |               |       |
| 81A -> 84A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.12301          |              |              |               |       |
| 82A -> 92A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.11567          |              |              |               |       |
| 78B -> 82B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.10502          |              |              |               |       |
| 78B -> 88B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.23857           |              |              |               |       |
| 79B -> 82B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.25933          |              |              |               |       |
| 79B -> 83B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 21203           |              |              |               |       |
| 79B -> 03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |              |               |       |
| 000 \ 93B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.14030          |              |              |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30920           |              |              |               |       |
| 00B -> 03B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34504           |              |              |               |       |
| 80B -> 93B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.10/21          |              |              |               |       |
| 81B -> 83B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12862           |              |              |               |       |
| 81B -> 84B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.14558          |              |              |               |       |
| 81B -> 91B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11652           |              |              |               |       |
| 1m (X=NHAc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |              |              |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 0 050 0         | 0 0050       | 1-           | C 0 0 0 0 0 0 |       |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1: 2.252-A        | 2.2253 eV    | 557.15 nm    | f=0.0733      |       |
| <5**2>=1.01/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |              |              |               |       |
| 92A -> 94A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.10989          |              |              |               |       |
| 93A -> 94A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.19164           |              |              |               |       |
| 90B -> 93B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16242           |              |              |               |       |
| 91B -> 93B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15820           |              |              |               |       |
| 92B -> 93B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.89732           |              |              |               |       |
| This state for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | optimization and  | l/or second- | order correc | ction.        |       |
| Total Energy, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E(TD-HF/TD-KS) =  | -1178.1344   | 9543         |               |       |
| Copying the exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cited state densi | ty for this  | state as tl  | ne 1-particle | RhoCI |
| density.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              |              |               |       |
| Evoited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2• 2 112_A        | 2 3961 00    | 517 38 nm    | f=0 0161      |       |
| <pre>     State     State</pre> | 2. 2.112-A        | 2.3904 80    | 517.50 1111  | 1-0.0101      |       |
| $027 \qquad 0.003$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 17622           |              |              |               |       |
| $\frac{92A}{2} = \frac{94A}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.1/033          |              |              |               |       |
| 93A -> 94A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00290           |              |              |               |       |
| 93A -> 95A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1/420           |              |              |               |       |
| 93A ->103A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.18201           |              |              |               |       |
| 90B -> 93B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.10742          |              |              |               |       |
| 92B -> 93B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.22533          |              |              |               |       |

| <pre><s+*2>=1.744<br/>88a -&gt; 97A  -0.11882<br/>91A -&gt; 94A  -0.11705<br/>91A -&gt; 97A  -0.11320<br/>92A -&gt; 95A  0.26322<br/>92A -&gt; 97A  0.10491<br/>93A -&gt; 95A  0.67537<br/>93A -&gt; 95B  0.1291<br/>90B -&gt; 98B  0.11291<br/>91B -&gt; 94B  0.11661<br/>91B -&gt; 94B  0.11661<br/>91B -&gt; 94B  0.11661<br/>91B -&gt; 94B  0.11661<br/>91B -&gt; 94B  0.11661<br/>92B -&gt; 95B  -0.32016<br/>Excited State 4: 3.284-A  3.1888 eV 388.81 nm f=0.0086<br/><s**2>=2.447<br/>89A -&gt; 103A  -0.19678<br/>89A -&gt; 103A  -0.19678<br/>89A -&gt; 103A  -0.22523<br/>90A -&gt;103A  -0.10577<br/>91A -&gt; 97A  0.13943<br/>91A -&gt; 103A  -0.28856<br/>91A -&gt; 97A  0.13943<br/>91A -&gt; 103A  -0.22876<br/>85B -&gt;104B  -0.10458<br/>89B -&gt;104B  0.13554<br/>91B -&gt; 93B  0.32264<br/>91B -&gt; 93B  0.32264<br/>91B -&gt; 94B  -0.21676<br/>90B -&gt; 104B  -0.1354<br/>91B -&gt; 93B  0.32264<br/>91B -&gt; 104B  -0.10340<br/>92B -&gt; 94B  0.11734<br/>87B -&gt; 93B  0.3264<br/>91B -&gt; 109B  -0.12108<br/>In (<b>Z=1</b>)<br/>Excited State 1: 2.290-A'  2.2738 eV 545.26 nm f=0.0013<br/><s**2>=0.849<br/>86B -&gt; 933  0.11734<br/>87B -&gt; 33B  0.95463<br/>87B -&gt; 109B  -0.12108<br/>In (<b>Z=1</b>)<br/>Excited State 1: 2.290-A'  2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A  -0.13678<br/>81A -&gt; 82A  0.31527<br/>78B -&gt; 81B  0.14933<br/>80B -&gt; 81B  0.4931<br/>80B -&gt; 82A  -0.11392 </s**2></s**2></s**2></s+*2></pre>                                                                                                                                                                                                                                            | Excited State                          | 3:         | 2.824-A       | 2.9806   | eV   | 415.97     | nm  | f=0.0129 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|---------------|----------|------|------------|-----|----------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <s**2>=1.744</s**2>                    |            |               |          |      |            |     |          |
| 91A -> 94A -0.11705<br>91A -> 97A -0.11320<br>92A -> 97A 0.10491<br>93A -> 94A -0.20369<br>93A -> 95A 0.67537<br>93A -> 97B 0.11291<br>90B -> 94B 0.11661<br>91B -> 94B 0.11661<br>91B -> 94B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br>$=2.447}$<br>89A -> 94A -0.19678<br>89A -> 94A -0.19678<br>89A -> 94A -0.28556<br>91A -> 97A 0.13943<br>91A -> 103A -0.10577<br>91A -> 94A -0.28856<br>91A -> 94A -0.28856<br>91A -> 94B -0.2276<br>85B ->104B -0.1360<br>92A -> 94B -0.2307<br>90B -> 94B -0.21676<br>80B -> 104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 94B 0.10340<br>92B -> 94B 0.10340<br>92B -> 94B 0.10340<br>92B -> 94B 0.10340<br>92B -> 94B 0.12676<br>85B -> 104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 93B 0.121072<br>92B -> 94B 0.13690<br>91B -> 104B -0.10340<br>92B -> 93B 0.11734<br>87B -> 93B 0.32643<br>87B -> 109B -0.12108<br>1n (X=1)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br>$=0.849}$<br>80A -> 82A 0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 82A -0.1392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88A -> 97A                             |            | -0.11882      |          |      |            |     |          |
| 91A -> 97A -0.11320<br>92A -> 95A 0.26322<br>92A -> 97A 0.10491<br>93A -> 94A -0.20369<br>93A -> 97A -0.10869<br>84B -> 93B 0.24912<br>90B -> 94B 0.11661<br>91B -> 94B 0.11661<br>91B -> 94B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br><\$**2>=2.447<br>89A -> 103A 0.11911<br>90A ->100A -0.22523<br>90A ->103A 0.10377<br>91A -> 94A -0.28856<br>91A -> 97A 0.13943<br>91A -> 103A 0.10360<br>92A -> 94A -0.2276<br>85B ->104B -0.10458<br>89B ->100B 0.23907<br>90B -> 94B 0.21676<br>90B -> 104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 93B 0.12379<br>92B -> 94B 0.21072<br>92B -> 94B 0.21072<br>92B -> 94B 0.21072<br>92B -> 94B 0.13690<br>91B -> 104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 93B 0.11734<br>87B -> 109B -0.12108<br>In ( <b>X</b> =1)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0054<br><\$**2>=0.649<br>86B -> 93B 0.11734<br>87B -> 109B -0.12108<br>In ( <b>X</b> =1)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13679<br>78B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><5452A -0.11392 | 91A -> 94A                             |            | -0.11705      |          |      |            |     |          |
| 92A -> 95A 0.26322<br>92A -> 97A 0.10491<br>93A -> 94A -0.20369<br>93B -> 95A 0.67537<br>93A -> 97A -0.10869<br>88B -> 93B 0.11291<br>90B -> 94B 0.11661<br>91B -> 94B 0.11661<br>91B -> 94B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br><\$**2>=2.447<br>89A -> 94A -0.19678<br>89A -> 103A 0.11911<br>90A ->100A -0.22523<br>90A ->103A -0.10577<br>91A -> 94A -0.28856<br>91A -> 97A 0.13943<br>91A -> 103A 0.10360<br>92A -> 94B -0.21676<br>90B ->104B 0.13554<br>91B -> 94B 0.22307<br>90B -> 104B 0.13554<br>91B -> 94B 0.22937<br>88B -> 100B 0.23907<br>90B -> 104B 0.13554<br>91B -> 94B 0.27933<br>91B -> 94B 0.21072<br>92B -> 93B 0.32264<br>91B -> 93B 0.3246<br>91B -> 94B 0.27933<br>91B -> 94B 0.27933<br>91B -> 94B 0.21072<br>92B -> 93B 0.3246<br>91B -> 93B 0.3246<br>91B -> 93B 0.11734<br>87B -> 109B -0.121078<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 109B -0.12108<br>In ( <b>x</b> =1)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.85694<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$***>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                   | 91A -> 97A                             |            | -0.11320      |          |      |            |     |          |
| 92A -> 97A 0.10491<br>93A -> 94A -0.20369<br>93A -> 95A 0.67537<br>93A -> 97A -0.10869<br>88B -> 93B -0.24912<br>90B -> 94B 0.11291<br>91B -> 94B 0.11661<br>91B -> 94B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br>$<$^{**2>=2.447}$<br>89A -> 94A -0.19678<br>89A -> 103A 0.11911<br>90A ->100A -0.22523<br>90A ->103A -0.10577<br>91A -> 97A 0.13943<br>91A -> 103A 0.10577<br>91A -> 97A 0.13943<br>91A -> 103A 0.10360<br>92A -> 94A -0.22876<br>85B ->104B -0.10458<br>89B -> 104B 0.13554<br>91B -> 94B 0.21676<br>90B -> 104B 0.13554<br>91B -> 94B 0.21676<br>90B -> 104B 0.13690<br>91B -> 104B 0.13690<br>91B -> 104B 0.13690<br>91B -> 104B 0.13690<br>92B -> 94B 0.32264<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 93B 0.11734<br>$<5^{**2>=0.849}$<br>86B -> 93B 0.11734<br>87B -> 109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br>$<5^{**2>=1.061}$<br>80A -> 82A 0.13678<br>81A -> 82A 0.13678<br>81B -> 81B 0.14933<br>80B -> 81B 0.86694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br>$<5^{*+2>=0.854}$<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 922 _> 952                             |            | 0 26322       |          |      |            |     |          |
| $93A \rightarrow 94A - 0.20369$<br>$93A \rightarrow 95A - 0.67537$<br>$93A \rightarrow 95A - 0.10869$<br>$88B \rightarrow 93B - 0.24912$<br>$90B \rightarrow 98B - 0.11291$<br>$91B \rightarrow 94B - 0.11661$<br>$91B \rightarrow 998B - 0.10722$<br>$92B \rightarrow 95B - 0.32016$<br>Excited State 4: $3.284-A$ $3.1888 eV$ $388.81 nm$ f=0.0086<br>$=2.447$<br>$89A \rightarrow 94A - 0.19678$<br>$89A \rightarrow 910A - 0.19678$<br>$89A \rightarrow 910A - 0.22523$<br>$90A \rightarrow 1003A - 0.10577$<br>$91A \rightarrow 97A - 0.28856$<br>$91A \rightarrow 97A - 0.13943$<br>$91A \rightarrow 103A - 0.10360$<br>$92A \rightarrow 94B - 0.22676$<br>$85B \rightarrow 104B - 0.10458$<br>$89B \rightarrow 100B - 0.23907$<br>$90B \rightarrow 94B - 0.21676$<br>$90B \rightarrow 94B - 0.21676$<br>$90B \rightarrow 94B - 0.21676$<br>$91B \rightarrow 94B - 0.21676$<br>$91B \rightarrow 94B - 0.21676$<br>$91B \rightarrow 94B - 0.21676$<br>$91B \rightarrow 94B - 0.21676$<br>$92B \rightarrow 93B - 0.13600$<br>$91B \rightarrow 94B - 0.21676$<br>$91B \rightarrow 94B - 0.121072$<br>$92B \rightarrow 94B - 0.121072$<br>$92B \rightarrow 93B - 0.121072$<br>$92B \rightarrow 93B - 0.121072$<br>$92B \rightarrow 93B - 0.121072$<br>$92B \rightarrow 94B - 0.121072$<br>$92B \rightarrow 94B - 0.12108$<br><b>In (x=1)</b><br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564 $<5^{*+2}>=0.849$<br>$80A \rightarrow 82A - 0.13577$<br>$78B \rightarrow 81B - 0.4933$<br>$80B \rightarrow 81B - 0.85694$<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208 $<5^{*+2}>=0.854$<br>$80A \rightarrow 82A - 0.11392$                                                                                                                                                                                                                                                                                                                                                                                                       | 92A = 93A                              |            | 0.20322       |          |      |            |     |          |
| 93A -> 95A<br>> 95A -> 95A<br>> 95A -> 95A<br>> 95B<br>> 93B -> 95B<br>> 93B<br>> 94B<br>> 94B<br>0.11291<br>91B -> 94B<br>0.11291<br>91B -> 94B<br>0.11661<br>91B -> 94B<br>0.10722<br>92B -> 95B<br>-0.32016<br>Excited State 4: 3.284-A<br>3.1888 eV 388.81 nm f=0.0086<br><\$**2>=2.447<br>89A -> 94A<br>-0.19678<br>89A -> 103A<br>0.11911<br>90A ->100A<br>-0.22523<br>90A ->103A<br>0.11911<br>90A ->100A<br>-0.22523<br>90A ->103A<br>0.11911<br>90A ->103A<br>0.10577<br>91A -> 94A<br>-0.28856<br>91A -> 94A<br>-0.28856<br>91A -> 94A<br>-0.29276<br>85B ->104B<br>-0.10458<br>89B ->1000<br>0.23907<br>90B -> 94B<br>-0.21676<br>90B -> 94B<br>0.32264<br>91B -> 93B<br>0.32264<br>91B -> 93B<br>0.32264<br>91B -> 94B<br>0.13690<br>91B ->104B<br>-0.10340<br>92B -> 94B<br>0.13690<br>91B ->104B<br>-0.10340<br>92B -> 93B<br>0.21072<br>92B -> 94B<br>0.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B<br>0.11734<br>87B -> 93B<br>0.95463<br>87B ->109B<br>-0.12108<br>1n (X=I)<br>Excited State 1: 2.290-A'<br>2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A<br>0.13678<br>81A -> 82A<br>0.13678<br>81A -> 82A<br>0.13678<br>81A -> 82A<br>0.13678<br>81A -> 82A<br>0.31527<br>78B -> 81B<br>0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A'<br>2.4131 eV 513.79 nm f=0.0208<br><\$*80A -> 82A<br>0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92A => 97A                             |            | 0.10491       |          |      |            |     |          |
| 93A -> 95A 0.0/53/<br>93B -> 97A -0.10869<br>88B -> 93B 0.11291<br>91B -> 94B 0.11661<br>91B -> 95B 0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br><\$**2>=2.447<br>89A -> 94A -0.19678<br>89A -> 103A 0.11911<br>90A ->103A 0.2523<br>90A ->103A 0.10577<br>91A -> 94A -0.28856<br>91A -> 94A -0.29276<br>85B ->104B 0.13943<br>91A ->103A 0.10360<br>92A -> 94A -0.29276<br>85B ->104B 0.21676<br>90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 93B 0.21072<br>92B -> 94B 0.11734<br>87B -> 93B 0.95463<br>87B ->109B -0.12108<br><b>In (X=I)</b><br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A 0.31527<br>78B -> 81B 0.43933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93A -> 94A                             |            | -0.20369      |          |      |            |     |          |
| 93A -> 97A -0.10869<br>88B -> 93B 0.24912<br>90B -> 98B 0.11291<br>91B -> 94B 0.11661<br>91B -> 94B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br><\$**2>=2.447<br>89A -> 103A 0.11911<br>90A ->103A 0.10577<br>91A -> 94A -0.22523<br>90A ->103A 0.10370<br>92A -> 94A -0.22856<br>91A -> 97A 0.13943<br>91A -> 103B 0.10360<br>92A -> 94A -0.29276<br>85B ->104B -0.10458<br>89B ->100B 0.23907<br>90B -> 94B 0.21676<br>90B -> 94B 0.21676<br>91B -> 94B 0.21676<br>91B -> 94B 0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 109B -0.12108<br>1n (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A 0.31527<br>78B -> 81B 0.4357<br>78B -> 81B 0.4353<br>80B -> 81B 0.4353<br>80B -> 81B 0.4357<br>78B -> 81B 0.4353<br>80B -> 81B 0.4357<br>78B -> 81B 0.4353<br>80B -> 81B 0.43537<br>80B -> 81B 0.4357<br>78B -> 81B 0.4353<br>80B -> 81B 0.4357<br>78B -> 81B 0.4353<br>80B -> 81B 0.4357<br>78B -> 81B 0.4357<br>78B -> 81B 0.4357<br>78B -> 81B 0.4353<br>80B -> 81B 0.43524<br>50.544<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93A -> 95A                             |            | 0.67537       |          |      |            |     |          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93A -> 97A                             |            | -0.10869      |          |      |            |     |          |
| 90B -> 94B 0.11291<br>91B -> 94B 0.11661<br>91B -> 94B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br>< \$ * 2 > 2.447<br>89A -> 103A 0.11911<br>90A -> 100A -0.22523<br>90A -> 103A 0.10577<br>91A -> 94A -0.28856<br>91A -> 97A 0.13943<br>91A -> 103A 0.10360<br>92A -> 94A -0.29276<br>85B -> 104B 0.23907<br>90B -> 94B -0.21676<br>90B -> 94B 0.2264<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 94B 0.10340<br>92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br>< \$ * 2 > 0.68<br>86B -> 93B 0.11734<br>87B -> 93B 0.52663<br>87B ->109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br>< \$ * 2 > 0.65694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br>< \$ * 2 > 0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88B -> 93B                             |            | -0.24912      |          |      |            |     |          |
| 91B -> 94B 0.11661<br>91B -> 96B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br>$< S^{**2} > 2.447$<br>89A -> 94A -0.19678<br>89A -> 103A 0.11911<br>90A ->103A -0.10577<br>91A -> 94A -0.28856<br>91A -> 94A -0.29276<br>85B ->104B -0.10458<br>89B ->100B 0.23907<br>90B -> 94B -0.21676<br>90B -> 94B 0.21676<br>90B -> 94B 0.21676<br>90B -> 94B 0.21676<br>90B -> 94B 0.21676<br>90B -> 94B 0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br>$< S^{**2} > = 0.849$<br>86B -> 93B 0.11734<br>87B -> 109B -0.12108<br>1n (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br>$< S^{**2} > 1.061$<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br>$< S^{**2} > 0.854$<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90B -> 98B                             |            | 0.11291       |          |      |            |     |          |
| 91B -> 98B 0.10722<br>92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br>$< 5^{**2>=2.447}$<br>89A -> 103A 0.11911<br>90A ->103A 0.10577<br>91A -> 94A -0.28556<br>91A -> 94A -0.28566<br>91A -> 97A 0.13943<br>91A ->103A 0.10360<br>92A -> 94B -0.21676<br>85B ->104B 0.13554<br>91B -> 94B 0.22976<br>86B -> 104B 0.13554<br>91B -> 94B 0.2264<br>91B -> 94B 0.13690<br>91B -> 104B 0.121072<br>92B -> 93B 0.21072<br>92B -> 93B 0.11734<br>87B -> 93B 0.11734<br>87B -> 109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br>$< 5^{**2>=1.061}$<br>80A -> 82A 0.31527<br>78B -> 81B 0.4933<br>80B -> 81B 0.4933<br>80B -> 81B 0.4933<br>80B -> 81B 0.49594<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br>$< 5^{*2>=0.854}$<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91B -> 94B                             |            | 0.11661       |          |      |            |     |          |
| 92B -> 95B -0.32016<br>Excited State 4: 3.284-A 3.1888 eV 388.81 nm f=0.0086<br><\$**2>=2.447<br>89A -> 94A -0.19678<br>89A ->103A 0.11911<br>90A ->100A -0.22523<br>90A ->103A 0.28856<br>91A -> 97A 0.13943<br>91A -> 97A 0.13943<br>91A -> 104B -0.29276<br>85B ->104B -0.21676<br>90B -> 104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 96B -0.13690<br>91B -> 104B 0.13690<br>91B -> 104B 0.13640<br>92B -> 93B 0.21072<br>92B -> 93B 0.32464<br>86B -> 93B 0.11734<br>87B -> 0.8406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 0.12108<br>1n (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91B -> 98B                             |            | 0.10722       |          |      |            |     |          |
| Excited State 4: $3.284-A$ $3.1888 eV$ $388.81 nm$ f=0.0086<br>$< S^{**2} >= 2.447$<br>89A -> 94A -0.19678<br>89A -> 103A 0.11911<br>90A -> 100A -0.22523<br>90A -> 103A -0.10577<br>91A -> 97A 0.13943<br>91A -> 103A 0.10360<br>92A -> 94A -0.29276<br>85B -> 104B -0.10458<br>89B -> 100B 0.23907<br>90B -> 94B 0.21676<br>91B -> 93B 0.32264<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.21072<br>92B -> 93B -0.21072<br>92B -> 93B 0.38406<br>Excited State 5: 2.097-A $3.3289 eV 372.45 nm$ f=0.0013<br>$< S^{**2} >= 0.849$<br>86B -> 93B 0.11734<br>87B -> 109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br>$< S^{**2} >= 1.061$<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>7B -> 81B 0.4573<br>81A -> 82A 0.31527<br>7B -> 81B 0.45694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br>$< S^{**2} >= 0.854$<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92B -> 95B                             |            | -0.32016      |          |      |            |     |          |
| <pre>Sites the first fir</pre>                                                                                                                                                                                | Excited State                          | 4.         | 3.284-A       | 3,1888   | ۹V   | 388.81     | nm  | f=0.0086 |
| <pre>SU 2-2.447<br/>89A -&gt; 94A -0.19678<br/>89A -&gt;103A 0.11911<br/>90A -&gt;100A -0.22523<br/>90A -&gt;103A -0.10577<br/>91A -&gt; 94A -0.28856<br/>91A -&gt; 97A 0.13943<br/>91A -&gt;103A 0.10360<br/>92A -&gt; 94A -0.29276<br/>85B -&gt;104B -0.10458<br/>89B -&gt;104B 0.23907<br/>90B -&gt; 94B -0.21676<br/>90B -&gt;104B 0.13554<br/>91B -&gt; 94B 0.27933<br/>91B -&gt; 98B -0.13690<br/>91B -&gt;104B -0.10340<br/>92B -&gt; 93B 0.121072<br/>92B -&gt; 94B 0.38406<br/>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br/>&lt;\$**2&gt;=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/>&lt;\$**2&gt;=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82B 0.31527<br/>78B -&gt; 81B 0.35694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/>&lt;\$**2&gt;=0.854<br/>80A -&gt; 82A -0.11392</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $< 8 \times 2 = 2$ //7                 | 1.         | 5.204-11      | 5.1000   | CV   | 500.01     |     | 1-0.0000 |
| 03A → 103A       0.11911         90A → 103A       0.11911         90A → 103A       0.10577         91A → 94A       -0.28856         91A → 97A       0.13943         91A → 103A       0.10360         92A → 94A       -0.29276         85B → 104B       -0.10458         89B → 100B       0.23907         90B → 94B       -0.21676         90B → 94B       0.21676         90B → 94B       0.27933         91B → 98B       -0.13690         91B → 94B       0.21072         92B → 94B       0.38406         Excited State       5: 2.097-A       3.3289 eV         86B → 93B       0.11734         87B → 93B       0.95463         87B → 93B       0.95463         87B → 93B       0.95463         81A → 82A       -0.13678         81A → 82A       -0.13678         81A → 82A       0.31527         78B → 81B       0.14933         80B → 81B       0.85694         This state for optimization and/or second-order correction.         Total Energy, E(TD-HF/TD-KS) = -980.916260976         Excited State       2: 2.102-A'       2.4131 eV       513.79 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |            | 0 10678       |          |      |            |     |          |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00A -> 94A                             |            | -0.19070      |          |      |            |     |          |
| 90A ->100A ->100A -0.22523<br>90A ->100A ->0.10577<br>91A -> 94A -0.28856<br>91A -> 97A 0.13943<br>91A ->103A 0.10360<br>92A -> 94A -0.29276<br>85B ->104B 0.23907<br>90B -> 94B -0.21676<br>90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.21072<br>92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 93B 0.95463<br>87B ->109B -0.12108<br>1n (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89A ->103A                             |            | 0.11911       |          |      |            |     |          |
| 90A ->103A -0.10577<br>91A -> 94A -0.28856<br>91A -> 97A 0.13943<br>91A ->103A 0.10360<br>92A -> 94A -0.29276<br>85B ->104B -0.10458<br>89B ->100B 0.23907<br>90B -> 94B -0.21676<br>90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 98B -0.13690<br>91B ->104B -0.10340<br>92B -> 93B 0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 109B -0.12108<br>1n (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90A ->100A                             |            | -0.22523      |          |      |            |     |          |
| 91A -> 94A -0.28856<br>91A -> 97A 0.13943<br>91A ->103A 0.10360<br>92A -> 94A -0.29276<br>85B ->104B 0.23907<br>90B -> 94B -0.21676<br>90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.27933<br>91B -> 94B 0.10340<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90A ->103A                             |            | -0.10577      |          |      |            |     |          |
| 91A -> 97A 0.13943<br>91A ->103A 0.10360<br>92A -> 94A -0.29276<br>85B ->104B 0.23907<br>90B -> 94B -0.21676<br>90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.27933<br>91B -> 94B 0.10340<br>92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>1n (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 91A -> 94A                             |            | -0.28856      |          |      |            |     |          |
| 91A ->103A 0.10360<br>92A -> 94A -0.29276<br>85B ->104B -0.10458<br>89B ->100B 0.23907<br>90B -> 94B -0.21676<br>90B -> 94B 0.27933<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 93B 0.95463<br>87B ->109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91A -> 97A                             |            | 0.13943       |          |      |            |     |          |
| 92A -> 94A -0.29276<br>85B ->104B -0.10458<br>89B ->100B 0.23907<br>90B -> 94B -0.21676<br>90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.13690<br>91B ->104B -0.10340<br>92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 93B 0.95463<br>87B ->109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91A ->103A                             |            | 0.10360       |          |      |            |     |          |
| <pre>85B -&gt;104B -0.10458<br/>89B -&gt;100B 0.23907<br/>90B -&gt; 94B -0.21676<br/>90B -&gt;104B 0.13554<br/>91B -&gt; 93B 0.32264<br/>91B -&gt; 94B 0.27933<br/>91B -&gt; 94B 0.27933<br/>91B -&gt; 94B 0.13690<br/>92B -&gt; 93B -0.21072<br/>92B -&gt; 94B 0.38406<br/>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br/><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92A -> 94A                             |            | -0.29276      |          |      |            |     |          |
| <pre>89B -&gt;100B 0.23907<br/>90B -&gt; 94B -0.21676<br/>90B -&gt;104B 0.13554<br/>91B -&gt; 93B 0.32264<br/>91B -&gt; 94B 0.27933<br/>91B -&gt; 94B 0.13690<br/>91B -&gt;104B -0.10340<br/>92B -&gt; 93B -0.21072<br/>92B -&gt; 94B 0.38406<br/>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br/><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85B ->104B                             |            | -0.10458      |          |      |            |     |          |
| 90B -> 94B -0.21676<br>90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.13690<br>91B ->104B -0.10340<br>92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89B ->100B                             |            | 0.23907       |          |      |            |     |          |
| 90B ->104B 0.13554<br>91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 94B 0.13690<br>91B ->104B -0.10340<br>92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 93B 0.95463<br>87B ->109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90B -> 94B                             |            | -0.21676      |          |      |            |     |          |
| 91B -> 93B 0.32264<br>91B -> 94B 0.27933<br>91B -> 98B -0.13690<br>91B ->104B -0.10340<br>92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><\$**2>=0.849<br>86B -> 93B 0.11734<br>87B -> 93B 0.95463<br>87B ->109B -0.12108<br>In (X=I)<br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90B ->104B                             |            | 0.13554       |          |      |            |     |          |
| <pre>91B -&gt; 94B 0.27933 91B -&gt; 94B 0.27933 91B -&gt; 98B -0.13690 91B -&gt;104B -0.10340 92B -&gt; 93B -0.21072 92B -&gt; 94B 0.38406 Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013 <s**2>=0.849</s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91B -> 93B                             |            | 0.32264       |          |      |            |     |          |
| <pre>91B -&gt; 98B -0.13690 91B -&gt; 98B -0.13690 91B -&gt; 104B -0.10340 92B -&gt; 93B -0.21072 92B -&gt; 94B 0.38406 Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013 <s**2>=0.849</s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91B -> 94B                             |            | 0 27933       |          |      |            |     |          |
| <pre>91B -&gt; 90B -0.10390<br/>91B -&gt;104B -0.10340<br/>92B -&gt; 93B -0.21072<br/>92B -&gt; 94B 0.38406<br/>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br/><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |            | 0.12600       |          |      |            |     |          |
| <pre>91B -&gt;104B -0.10340<br/>92B -&gt; 93B -0.21072<br/>92B -&gt; 94B 0.38406<br/>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br/><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91B => 90B                             |            | -0.13090      |          |      |            |     |          |
| 92B -> 93B -0.21072<br>92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 91B =>104B                             |            | -0.10340      |          |      |            |     |          |
| 92B -> 94B 0.38406<br>Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92B -> 93B                             |            | -0.21072      |          |      |            |     |          |
| Excited State 5: 2.097-A 3.3289 eV 372.45 nm f=0.0013<br><s**2>=0.849<br/>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92B -> 94B                             |            | 0.38406       |          |      |            |     |          |
| <pre><s**2>=0.849     86B -&gt; 93B    0.11734     87B -&gt; 93B    0.95463     87B -&gt;109B    -0.12108  In (X=I)  Excited State 1: 2.290-A'    2.2738 eV 545.26 nm f=0.0564 <s**2>=1.061     80A -&gt; 82A     -0.13678     81A -&gt; 82A     0.31527     78B -&gt; 81B     0.14933     80B -&gt; 81B     0.85694 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -980.916260976  Excited State 2: 2.102-A'    2.4131 eV 513.79 nm f=0.0208 <s**2>=0.854     80A -&gt; 82A     -0.11392 </s**2></s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Excited State                          | 5 <b>:</b> | 2.097-A       | 3.3289   | eV   | 372.45     | nm  | f=0.0013 |
| <pre>86B -&gt; 93B 0.11734<br/>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <s**2>=0.849</s**2>                    |            |               |          |      |            |     |          |
| <pre>87B -&gt; 93B 0.95463<br/>87B -&gt;109B -0.12108<br/>In (X=I)<br/>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br/><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86B -> 93B                             |            | 0.11734       |          |      |            |     |          |
| 87B ->109B -0.12108<br><b>In (X=I)</b><br>Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><s**2>=1.061<br/>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87B -> 93B                             |            | 0.95463       |          |      |            |     |          |
| <pre>ln (X=I) Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564 <s**2>=1.061         80A -&gt; 82A</s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87B ->109B                             |            | -0.12108      |          |      |            |     |          |
| Excited State 1: 2.290-A' 2.2738 eV 545.26 nm f=0.0564<br><\$**2>=1.061<br>80A -> 82A -0.13678<br>81A -> 82A 0.31527<br>78B -> 81B 0.14933<br>80B -> 81B 0.85694<br>This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><\$**2>=0.854<br>80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>1n (X=I)</pre>                    |            |               |          |      |            |     |          |
| <pre>State 1. 2.290-A 2.2738 eV 545.28 hm 1-0.0364 <s**2>=1.061 80A -&gt; 82A -0.13678 81A -&gt; 82A 0.31527 78B -&gt; 81B 0.14933 80B -&gt; 81B 0.85694 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -980.916260976 Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208 <s**2>=0.854 80A -&gt; 82A -0.11392</s**2></s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fraited State                          | 1.         | 2 200 11      | 2 2220   | 017  | 515 26     | m   | f=0 0564 |
| <pre>80A -&gt; 82A -0.13678<br/>81A -&gt; 82A 0.31527<br/>78B -&gt; 81B 0.14933<br/>80B -&gt; 81B 0.85694<br/>This state for optimization and/or second-order correction.<br/>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br/>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br/><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre></pre>                            | <b>+</b> • | 2.290-A       | 2.2/50   | C۷   | J-J.20 III |     | 1-0.0304 |
| <pre>sour -&gt; s2A -0.13078 81A -&gt; 82A 0.31527 78B -&gt; 81B 0.14933 80B -&gt; 81B 0.85694 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -980.916260976 Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208 <s**2>=0.854 80A -&gt; 82A -0.11392</s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10U. 1-77CV                            |            | 0 12670       |          |      |            |     |          |
| <pre>81A -&gt; 82A 0.3152/ 78B -&gt; 81B 0.14933 80B -&gt; 81B 0.85694 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -980.916260976 Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208 <s**2>=0.854 80A -&gt; 82A -0.11392</s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma \cup A \rightarrow \delta Z A$ |            | -0.130/8      |          |      |            |     |          |
| <pre>/8B -&gt; 81B 0.14933 80B -&gt; 81B 0.85694 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -980.916260976 Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208 <s**2>=0.854 80A -&gt; 82A -0.11392</s**2></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81A -> 82A                             |            | 0.31527       |          |      |            |     |          |
| 80B -> 81B       0.85694         This state for optimization and/or second-order correction.         Total Energy, E(TD-HF/TD-KS) = -980.916260976         Excited State       2: 2.102-A'       2.4131 eV       513.79 nm       f=0.0208 <s**2>=0.854       80A -&gt; 82A       -0.11392</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /8B -> 81B                             |            | 0.14933       |          |      |            |     |          |
| This state for optimization and/or second-order correction.<br>Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80B -> 81B                             |            | 0.85694       | ,        | -    |            |     |          |
| Total Energy, E(TD-HF/TD-KS) = -980.916260976<br>Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | This state for                         | opti       | Imization and | /or seco | nd-o | order cor  | rec | tion.    |
| Excited State 2: 2.102-A' 2.4131 eV 513.79 nm f=0.0208<br><s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy, E                        | E(TD-      | -HF/TD-KS) =  | -980.91  | 626  | 0976       |     |          |
| <s**2>=0.854<br/>80A -&gt; 82A -0.11392</s**2>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Excited State                          | 2:         | 2.102-A'      | 2.4131   | eV   | 513.79     | nm  | f=0.0208 |
| 80A -> 82A -0.11392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <s**2>=0.854</s**2>                    |            |               |          |      |            |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80A -> 82A                             |            | -0.11392      |          |      |            |     |          |

| 81A -> 8                       | 82A         | 0.83045                      |          |      |          |      |          |
|--------------------------------|-------------|------------------------------|----------|------|----------|------|----------|
| 81A -> 8                       | 83A         | 0.19493                      |          |      |          |      |          |
| 81A -> 9                       | 91A         | 0.17971                      |          |      |          |      |          |
| 78B -> 8                       | 81B         | -0.11335                     |          |      |          |      |          |
| 80B -> 8                       | 81B         | -0.34212                     |          |      |          |      |          |
|                                |             |                              |          |      |          |      |          |
| Excited Stat                   | te 3:       | 2.720-A'                     | 2.9451   | eV   | 420.98   | nm   | f=0.0218 |
| <s**2>=1.599</s**2>            |             |                              |          |      |          |      |          |
| 75A -> 8                       | 85A         | -0.14612                     |          |      |          |      |          |
| 75A -> 9                       | 94A         | -0.10972                     |          |      |          |      |          |
| 79A -> 8                       | 82A         | -0.10287                     |          |      |          |      |          |
| 80A -> 8                       | 83A         | 0.25211                      |          |      |          |      |          |
| 81A -> 8                       | 82A         | -0.22006                     |          |      |          |      |          |
| 81A -> 8                       | <br>83A     | 0.73307                      |          |      |          |      |          |
| 76B -> 8                       | 81B         | -0.21588                     |          |      |          |      |          |
| 76B -> 8                       | 86B         | 0 10456                      |          |      |          |      |          |
| 70B -> 8                       | 86B         | 0 10152                      |          |      |          |      |          |
| 700 -> 0                       | 20D<br>20D  | 0 10717                      |          |      |          |      |          |
| 79B -> 0                       |             | 0.10/1/                      |          |      |          |      |          |
| 008 -2 0                       | 54D         | -0.2/142                     |          |      |          |      |          |
| Funited Ctat                   |             | 2 270 1                      | 2 2122   | o.17 | 205 05   |      | £-0 0070 |
| Excited Stat                   | te 4:       | 3.3/0-A                      | 3.2133   | ev   | 382.85   | nm   | I=0.00/0 |
| <5**2>=2.589                   |             | 0 10000                      |          |      |          |      |          |
| 77A -> 8                       | BZA         | 0.19380                      |          |      |          |      |          |
| 77A -> 9                       | 91A         | -0.12166                     |          |      |          |      |          |
| 78A -> 8                       | 89A         | -0.26543                     |          |      |          |      |          |
| 78A -> 9                       | 91A         | -0.11735                     |          |      |          |      |          |
| 79A -> 8                       | 82A         | -0.32771                     |          |      |          |      |          |
| 79A -> 9                       | 91A         | 0.14690                      |          |      |          |      |          |
| 80A -> 8                       | 82A         | -0.31903                     |          |      |          |      |          |
| 73B -> 9                       | 93B         | -0.10328                     |          |      |          |      |          |
| 77B -> 8                       | 81B         | 0.10459                      |          |      |          |      |          |
| 77B -> 8                       | 89B         | 0.26306                      |          |      |          |      |          |
| 78B -> 8                       | 82B         | -0.15427                     |          |      |          |      |          |
| 78B -> 8                       | 89B         | 0.10499                      |          |      |          |      |          |
| 78B -> 9                       | 93B         | 0.12713                      |          |      |          |      |          |
| 79B -> 8                       | 81B         | 0.17784                      |          |      |          |      |          |
| 79B -> 8                       | 82B         | 0.34327                      |          |      |          |      |          |
| 79B -> 9                       | 93B         | -0.17507                     |          |      |          |      |          |
| 80B -> 8                       | 81B         | -0.16701                     |          |      |          |      |          |
| 80B -> 8                       | 82B         | 0.38084                      |          |      |          |      |          |
|                                |             |                              |          |      |          |      |          |
| Excited Stat                   | te 5:       | 2.096-A"                     | 3.2882   | eV   | 377.05   | nm   | f=0.0013 |
| <s**2>=0.848</s**2>            |             |                              |          |      |          |      |          |
| 74B -> 8                       | 81B         | 0.92803                      |          |      |          |      |          |
| 74B -> 9                       | 96B         | 0.10721                      |          |      |          |      |          |
| 75B -> 8                       | 81B         | -0.24709                     |          |      |          |      |          |
|                                |             |                              |          |      |          |      |          |
| 10 (X=OH)                      |             |                              |          |      |          |      |          |
|                                |             |                              |          |      |          |      |          |
| Excited State                  | <u>ا</u> د  | 2.237-A'                     | 2,2007   | eV   | 563.38 7 | าฑ   | f=0.0709 |
| <pre><s**2>=1 001</s**2></pre> |             | 2.207 11                     | 2.2007   |      | 505.50 1 |      | 1 0.0705 |
| 812 _> 9                       | 83 <b>A</b> | -0.10099                     |          |      |          |      |          |
| 877 -> C                       | 832         | 0 15665                      |          |      |          |      |          |
| 70p \ 0                        | 82B         |                              |          |      |          |      |          |
| ۲ طور<br>۱۹۵۵ - ۹۱۵            | 82B         | -0.1404/<br>0 00150          |          |      |          |      |          |
| OID -2 C                       | for ont:    | mization and                 | lor goog | nd c | rder act | rraa | tion     |
| THIS SLALE I                   |             | mizacion anu,<br>up/mp vei - | 101 Seco | 0221 | LUGT COL | LTec | CTOIL.   |
| Total Energy                   | у, E(TD-    | $\pi r / T D - KS) =$        | -1045.3  | 2331 | 020      |      |          |

| Copying<br>density. | the exc        | ited       | state   | density | for · | this | state a | as the | 1-particle | RhoCI |
|---------------------|----------------|------------|---------|---------|-------|------|---------|--------|------------|-------|
| Excited <\$**2>=0.  | State<br>872   | 2:         | 2.118-  | -A'     | 2.398 | 7 eV | 516.8   | 7 nm   | f=0.0128   |       |
| 81A                 | -> 83A         |            | -0.18   | 3922    |       |      |         |        |            |       |
| 82A                 | -> 83A         |            | 0.86    | 529     |       |      |         |        |            |       |
| 82A                 | -> 84A         |            | 0.21    | 1569    |       |      |         |        |            |       |
| 82A                 | -> 92A         |            | 0.18    | 3008    |       |      |         |        |            |       |
| 80B                 | -> 82B         |            | 0.10    | )857    |       |      |         |        |            |       |
| 81B                 | -> 82B         |            | -0.18   | 3504    |       |      |         |        |            |       |
| Excited             | State          | 3:         | 2.762-  | -A'     | 2.996 | 0 eV | 413.83  | 3 nm   | f=0.0183   |       |
| <s**2>=1.</s**2>    | .658           |            |         |         |       |      |         |        |            |       |
| 77A                 | -> 88A         |            | -0.12   | 2553    |       |      |         |        |            |       |
| 77A                 | -> 96A         |            | 0.11    | 1501    |       |      |         |        |            |       |
| 80A                 | -> 83A         |            | -0.13   | 3151    |       |      |         |        |            |       |
| 81A                 | -> 84A         |            | 0.21    | L802    |       |      |         |        |            |       |
| 82A                 | -> 83A         |            | -0.24   | 1594    |       |      |         |        |            |       |
| 82A                 | -> 84A         |            | 0.69    | 9014    |       |      |         |        |            |       |
| 77B                 | -> 82B         |            | -0.24   | 1783    |       |      |         |        |            |       |
| 79B                 | -> 82B         |            | -0.10   | )374    |       |      |         |        |            |       |
| 80B                 | -> 83B         |            | 0.13    | 3140    |       |      |         |        |            |       |
| 81B                 | -> 83B         |            | 0.10    | )610    |       |      |         |        |            |       |
| 81B                 | -> 84B         |            | -0.27   | 7920    |       |      |         |        |            |       |
| Excited             | State          | 4 <b>:</b> | 3.274-  | -A'     | 3.203 | 3 eV | 387.0   | 6 nm   | f=0.0132   |       |
| 78A                 | -> 83A         |            | -0.16   | 5151    |       |      |         |        |            |       |
| 792                 | -> 894         |            | _0 23   | 3062    |       |      |         |        |            |       |
| 80A                 | -> 0JA         |            | 0.21    | 052     |       |      |         |        |            |       |
| OUA                 | -> 03A         |            | -0.51   |         |       |      |         |        |            |       |
| 80A                 | -> 88A         |            | 0.12    | 2042    |       |      |         |        |            |       |
| 80A                 | -> 9ZA         |            | 0.12    | 2025    |       |      |         |        |            |       |
| A18                 | -> 83A         |            | -0.29   | 9298    |       |      |         |        |            |       |
| 82A                 | -> 84A         |            | -0.21   | 1674    |       |      |         |        |            |       |
| 75B                 | -> 93B         |            | -0.10   | 0740    |       |      |         |        |            |       |
| 78B                 | -> 88B         |            | 0.21    | L988    |       |      |         |        |            |       |
| 78B                 | -> 90B         |            | -0.10   | )895    |       |      |         |        |            |       |
| 79B                 | -> 83B         |            | 0.15    | 5312    |       |      |         |        |            |       |
| 79B                 | <b>-</b> > 93B |            | -0.12   | 2271    |       |      |         |        |            |       |
| 80B                 | -> 82B         |            | 0.28    | 3552    |       |      |         |        |            |       |
| 80B                 | -> 83B         |            | 0.31    | L379    |       |      |         |        |            |       |
| 80B                 | -> 90B         |            | -0.14   | 1521    |       |      |         |        |            |       |
| 80B                 | <b>-</b> > 93B |            | -0.14   | 1026    |       |      |         |        |            |       |
| 81B                 | -> 82B         |            | -0.16   | 5906    |       |      |         |        |            |       |
| 81B                 | -> 83B         |            | 0.38    | 8162    |       |      |         |        |            |       |
| Excited             | State          | 5 <b>:</b> | 2.098-  | -A"     | 3.337 | 4 eV | 371.50  | 0 nm   | f=0.0014   |       |
| <s**2>=0.</s**2>    | .851           |            |         |         |       |      |         |        |            |       |
| 76B                 | -> 82B         |            | 0.96    | 5141    |       |      |         |        |            |       |
| 76B                 | -> 99B         |            | 0.11    | 1848    |       |      |         |        |            |       |
| 1p (X=OBr           | 1)             |            |         |         |       |      |         |        |            |       |
| Excited S           | State          | 1: 2       | 2.234-7 | A 2     | .2008 | eV   | 563.36  | nm f   | =0.0748    |       |
| <s**2>=0.</s**2>    | .998           |            |         |         |       |      |         |        |            |       |
| 106A                | ->107A         |            | 0.15    | 5335    |       |      |         |        |            |       |
| 102B                | ->106B         |            | -0.13   | 3053    |       |      |         |        |            |       |
| 105B                | ->106B         |            | 0.92    | 2137    |       |      |         |        |            |       |

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1315.60545868Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.123-A 2.3879 eV 519.21 nm f=0.0124 <S\*\*2>=0.877 105A ->107A -0.19704 106A ->107A 0.86301 106A ->108A 0.22190 106A ->119A -0.17227 104B ->106B -0.10326 105B ->106B -0.17963 Excited State 3: 2.738-A 2.9641 eV 418.29 nm f=0.0208 <S\*\*2>=1.625 104A ->107A 0.11734 105A ->108A 0.22337 106A ->107A -0.25256 106A ->108A 0.69326 99B ->106B -0.21797 102B ->106B -0.11332 104B ->106B -0.12379 104B ->107B 0.11494 105B ->107B -0.10570 105B ->108B 0.27732 3.2097 eV 386.29 nm f=0.0145 Excited State 4: 3.287-A <S\*\*2>=2.452 100A ->107A -0.16678 102A ->116A 0.21188 104A ->107A -0.31436 104A ->116A 0.10209 -0.10762 104A ->119A 105A ->107A 0.28973 106A ->108A 0.23104 100B ->114B 0.22384 102B ->107B 0.14099 104B ->106B 0.25067 104B ->107B -0.33178 104B ->117B 0.13695 104B ->120B 0.10192 105B ->106B 0.16531 105B ->107B 0.37967 5: 2.099-A 3.3527 eV 369.81 nm f=0.0013 Excited State <S\*\*2>=0.852 98B ->106B 0.96095 1q (X=Ph) Excited State 1: 2.281-A 2.2718 eV 545.75 nm f=0.0628 <S\*\*2>=1.051 97A -> 99A -0.13240 98A -> 99A -0.3174995B -> 98B 0.14317 96B -> 98B 0.19851 97B -> 98B 0.84106

| This sta<br>Total Er | ate for o<br>nergy, E | optin<br>(TD-H | nization and/o<br>HF/TD-KS) = - | or secon<br>-1201.11 | nd–01<br>17494 | rder con<br>128 | rect | cion.    |
|----------------------|-----------------------|----------------|---------------------------------|----------------------|----------------|-----------------|------|----------|
| Excited              | State                 | 2:             | 2.107-A                         | 2.3857               | eV             | 519.70          | nm   | f=0.0251 |
| <s**2>=0.</s**2>     | .860                  |                |                                 |                      |                |                 |      |          |
| 97A                  | -> 99A                |                | 0.12312                         |                      |                |                 |      |          |
| 98A                  | -> 99A                |                | 0.83282                         |                      |                |                 |      |          |
| 98A                  | ->101A                |                | -0.16566                        |                      |                |                 |      |          |
| 98A                  | ->109A                |                | 0.13922                         |                      |                |                 |      |          |
| 98A                  | ->110A                |                | -0.11448                        |                      |                |                 |      |          |
| 95B                  | -> 98B                |                | 0.14520                         |                      |                |                 |      |          |
| 97B                  | -> 98B                |                | 0.34713                         |                      |                |                 |      |          |
| Excited              | State                 | 3:             | 2.937-A                         | 2.8745               | eV             | 431.33          | nm   | f=0.0115 |
| <s**2>=1</s**2>      | .907                  |                |                                 |                      |                |                 |      |          |
| 92A                  | ->101A                |                | 0.12241                         |                      |                |                 |      |          |
| 92A                  | ->109A                |                | 0.10292                         |                      |                |                 |      |          |
| 94A                  | ->105A                |                | 0.10125                         |                      |                |                 |      |          |
| 96A                  | -> 99A                |                | 0.10039                         |                      |                |                 |      |          |
| 96A                  | ->100A                |                | 0.12166                         |                      |                |                 |      |          |
| 96A                  | ->101A                |                | 0.11821                         |                      |                |                 |      |          |
| 97A                  | ->100A                |                | -0.31539                        |                      |                |                 |      |          |
| 98A                  | -> 99A                |                | -0.13730                        |                      |                |                 |      |          |
| 98A                  | ->100A                |                | 0.59690                         |                      |                |                 |      |          |
| 98A                  | ->101A                |                | -0.24628                        |                      |                |                 |      |          |
| 92B                  | -> 98B                |                | 0.18182                         |                      |                |                 |      |          |
| 96B                  | -> 99B                |                | 0.10928                         |                      |                |                 |      |          |
| 96B                  | ->100B                |                | -0.17344                        |                      |                |                 |      |          |
| 96B                  | ->102B                |                | 0.10461                         |                      |                |                 |      |          |
| 97B                  | ->100B                |                | 0.32762                         |                      |                |                 |      |          |
| Excited              | State                 | 4:             | 3.339-A                         | 3.2037               | eV             | 387.00          | nm   | f=0.0041 |
|                      |                       |                | 0 22270                         |                      |                |                 |      |          |
| 93A<br>027           | -> 99A                |                | 0.23379                         |                      |                |                 |      |          |
| 93A<br>027           | ->100A                |                | 0.12907                         |                      |                |                 |      |          |
| 93A<br>053           | ->109A                |                | -0.13434                        |                      |                |                 |      |          |
| 95A<br>057           | -> 99A                |                | -0.12509                        |                      |                |                 |      |          |
| 9JA                  | ->100A                |                | 0.21023                         |                      |                |                 |      |          |
| 9JA                  | ->110A                |                | -0.13013                        |                      |                |                 |      |          |
| 90A                  | -> 99A                |                | 0.16205                         |                      |                |                 |      |          |
| 90A<br>07A           | ->100A                |                | -0.10395                        |                      |                |                 |      |          |
| 97A<br>087           | -> 99A                |                | 0.29445                         |                      |                |                 |      |          |
| 90A<br>0.2 M         | -> 99A                |                | -0.13/30                        |                      |                |                 |      |          |
| 90A<br>0/D           | ->101A                |                | 0 25511                         |                      |                |                 |      |          |
| 05 B                 | -> 100B               |                | 0.26502                         |                      |                |                 |      |          |
| 95B<br>05B           | -> 99B                |                | -0.20502                        |                      |                |                 |      |          |
| 950<br>950           | -> 085<br>-> 1105     |                | _0 18262                        |                      |                |                 |      |          |
| 90B<br>96B           | -> 90B                |                | 0 25228                         |                      |                |                 |      |          |
| 30B<br>06D           |                       |                | 0.25220                         |                      |                |                 |      |          |
| 90B<br>07P           | -> 00D                |                | 0.100/1                         |                      |                |                 |      |          |
| 97B<br>97B           | -> 99B                |                | 0.36800                         |                      |                |                 |      |          |
| Excited              | State                 | 5 <b>:</b>     | 2.097-A                         | 3.3262               | eV             | 372.76          | nm   | f=0.0013 |
| <s**2>=0</s**2>      | 849                   |                |                                 |                      |                |                 |      |          |
| 91B                  | -> 98B                |                | 0.96060                         |                      |                |                 |      |          |
| 91B                  | ->112B                |                | 0.12197                         |                      |                |                 |      |          |

### 1r (X=thienyl)

| Excited State <s**2>=1.044</s**2> | 1:          | 2.275-A        | 2.2596  | eV   | 548.70 | nm    | f=0.0703 |
|-----------------------------------|-------------|----------------|---------|------|--------|-------|----------|
| 98A ->100A                        |             | 0.11801        |         |      |        |       |          |
| 99A ->100A                        |             | 0.22705        |         |      |        |       |          |
| 992 ->1012                        |             | 0 11606        |         |      |        |       |          |
| 96B _> 99B                        |             | 0 13502        |         |      |        |       |          |
| 90B => 99B                        |             | 0.13302        |         |      |        |       |          |
| 97B -> 99B                        |             | 0.34//1        |         |      |        |       |          |
| 98B -> 99B                        |             | 0.81995        | /       |      |        |       |          |
| This state for                    | opti<br>ump | UNIZATION AND, | or seco | na-c |        | orrec | ction.   |
| Total Energy, E                   | 5 ( TD-     | -HF/TD-KS) =   | -1521.9 | 1240 | 0062   |       |          |
| Excited State                     | 2:          | 2.202-A        | 2.3762  | eV   | 521.78 | nm    | f=0.0167 |
| <s**2>=0.962</s**2>               |             |                |         |      |        |       |          |
| 98A ->101A                        |             | 0.17855        |         |      |        |       |          |
| 99A ->100A                        |             | 0.83602        |         |      |        |       |          |
| 99A ->102A                        |             | 0,19154        |         |      |        |       |          |
| 99A ->110A                        |             | 0.14386        |         |      |        |       |          |
| 96B -> 99B                        |             | -0.13638       |         |      |        |       |          |
| 98B _> 99B                        |             | -0 25188       |         |      |        |       |          |
| 90B => 99B                        |             | -0.23100       |         |      |        |       |          |
| 90B -/101B                        |             | 0.14219        |         |      |        |       |          |
| Excited State                     | 3:          | 3.210-A        | 2.6200  | eV   | 473.23 | nm    | f=0.0094 |
| <s**2>=2.327</s**2>               |             |                |         |      |        |       |          |
| 97A ->100A                        |             | 0.11687        |         |      |        |       |          |
| 97A ->101A                        |             | -0.17641       |         |      |        |       |          |
| 97A ->102A                        |             | -0.11772       |         |      |        |       |          |
| 98A ->100A                        |             | 0.26124        |         |      |        |       |          |
| 98A ->101A                        |             | -0.37879       |         |      |        |       |          |
| 99A ->100A                        |             | 0.11827        |         |      |        |       |          |
| 99A ->101A                        |             | 0.44891        |         |      |        |       |          |
| 93B -> 99B                        |             | -0.11086       |         |      |        |       |          |
| 97B ->100B                        |             | -0 15346       |         |      |        |       |          |
| 97B ->100B                        |             | 0 25207        |         |      |        |       |          |
| 97B ->101B                        |             | 0.23297        |         |      |        |       |          |
| 97B =>103B                        |             | -0.11444       |         |      |        |       |          |
| 98B -> 99B                        |             | -0.15629       |         |      |        |       |          |
| 98B ->100B                        |             | 0.20802        |         |      |        |       |          |
| 98B ->101B                        |             | -0.39897       |         |      |        |       |          |
| Excited State                     | 4:          | 2.857-A        | 3.1056  | eV   | 399.23 | nm    | f=0.0069 |
| ND^^Z/-I./YI                      |             | 0 10100        |         |      |        |       |          |
| 94A ->100A                        |             | -0.13130       |         |      |        |       |          |
| 96A ->100A                        |             | 0.10787        |         |      |        |       |          |
| 97A ->101A                        |             | 0.26144        |         |      |        |       |          |
| 98A ->100A                        |             | -0.15074       |         |      |        |       |          |
| 98A ->102A                        |             | 0.11069        |         |      |        |       |          |
| 99A ->101A                        |             | 0.47067        |         |      |        |       |          |
| 99A ->102A                        |             | -0.41212       |         |      |        |       |          |
| 99A ->108A                        |             | -0.10412       |         |      |        |       |          |
| 91B -> 99B                        |             | 0.10317        |         |      |        |       |          |
| 96B ->100B                        |             | 0.19594        |         |      |        |       |          |
| 97B -> 99B                        |             | -0.19958       |         |      |        |       |          |
| 97B ->101B                        |             | -0.22788       |         |      |        |       |          |
| 98B -> 99B                        |             | 0.17996        |         |      |        |       |          |
| 98B ->100B                        |             | -0.20603       |         |      |        |       |          |
| 98B ->103B                        |             | -0.14365       |         |      |        |       |          |

1s (X=CCPh)

Excited State 1: 2.284-A' 2.2709 eV 545.96 nm f=0.0757 <S\*\*2>=1.054 102A ->106A -0.10550 -0.12769 104A ->105A 104A ->106A 0.23774 101B ->104B -0.13132 102B ->104B 0.39146 103B ->104B 0.79017 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1277.23262934Excited State 2: 2.375-A' 2.3608 eV 525.18 nm f=0.0150 <S\*\*2>=1.160 103A ->105A 0.10252 0.22946 103A ->106A 104A ->105A 0.69115 104A ->106A -0.40274 104A ->107A -0.22786 104A ->117A -0.14683 101B ->104B -0.12790 103B ->104B 0.21449 103B ->105B -0.16084 103B ->106B -0.14852 3: 3.079-A' Excited State 2.5476 eV 486.67 nm f=0.0144 <S\*\*2>=2.120 99A ->111A 0.10474 102A ->105A -0.16216 103A ->105A 0.42449 103A ->106A 0.13706 104A ->106A 0.52008 0.10053 104A ->117A 99B **-**>111B -0.11556 102B ->105B 0.23578 102B ->106B 0.13148 102B ->108B 0.10974 103B ->104B -0.22538 103B ->105B -0.36144 103B ->106B -0.21686 Excited State 4: 2.816-A' 3.0670 eV 404.25 nm f=0.0040 <S\*\*2>=1.732 99A ->111A -0.14039 100A ->105A 0.11396 102A ->105A 0.14743 102A ->106A 0.21486 103A ->105A -0.15422103A ->107A -0.10381 104A ->105A 0.23240 104A ->106A 0.45348 104A ->107A -0.43828 104A ->112A -0.12143 96B ->104B -0.10455 99B ->111B 0.15761 0.15458 101B ->105B 102B ->104B -0.15259

102B ->105B -0.13458 102B ->106B -0.19324 103B ->104B 0.12961 103B ->105B 0.17126 103B ->108B 0.17082 1t (X=OAc) Excited State 1: 2.280-A 2.2687 eV 546.51 nm f=0.0580 <S\*\*2>=1.050 92A -> 94A 0.13369 93A -> 94A -0.29134 -0.13590 89B -> 93B 92B -> 93B 0.87906 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1197.992740232.4110 eV 514.24 nm f=0.0201 Excited State 2: 2.097-A <S\*\*2>=0.849 92A -> 94A -0.12263 93A -> 94A 0.84127 93A -> 95A 0.19011 93A ->103A 0.18380 91B -> 93B -0.13090 92B -> 93B 0.31898 3: 2.721-A 2.9873 eV 415.04 nm f=0.0198 Excited State <S\*\*2>=1.601 89A -> 97A 0.13031 91A -> 94A -0.10981 92A -> 95A 0.24532 93A -> 94A -0.21819 93A -> 95A 0.72110 88B -> 93B 0.24254 91B -> 94B 0.12067 92B -> 95B -0.26609 Excited State 4: 3.364-A 3.2247 eV 384.49 nm f=0.0082 <S\*\*2>=2.579 90A ->100A -0.27498 91A -> 94A -0.36331 91A ->103A 0.18975 92A -> 94A -0.32948 93A -> 95A -0.12167 86B ->105B 0.11432 90B ->100B 0.26827 91B -> 93B -0.20131 91B -> 94B 0.36566 91B ->105B 0.19900 92B -> 93B 0.15621 92B -> 94B 0.38810 Excited State 5: 2.096-A 3.3125 eV 374.29 nm f=0.0014 <S\*\*2>=0.849 87B -> 93B 0.96087

1u (X=NHCOCF<sub>3</sub>)
Excited State 1: 2.269-A 2.2504 eV 550.95 nm f=0.0666 <S\*\*2>=1.037 104A ->106A -0.11862 105A ->106A 0.22317 101B ->105B -0.12958 102B ->105B -0.12030 104B ->105B 0.89135 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -1475.82048199Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.116-A 2.4148 eV 513.43 nm f=0.0173 <S\*\*2>=0.870 104A ->106A -0.12855 105A ->106A 0.85748 105A ->108A 0.19376 105A ->113A 0.10791 105A ->115A 0.16070 103B ->105B 0.10917 104B ->105B -0.25740 Excited State 3: 2.852-A 2.9143 eV 425.44 nm f=0.0134 <S\*\*2>=1.784 100A ->108A -0.11112 100A ->113A 0.10242 101A ->108A 0.13182 103A ->106A 0.12352 103A ->107A -0.11587 104A ->107A 0.28253 105A ->106A 0.13274 105A ->107A 0.60692 105A ->108A -0.31773 -0.10287 105A ->123A 100B ->105B 0.22110 102B ->108B -0.10164 103B ->106B -0.12822 103B ->107B 0.12603 104B ->107B -0.29523 Excited State 4: 3.357-A 3.2045 eV 386.90 nm f=0.0055 <S\*\*2>=2.567 101A ->106A -0.15212 102A ->112A -0.23283 102A ->113A 0.10332 102A ->115A -0.11830 103A ->106A -0.31999 103A ->107A -0.14967 103A ->113A 0.12078 103A ->115A 0.13752 104A ->106A -0.32693 98B ->117B -0.10847 101B ->112B 0.20690 102B ->106B 0.12466 102B ->112B -0.16748-0.11396 102B ->117B 103B ->105B 0.21536 103B ->106B 0.32553

| 103B            | ->107B  |       | 0.13722             |              |                      |               |         |
|-----------------|---------|-------|---------------------|--------------|----------------------|---------------|---------|
| 103B            | ->115B  |       | -0.12648            |              |                      |               |         |
| 103B            | ->117B  |       | -0.14014            |              |                      |               |         |
| 104B            | ->105B  |       | -0.18543            |              |                      |               |         |
| 104B            | ->106B  |       | 0.39348             |              |                      |               |         |
| 104D            | ->100D  |       | 0.39340             |              |                      |               |         |
| Excited         | State   | 5:    | 2.097-A             | 3.2942 eV    | 376.37 nm            | f=0.0014      |         |
| <s**2>=0</s**2> | .849    |       |                     |              |                      |               |         |
| 99B             | ->105B  |       | 0.96068             |              |                      |               |         |
| lv (NHCO        | OMe)    |       |                     |              |                      |               |         |
| Excited         | State   | 1:    | 2.249-A             | 2.2206 eV    | 558.34 nm            | f=0.0739      |         |
| <\$**2>=1       | .014    |       |                     |              | 555 <b>.</b> 51 IIII | 1 000,000     |         |
| 964             | _> 98A  |       | -0.10743            |              |                      |               |         |
| 974             | -> 98A  |       | 0.18227             |              |                      |               |         |
| 94B             | -> 97B  |       | 0.16281             |              |                      |               |         |
| 91D<br>95B      | _> 97B  |       | 0 15373             |              |                      |               |         |
| 95D<br>96B      | -> 97B  |       | 0.00006             |              |                      |               |         |
| This st         | = 7 97B | ont i | mization and        | l/or second  | ordor corro          | ation         |         |
|                 | ale IUI | ניקט  |                     | 1252 2450    | 1474                 |               |         |
| Conving         | the ow  | ⊡(TD- | $-\pi r/TD-KS) =$   | =1255.5459   | 14/4                 | ha 1 nartial  | Dhodt   |
| copying         | the exe | Sited | i state dens.       | tty for this | state as th          | ne i-particie | a RUOCI |
| density.        |         |       |                     |              |                      |               |         |
| Excited         | State   | 2:    | 2.113-A             | 2.3991 eV    | 516.80 nm            | f=0.0154      |         |
| <s**2>=0</s**2> | .866    |       |                     |              |                      |               |         |
| 96A             | -> 98A  |       | -0.18107            |              |                      |               |         |
| 97A             | -> 98A  |       | 0.86336             |              |                      |               |         |
| 97A             | -> 99A  |       | 0.19389             |              |                      |               |         |
| 97A             | ->107A  |       | 0.18274             |              |                      |               |         |
| 94B             | -> 97B  |       | -0.10422            |              |                      |               |         |
| 96B             | -> 97B  |       | -0.21560            |              |                      |               |         |
|                 |         |       |                     |              |                      |               |         |
| Excited         | State   | 3:    | 2.803-A             | 2.9884 eV    | 414.88 nm            | f=0.0144      |         |
| <s**2>=1</s**2> | .714    |       |                     |              |                      |               |         |
| 92A             | ->101A  |       | -0.12433            |              |                      |               |         |
| 92A             | ->111A  |       | 0.12700             |              |                      |               |         |
| 95A             | -> 98A  |       | -0.12133            |              |                      |               |         |
| 96A             | -> 99A  |       | 0.24293             |              |                      |               |         |
| 96A             | ->101A  |       | 0.12107             |              |                      |               |         |
| 97A             | -> 98A  |       | -0.21671            |              |                      |               |         |
| 97A             | -> 99A  |       | 0.69009             |              |                      |               |         |
| 92B             | -> 97B  |       | -0.24805            |              |                      |               |         |
| 95B             | -> 98B  |       | 0.11892             |              |                      |               |         |
| 96B             | -> 99B  |       | -0.30770            |              |                      |               |         |
| Excited         | State   | 4:    | 3.273-A             | 3.1894 eV    | 388.73 nm            | f=0.0095      |         |
| <s**2>=2</s**2> | .429    |       |                     |              |                      |               |         |
| 93A             | -> 98A  |       | -0.19261            |              |                      |               |         |
| 934             | ->107A  |       | 0.11781             |              |                      |               |         |
| 94A             | _>104A  |       | -0.22392            |              |                      |               |         |
| 942             | ->1074  |       | -0.10470            |              |                      |               |         |
| 95A             | -> 981  |       | -0.28751            |              |                      |               |         |
| 95A<br>95A      | _>101A  |       | -0.20751            |              |                      |               |         |
| 95A<br>057      | _>107A  |       | 0 10500             |              |                      |               |         |
| ACE<br>DE       | ->10/A  |       | 0.10009             |              |                      |               |         |
| 90A             | -/ 90A  |       | -U.20951<br>0 11107 |              |                      |               |         |
| 9/A             | -> 99A  |       | -0.1118/            |              |                      |               |         |
| 90B             | ->108B  |       | -0.10883            |              |                      |               |         |

| 93B              | <b>-</b> >103B |    | 0.10744  |        |    |          |    |          |
|------------------|----------------|----|----------|--------|----|----------|----|----------|
| 93B              | ->104B         |    | 0.22411  |        |    |          |    |          |
| 94B              | -> 98B         |    | -0.20983 |        |    |          |    |          |
| 94B              | ->108B         |    | 0.14113  |        |    |          |    |          |
| 95B              | -> 97B         |    | 0.32888  |        |    |          |    |          |
| 95B              | -> 98B         |    | 0.27894  |        |    |          |    |          |
| 95B              | ->103B         |    | -0.13725 |        |    |          |    |          |
| 95B              | ->108B         |    | -0.11508 |        |    |          |    |          |
| 96B              | -> 97B         |    | -0.20737 |        |    |          |    |          |
| 96B              | <b>-</b> > 98B |    | 0.38161  |        |    |          |    |          |
| 96B              | <b>-</b> >103B |    | 0.10200  |        |    |          |    |          |
|                  |                |    |          |        |    |          |    |          |
| Excited          | State          | 5: | 2.097-A  | 3.3269 | eV | 372.67 r | nm | f=0.0014 |
| <s**2>=0.</s**2> | .849           |    |          |        |    |          |    |          |
| 91B              | <b>-</b> > 97B |    | 0.96162  |        |    |          |    |          |
|                  |                |    |          |        |    |          |    |          |

# 8. Archive for (U)B3LYP/6-31G(2d,p) geometry optimization results

### 1a (X=H)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C19H12N3O1(2)\PIOTR\14-Apr-2016\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1) benzotrazinyl (p henazinoBT), Cs\\0,2\N,-0.2279945082,0.,-0.7068912291\N,1.6342308182,0 .,1.3147774172\C,0.3141730381,0.,1.5107475896\N,-0.6511944713,0.,0.577 2813358\C,2.8747587314,0.,-2.6901553245\C,1.525294733,0.,-2.3786764485 \C,1.1192429656,0.,-1.0420625687\C,2.0563033272,0.,0.0130670541\C,3.42 27100243,0.,-0.320281521\C,3.8144680324,0.,-1.6500459807\C,-1.17991954 82,0.,-1.7366863092\C,-0.7265516782,0.,-3.0685289936\C,-1.6343949522,0 .,-4.1176431627\C,-3.0025964506,0.,-3.8542738611\C,-3.4580568847,0.,-2 .5364763795\C,-2.5535440658,0.,-1.48031653\C,-0.1674933344,0.,2.917057  $1338 \ C, -1.5355202766, 0., 3.2213939115 \ C, -1.9627296157, 0., 4.5448686804 \ C$ ,-1.0320885266,0.,5.5834203093\C,0.3304717827,0.,5.2886511585\C,0.7611 634188,0.,3.9661225371\0,0.607802556,0.,-3.3994557106\H,4.1444354867,0 .,0.4875266765\H,-1.2474203049,0.,-5.1300423865\H,-4.5217388028,0.,-2. 3262246262\H,-2.8822307131,0.,-0.4505760941\H,-2.2557347868,0.,2.41322 96866\H,-3.0252780726,0.,4.7664014926\H,1.0608349088,0.,6.0915258161\H ,1.8160583604,0.,3.7224448829\H,4.8703351187,0.,-1.898622529\H,3.17536 91985,0.,-3.7308245809\H,-3.7063464888,0.,-4.6790512891\H,-1.367442019 2,0.,6.615759843\\Version=ES64L-G09RevD.01\State=2-A"\HF=-970.7339788\ S2=0.765494\S2-1=0.\S2A=0.750186\RMSD=4.138e-09\RMSF=1.718e-06\Dipole= -0.2970498,0.,-0.7847295\Quadrupole=5.3068963,-9.8608619,4.5539655,0., -0.5464311,0.\PG=CS [SG(C19H12N3O1)]\\

```
No imaginary frequencies.
```

### 1b (X=COOMe)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C21H14N3O3(2)\PIOTR\05-May-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-COOMe sec o rient benzotrazinyl, Cs\\0,2\N,-0.1596473134,0.8160516965,0.\N,-2.9064 525107,0.8778039954,0.\C,-2.181847753,-0.243293261,0.\N,-0.8429312268, -0.3503453785,0.\C,-0.7194975137,4.455056265,0.\C,-0.0643532906,3.2360 070125,0.\C,-0.7979516254,2.048171105,0.\C,-2.2088626573,2.0544645993, 0.\C,-2.8608970603,3.3011702737,0.\C,-2.1217266261,4.4736162751,0.\C,1 .2433265276,0.7821689285,0.\C,1.9426315505,2.004936735,0.\C,3.33199069

14,2.0185823276,0.\C,4.0369449018,0.8225606862,0.\C,3.3524572652,-0.39 71257489,0.\C,1.9560628523,-0.4154118111,0.\C,-2.918405793,-1.53391931 21,0.\C,-2.2414470352,-2.7611649563,0.\C,-2.9519148157,-3.9566523906,0 .\C,-4.3464038964,-3.9452031559,0.\C,-5.026614316,-2.7283272085,0.\C,-4.3194785893,-1.5306801249,0.\0,1.3112996971,3.2194647631,0.\H,3.83634 9017,2.9776968783,0.\H,1.4106564375,-1.3468569734,0.\H,-1.1589257281,-2.7670277305,0.\H,-2.4155560163,-4.9002262338,0.\H,-6.1118142075,-2.71 156792,0.\H,-4.834804867,-0.5785239475,0.\H,-2.6324631427,5.4304729372 ,0.\H,-0.1366042534,5.3680135276,0.\H,5.1198370747,0.811693075,0.\H,-4 .8989816889,-4.8794361818,0.\H,-3.9441261548,3.3094273495,0.\C,4.16146 55494,-1.6454131672,0.\0,5.3714084956,-1.6734328415,0.\0,3.395474421,-2.7551687923,0.\C,4.1193370326,-3.9921703298,0.\H,3.3627129565,-4.7762 866093,0.\H,4.7508133011,-4.0670060443,-0.8883829164\H,4.7508133011,-4 .0670060443,0.8883829164\\Version=ES64L-G09RevD.01\State=2-A"\HF=-1198 .624302\S2=0.765518\S2-1=0.\S2A=0.750183\RMSD=6.039e-09\RMSF=3.680e-06 \Dipole=-0.1206689,0.2533919,0.\Quadrupole=-8.943009,15.7362829,-6.793 2739,-0.1083726,0.,0.\PG=CS [SG(C21H12N3O3),X(H2)]\\

No imaginary frequencies.

# 1c (X=CN)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C20H11N4O1(2)\PIOTR\28-Jan-2019\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-CN benzotra zinyl, Cs\\0,2\N,0.4918707959,-0.3073709472,0.\N,-1.9301161981,-1.5993 15204,0.\C,-1.791350529,-0.2716071392,0.\N,-0.6428526579,0.4270485217, 0.\C,1.6337807608,-3.8072972677,0.\C,1.6685437305,-2.4245914624,0.\C,0 .4785524447,-1.6951606949,0.\C,-0.7780780973,-2.3354815524,0.\C,-0.798 3291984, -3.7427877987, 0.\C, 0.3895854727, -4.4558136552, 0.\C, 1.726358092 2,0.3539464615,0.\C,2.9039315435,-0.4204555594,0.\C,4.1484220382,0.196 2930417,0.\C,4.2426785205,1.5821187079,0.\C,3.0759589325,2.3588732005, 0.\C,1.8188939779,1.7436946847,0.\C,-3.030333523,0.5470735543,0.\C,-2. 9807330234,1.9479003912,0.\C,-4.154452889,2.6935331395,0.\C,-5.3930969 442,2.053054602,0.\C,-5.4505263192,0.6600599721,0.\C,-4.278893543,-0.0 890666132,0.\0,2.8897323898,-1.7873119994,0.\H,5.0324681534,-0.4299667 16,0.\H,0.9097894185,2.3272096033,0.\H,-2.0188705865,2.4444569437,0.\H ,-4.1017954675,3.7774423221,0.\H,-6.4110840513,0.154960281,0.\H,-4.309 2831729,-1.1712698284,0.\H,0.3652342955,-5.5400747517,0.\H,2.565248926 7,-4.3600802229,0.\H,5.2125317008,2.0639104174,0.\H,-6.3080392627,2.63 68796308,0.\H,-1.7614255903,-4.238551869,0.\C,3.1673740475,3.787994881 7,0.\N,3.2484909322,4.9444164444,0.\\Version=ES64L-G09RevD.01\State=2-A"\HF=-1062.9763189\S2=0.766177\S2-1=0.\S2A=0.750198\RMSD=4.826e-09\RM SF=2.297e-06\Dipole=0.2829048,-1.8958087,0.\Quadrupole=10.8738161,-8.3 206835,-2.5531326,-13.3808711,0.,0.\PG=CS [SG(C20H11N401)]\\

No imaginary frequencies.

# 1d $(X=NO_2)$

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C19H11N4O3(2)\PIOTR\21-Aug-2019\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-NO2 benzotr azinyl, Cs\\0,2\N,0.1740075275,-0.5912901624,0.\N,-2.4796513212,-1.291 922227,0.\C,-2.0394489326,-0.0312808682,0.\N,-0.7609224979,0.38435639 9,0.\C,0.4817664514,-4.2595262875,0.\C,0.8321536884,-2.9217720233,0.\C ,-0.1578145215,-1.9384733571,0.\C,-1.5278131968,-2.2730914555,0.\C,-1. 8705103077,-3.6383841063,0.\C,-0.8782093957,-4.6052405795,0.\C,1.52737 27934,-0.2308669305,0.\C,2.4967632923,-1.256339851,0.\C,3.8517047621,-0.9450190871,0.\C,4.2648442238,0.3816429975,0.\C,3.2974400491,1.380915 9148,0.\C,1.9365843962,1.0999181989,0.\C,-3.0560553157,1.0508987352,0.  $\label{eq:constraint} $$ \ C, -2.6835702086, 2.4022875514, 0.\ C, -3.6534376223, 3.3987756193, 0.\ C, -5. 0064804626, 3.0615172225, 0.\ C, -5.3844716735, 1.7195084307, 0.\ C, -4.417680 5699, 0.7199304577, 0.\ 0, 2.1680530385, -2.5810062532, 0.\ H, 4.5662248069, -1 .7592329262, 0.\ H, 1.2073107099, 1.8949660168, 0.\ H, -1.6329902242, 2.663173 9537, 0.\ H, -3.3516826377, 4.4411296207, 0.\ H, -6.4357849167, 1.4501868296, 0.\ H, -4.697401739, -0.3259222485, 0.\ H, -1.1508236683, -5.6549179771, 0.\ H, 1 .2615781678, -5.011250259, 0.\ H, 5.3116543172, 0.6513036899, 0.\ H, -5.761872 5498, 3.8408727586, 0.\ H, -2.9217795199, -3.8995169313, 0.\ N, 3.7247375472, 2.7851065546, 0.\ 0, 2.8523215908, 3.6453586969, 0.\ 0, 4.9299247591, 3.0102355 39, 0.\ Version=ES64L-G09RevD.01\ State=2-A"\ HF=-1175.2435108\ S2=0.76595 2\ S2-1=0.\ S2A=0.750189\ RMSD=4.184e-09\ RMSF=4.229e-06\ Dipole=-0.2091194 , -1.8865306, 0.\ Quadrupole=1.1105094, 1.6616532, -2.7721626, -13.8781166, 0.\ 0.\ PG=CS \ [SG(C19H11N403)] \$ 

No imaginary frequencies.

# 1e ( $X=CF_3$ )

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C20H11F3N3O1(2)\PIOTR\29-Ja n-2019\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance, NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-CF3 benzo trazinyl, C1\\0,2\N,-0.1511825702,-0.7509949659,0.0019305902\N,-2.8856 873624,-1.0031244808,-0.0095345499\C,-2.2420152411,0.1661806642,-0.011 2775541\N,-0.9130887467,0.3654554985,-0.0062244126\C,-0.4569389489,-4. 4201578281,0.0205375413\C,0.1126783642,-3.159064103,0.0168938474\C,-0. 7019592265,-2.025243303,0.0063016938\C,-2.1086733785,-2.1284797405,-0. 0002568146\C,-2.6733309861,-3.4173945873,0.0035257033\C,-1.8547846494, -4.5354430062,0.0136968224\C,1.2435752303,-0.6202581221,0.0064562154\C ,2.0280314682,-1.7896441254,0.0165159904\C,3.4131286808,-1.7029265695, 0.0141324768\C,4.0344566611,-0.4582512982,0.0045368407\C,3.2597736991, 0.7011386528,-0.0021748332\C,1.8701329319,0.6257291727,-0.005327117\C, -3.0667811749,1.4016640893,-0.0194401834\C,-2.4775806451,2.6734122756, -0.0187821689\C,-3.2699748244,3.8161427111,-0.026028447\C,-4.660064984 7,3.706738791,-0.0341073286\C,-5.2534366959,2.4451069427,-0.0348664477 \C,-4.4642502715,1.3000039063,-0.0275423477\0,1.4838198837,-3.04680466 03,0.0238993996\H,3.9862300135,-2.6224234107,0.0155225003\H,1.25847733 75,1.5159060056,-0.0230902134\H,-1.3983254582,2.7568665547,-0.01232078 76\H,-2.8008421725,4.7947524333,-0.0253028393\H,-6.3347501874,2.352235 6631,-0.0411201678\H,-4.9117633427,0.3141790815,-0.027881938\H,-2.2977 873419, -5.5254437572, 0.0165598427\H, 0.1873570153, -5.2908484069, 0.02862 41174\H,5.1149003146,-0.3890425686,-0.0054167574\H,-5.2768496875,4.599 8282391,-0.0397128231\H,-3.7533275269,-3.500698119,-0.0015250446\C,3.9 272068681,2.0488325485,0.0404255855\F,5.1328994739,2.0241667973,-0.556 6786147\F,3.1883115128,2.9932621553,-0.5679645904\F,4.1290667105,2.466 9267749,1.3070168136\\Version=ES64L-G09RevD.01\State=2-A\HF=-1307.7783 212\S2=0.765834\S2-1=0.\S2A=0.75019\RMSD=2.392e-09\RMSF=2.207e-06\Dipo le=0.0503094,-1.1256041,-0.0323563\Quadrupole=-0.2079404,7.135302,-6.9 273616,-6.9090877,-0.2388503,-0.2194267\PG=C01 [X(C20H11F3N301)]\\ No imaginary frequencies.

# lf (X=OMe)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C20H14N302(2)\PIOTR\05-May-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-OMe 2nd orint benzotrazinyl (phenazinoBT), Cs\\0,2\N,-0.3633656011,0.4985416597,0.\ N,-1.824449871,-1.8302987846,0.\C,-0.491581742,-1.7811693544,0.\N,0.28 7460985,-0.6872916609,0.\C,-3.7795730261,1.8789544623,0.\C,-2.39472214 58,1.8221901105,0.\C,-1.7504617182,0.5818851911,0.\C,-2.4780727487,-0. 6275457404,0.\C,-3.8819030796,-0.5513072773,0.\C,-4.5113188488,0.68433

68291,0.\C,0.3819200299,1.6845534658,0.\C,-0.3069404128,2.9060571541,0 .\C,0.4059715593,4.0985425137,0.\C,1.7929913799,4.0879469255,0.\C,2.48 52354255,2.8684575665,0.\C,1.7816192351,1.6661963162,0.\C,0.2384403204 ,-3.0766140073,0.\C,1.6388727427,-3.1276582587,0.\C,2.2999146161,-4.35 12184369,0.\C,1.573922273,-5.5418190832,0.\C,0.1804682304,-5.499494600 8,0.\C,-0.4835359584,-4.2773179798,0.\O,-1.6823485163,2.9920047459,0.\ H,-4.4429035763,-1.4779540306,0.\H,-0.1480822485,5.0300482044,0.\H,2.2 705435771,0.7047829109,0.\H,2.1999194339,-2.2018367989,0.\H,3.38510135 92, -4.3760196505, 0.\H, -0.3919265612, -6.4216770275, 0.\H, -1.5651234287, -4.2292052741,0.\H,-5.5949663365,0.7344505878,0.\H,-4.2664105303,2.8466 074595,0.\H,2.3602818571,5.0106922782,0.\H,2.091410231,-6.4959458246,0 .\0,3.8414510994,2.9605356566,0.\C,4.5918315069,1.7578130846,0.\H,4.38 67948655,1.1559409279,-0.8938912807\H,5.6404684445,2.0576946549,0.\H,4 .3867948655,1.1559409279,0.8938912807\\Version=ES64L-G09RevD.01\State= 2-A"\HF=-1085.2622773\S2=0.765743\S2-1=0.\S2A=0.750196\RMSD=9.070e-09\ RMSF=2.338e-06\Dipole=0.4425064,0.4888984,0.\Quadrupole=8.8378866,0.20 18879, -9.0397745, -3.6924413, 0., 0. \PG=CS [SG(C20H12N3O2), X(H2)]\\ No imaginary frequencies.

### 1g (X=F)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C19H11F1N3O1(2)\PIOTR\06-Fe b-2020\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-F benzotraz inyl (phenazinoBT), Cs\\0,2\N,-0.2272885354,0.,-0.7084498124\N,1.63271 81068,0.,1.3126939453\C,0.3129552766,0.,1.5096657224\N,-0.652090512,0. ,0.5749367836\C,2.8766616423,0.,-2.6906542686\C,1.5267046931,0.,-2.381 09589\C,1.12046217,0.,-1.0444518059\C,2.0561061449,0.,0.0117056202\C,3 .4229905843,0.,-0.3200268849\C,3.815296485,0.,-1.6494472746\C,-1.17681 54404,0.,-1.7362626825\C,-0.7249725337,0.,-3.0692117177\C,-1.636786964 7,0.,-4.114363974\C,-3.0060913629,0.,-3.8565392632\C,-3.43260467,0.,-2 .5350751023\C,-2.5477552924,0.,-1.4697254298\C,-0.1691443289,0.,2.9153 109363\C,-1.5373913342,0.,3.2192185787\C,-1.9646184139,0.,4.5426199041 \C,-1.0339698995,0.,5.5810863262\C,0.3287728936,0.,5.2867088312\C,0.75 96016594,0.,3.9643626043\0,0.6101741294,0.,-3.4017738916\H,4.144014682 9,0.,0.4883322305\H,-1.2563936765,0.,-5.1289211151\H,-2.9001049147,0., -0.4489028388\H,-2.2583349296,0.,2.4117034177\H,-3.0271493958,0.,4.763 922495\H,1.058933596,0.,6.0897069795\H,1.8145747767,0.,3.721081174\H,4 .8712941411,0.,-1.8973991983\H,3.1788592321,0.,-3.7308535179\H,-3.7327 715305,0.,-4.6591665406\H,-1.3695056707,0.,6.6133405233\F,-4.747647368 7,0.,-2.2751050839\\Version=ES64L-G09RevD.01\State=2-A"\HF=-1069.96740 78\S2=0.765846\S2-1=0.\S2A=0.750194\RMSD=5.232e-09\RMSF=3.305e-06\Dipo le=0.2754869,0.,-0.7770411\Quadrupole=-0.0585169,-7.8250385,7.8835554, 0.,-2.6157492,0.\PG=CS [SG(C19H11F1N3O1)]\\

No imaginary frequencies.

# 1h (X=C1)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C19H11Cl1N3O1(2)\PIOTR\06-F eb-2020\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct # P Geom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-Cl benzotr azinyl (phenazinoBT), Cs\\0,2\N,-0.2274057698,0.,-0.7077364119\N,1.632 8614611,0.,1.3128845684\C,0.3130364968,0.,1.5105061823\N,-0.6520237868 ,0.,0.5756341802\C,2.875538267,0.,-2.6911206312\C,1.5265490452,0.,-2.3 801432009\C,1.1200653845,0.,-1.0438578913\C,2.0557791551,0.,0.01206529 84\C,3.4227157341,0.,-0.3206023561\C,3.8147395994,0.,-1.6499319095\C,-1.1768841429,0.,-1.7365876745\C,-0.7243268632,0.,-3.0691275327\C,-1.63 6399988,0.,-4.1139544997\C,-3.0052770453,0.,-3.856115391\C,-3.4416062 047,0.,-2.5342816557\C,-2.5482520982,0.,-1.4712402659\C,-0.1688431383, No imaginary frequencies.

# 1i (X=Br)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\Gen\C19H11Br1N3O1(2)\PIOTR\12-Feb-2020\ 0\\#P UB3LYP/gen FOpt=tight freg(noraman) SCF=Direct #P Geom=(NoDistan ce,NoAngle) fcheck Pseudo=Read\\Parent C(8)-O-Ph(N1)-10-Br benzotrazin yl (phenazinoBT), Cs\\0,2\N,-0.2214531861,0.7673371436,0.\N,-2.9643933 868,0.9142058804,0.\C,-2.2758084713,-0.2293832557,0.\N,-0.9400701948,-0.3773767152,0.\C,-0.6693780072,4.424788142,0.\C,-0.0491545013,3.18565 80399,0.\C,-0.8206969222,2.0202394086,0.\C,-2.2316269402,2.0690698837, 0.\C,-2.8467098299,3.3357864389,0.\C,-2.0712548737,4.4855306431,0.\C,1 .1766819576,0.6914193039,0.\C,1.9152657303,1.8903094487,0.\C,3.3028823 748,1.8524458646,0.\C,3.9769187558,0.6318460509,0.\C,3.2360885274,-0.5 47993683,0.\C,1.8466609895,-0.5362108252,0.\C,-3.0535207373,-1.4964855 419,0.\C,-2.4163033281,-2.7457960481,0.\C,-3.1656724712,-3.9183911624, 0.\C,-4.5598854556,-3.8612570242,0.\C,-5.2008565219,-2.622006871,0.\C, -4.4547148723,-1.447241926,0.\0,1.3227465269,3.127243505,0.\H,-3.92972 64333,3.3769661227,0.\H,3.8450101121,2.7913625162,0.\H,1.2654506436,-1 .4466378364,0.\H,-1.3340553126,-2.7881977771,0.\H,-2.6599702587,-4.879 2534137,0.\H,-6.2854942244,-2.5699903908,0.\H,-4.9381995691,-0.4779531 026,0.\H,-2.552666784,5.458117878,0.\H,-0.0592545626,5.3205099748,0.\H ,5.0593543201,0.6046059431,0.\H,-5.1429872062,-4.7773725351,0.\Br,4.15 22744421,-2.2387305797,0.\\Version=ES64L-G09RevD.01\State=2-A"\HF=-983 .2804499\S2=0.766089\S2-1=0.\S2A=0.750199\RMSD=5.493e-09\RMSF=3.922e-0 6\Dipole=0.1937034,0.9024497,0.\Quadrupole=0.1139045,7.9726182,-8.0865 228,4.4618355,0.,0.\PG=CS [SG(C19H11Br1N3O1)]\\ No imaginary frequencies.

# 1j (X=COMe)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C21H14N3O2(2)\PIOTR\04-May-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-COMe benzot razinyl, sec orient Ac, Cs\\0,2\N,-0.2088868957,0.6112797291,0.\N,2.41 77644144,1.4157062451,0.\C,2.0252013889,0.1401987089,0.\N,0.765282501, -0.3265106365,0.\C,-0.6572816895,4.265593728,0.\C,-0.9572268129,2.9145 240794,0.\C,0.0711876671,1.9702931292,0.\C,1.4271645501,2.3592496588,0 .\C,1.7167666123,3.7359437001,0.\C,0.6872409415,4.6639636341,0.\C,-1.5 50109051,0.1990362901,0.\C,-2.5544413561,1.1851714903,0.\C,-3.89559095 76,0.81830653,0.\C,-4.246641382,-0.5235295628,0.\C,-3.2598971777,-1.51 87038841,0.\C,-1.9125065515,-1.1475551212,0.\C,3.0856594508,-0.9009273 685,0.\C,2.7701981106,-2.266455356,0.\C,3.7797207607,-3.2228788485,0.\ C,5.1179716456,-2.831009057,0.\C,5.4398935777,-1.4745840545,0.\C,4.432 6896416,-0.5154503349,0.\0,-2.2767762778,2.5251928921,0.\H,-4.64222983 9,1.603964904,0.\H,-1.1172623802,-1.8788973118,0.\H,1.7306000782,-2.56 82430679,0.\H,3.5214309615,-4.2770399351,0.\H,6.4792324803,-1.16207064

63,0.\H,4.6685397815,0.5411558587,0.\H,0.9191183838,5.7234876542,0.\H, -1.4660814665,4.9860857244,0.\H,-5.2854407429,-0.8303091741,0.\H,5.904 6923768,-3.5787447138,0.\H,2.7571527294,4.0376525258,0.\C,-3.699921573 ,-2.9498881529,0.\O,-4.8836726685,-3.2287851645,0.\C,-2.6435011955,-4. 0391805127,0.\H,-1.9989875934,-3.9596526238,-0.8820643565\H,-1.9989875 934,-3.9596526238,0.8820643565\H,-3.1418116504,-5.0085032952,0.\\Versi on=ES64L-G09RevD.01\State=2-A"\HF=-1123.3887124\S2=0.765489\S2-1=0.\S2 A=0.750183\RMSD=4.125e-09\RMSF=1.132e-06\Dipole=0.4014171,0.6724903,0. \Quadrupole=-7.0037245,10.2905007,-3.2867763,-10.69653,0.,0.\PG=CS [SG (C21H12N302),X(H2)]\\@

No imaginary frequencies.

# 11 $(X=NH_2)$

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C19H13N4O1(2)\PIOTR\21-Aug-2019\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-NH2 benzotr azinyl, C1\\0,2\N,0.1857312541,-0.5836669205,-0.0147964334\N,-2.472508 2021,-1.2860319717,0.0058234125\C,-2.0287820219,-0.0282014217,-0.00447 08844\N,-0.7530581683,0.390215469,-0.0132237936\C,0.4864863447,-4.2565 09212,-0.0027934636\C,0.84543663,-2.9173266945,-0.0105308678\C,-0.1470 280621,-1.9326006403,-0.0073319714\C,-1.5182963977,-2.2677891451,0.003 9643006\C,-1.8636268369,-3.6303565153,0.0119862836\C,-0.8714220721,-4. 5994251566,0.008392021\C,1.5394701743,-0.2227976834,-0.020191918\C,2.5 018759932,-1.2469817436,-0.0225626619\C,3.8487379103,-0.9191067545,-0. 0237931522\C,4.2523764929,0.4112200026,-0.0234271115\C,3.3011450744,1. 4438277854,-0.0212575912\C,1.9428031847,1.1124788995,-0.017617143\C,-3 .0480440882,1.0545767961,-0.00572611\C,-2.679792783,2.4056005462,-0.05 9268379\C,-3.6506344493,3.4014927558,-0.060504178\C,-5.0027420823,3.06 45038378,-0.0076163729\C,-5.3771391708,1.7227006842,0.0455942838\C,-4. 4085652558,0.7243394232,0.0459235586\0,2.17313617,-2.5865642516,-0.021 2502073\H,4.5745991587,-1.7241459569,-0.0231079726\H,1.1790664485,1.87 84706412,-0.0167920469\H,-1.629399819,2.6639527103,-0.102364199\H,-3.3 512093395,4.4439526456,-0.1037903892\H,-6.4274852205,1.4520900403,0.08 66176864\H,-4.6847043315,-0.3217802647,0.0855097651\H,-1.1463565005,-5 .6488246306,0.0142812865\H,1.2654615104,-5.0092490436,-0.0057329952\H, 5.3104508191,0.6521045867,-0.0300791787\H,-5.7591822919,3.8429682034,-0.0085830162\H,-2.915337369,-3.8897378437,0.0203475735\N,3.7028943413, 2.781204576,-0.0872044058\H,3.0243867085,3.4349645579,0.2792946566\H,4 .6172970871,2.9574633489,0.3062816149\\Version=ES64L-G09RevD.01\State= 2-A\HF=-1026.0933031\S2=0.765659\S2-1=0.\S2A=0.750193\RMSD=8.397e-09\R MSF=1.530e-06\Dipole=1.170485,0.4215358,0.3996691\Quadrupole=5.0359232 ,6.9301694,-11.9660926,3.7440516,3.1816031,2.7700216\PG=C01 [X(C19H13N 401)]\\

No imaginary frequencies.

#### 1m (X=NHAC)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C21H15N4O2(2)\PIOTR\07-May-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck guess=check\\Parent flat C(8)-0-Ph(N1) -NHAc benzotrazinyl, C1\\0,2\N,0.3436971215,0.7247270029,-0.0028464104 \N,3.0911126289,0.6933069417,0.0038505135\C,2.3293671128,-0.4015133934 ,-0.0007680321\N,0.9876283758,-0.4648207236,-0.0040319818\C,1.02901205 42,4.3438376812,0.0062527886\C,0.3279026573,3.1485987344,0.0018470165\ C,1.0228954636,1.9359978634,0.0012550064\C,2.4335762306,1.8940609901,0 .004877964\C,3.128858235,3.1159498897,0.0093570891\C,2.4298234344,4.31 35683841,0.0100172232\C,-1.0570691623,0.7399683577,-0.0054864157\C,-1. 7151313475,1.9817313831,-0.0049872486\C,-3.1001660002,2.0221301594,-0. 0077529658\C,-3.8554918211,0.8527763553,-0.0107375265\C,-3.2022837311,  $-0.3881235426, -0.010542739 \\ C, -1.8049921064, -0.4350796793, -0.0082290393$ \C,3.0243165776,-1.715970935,-0.0025946301\C,2.3100664933,-2.921600424 6,-0.0099245149\C,2.9817178032,-4.139366929,-0.0116269896\C,4.37576827 9,-4.1723352192,-0.0059931865\C,5.0936409869,-2.9773316634,0.001286388 6\C,4.4246785126,-1.7578432407,0.0029530199\O,-1.0421219937,3.18220732 97,-0.0019465319\H,-3.5850516407,2.991573949,-0.0076138996\H,-1.270766 3193,-1.376513858,-0.0081027339\H,1.2279227254,-2.892600672,-0.0144260 588\H,2.4158994897,-5.0656745567,-0.0174368817\H,6.1788469422,-2.99464 8923,0.0056617508\H,4.9693553038,-0.8222178566,0.0085190031\H,2.973498 7355,5.2522240591,0.0134952754\H,0.4783726287,5.2766589553,0.006698856 2\H,-4.9335716798,0.8875975439,-0.0131403407\H,4.8986200067,-5.1235108 167,-0.0073432931\H,4.2116904061,3.0866038926,0.0121644521\N,-3.883313 7677,-1.6193921397,-0.013132242\H,-3.287740324,-2.433617363,-0.0082239 285\C,-5.240729392,-1.8616112263,-0.0029229241\O,-6.0855531361,-0.9865 74109,-0.008644209\C,-5.5933059259,-3.3407202809,0.0349192091\H,-5.028 1471335,-3.9153149034,-0.7059343689\H,-5.374285828,-3.7579297995,1.023 9696723\H,-6.6597538956,-3.444466217,-0.1611581362\\Version=ES64L-G09R evD.01\State=2-A\HF=-1178.7616394\S2=0.765494\S2-1=0.\S2A=0.750187\RMS D=3.091e-09\RMSF=6.556e-07\Dipole=0.0297059,-0.6275593,0.0273388\Quadr upole=-11.1414797,17.1288716,-5.9873919,7.7310182,-0.2453787,-0.110895 1\PG=C01 [X(C21H15N4O2)]\\@

No imaginary frequencies.

# ln (X=I)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\Gen\C19H11I1N3O1(2)\PIOTR\11-Feb-2020\0 \\#P UB3LYP/gen FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistanc e,NoAngle) fcheck Pseudo=Read\\Parent C(8)-O-Ph(N1)-10-I benzotrazinyl (phenazinoBT), Cs\\0,2\N,-0.2224474548,0.768670183,0.\N,-2.9653629759 ,0.9156925308,0.\C,-2.2768591397,-0.2279584603,0.\N,-0.9411874793,-0.3 758588676,0.\C,-0.6686589454,4.4257555226,0.\C,-0.0489027481,3.1864973 091,0.\C,-0.8212413554,2.0214641532,0.\C,-2.2322462367,2.0705014336,0. \C,-2.8466697588,3.3374491012,0.\C,-2.0706212899,4.4868625016,0.\C,1.1 759208147,0.6922423794,0.\C,1.9150277943,1.8902754488,0.\C,3.302535517 ,1.8504131178,0.\C,3.9754586186,0.6288277845,0.\C,3.2364810565,-0.5544 192777,0.\C,1.8454523736,-0.5356769989,0.\C,-3.0535229485,-1.495776811 5,0.\C,-2.4146013319,-2.7442376095,0.\C,-3.1623722642,-3.9178388411,0. \C,-4.5567048264,-3.862559775,0.\C,-5.1993357712,-2.6242459664,0.\C,-4 .4547319248,-1.4484324569,0.\0,1.3233998242,3.1272412847,0.\H,-3.92967 91378,3.3792216681,0.\H,3.8458056302,2.7888389494,0.\H,1.2564462332,-1 .4410760044,0.\H,-1.332322523,-2.7850312793,0.\H,-2.6553119416,-4.8780 024938,0.\H,-6.2840355841,-2.5737481609,0.\H,-4.939762723,-0.479898361 6,0.\H,-2.5517834202,5.4595830302,0.\H,-0.0584451012,5.3214016158,0.\H ,5.0583595057,0.6087415101,0.\H,-5.1384629062,-4.7795374635,0.\I,4.237 0152299,-2.4149242056,0.\\Version=ES64L-G09RevD.01\State=2-A"\HF=-981. 4938655\S2=0.766052\S2-1=0.\S2A=0.750198\RMSD=9.723e-09\RMSF=1.863e-06 \Dipole=0.233742,0.8358537,0.\Quadrupole=-0.2698729,9.041333,-8.771460 1,3.0390022,0.,0.\PG=CS [SG(C19H11I1N3O1)]\\

No imaginary frequencies.

# 10 (X=OH)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C19H12N3O2(2)\PIOTR\06-May-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-OH 2nd orint benzotrazinyl (phenazinoBT), Cs\\0,2\N,-0.0797052931,0.5969250716,0.\N ,-1.6996514839,-1.622756539,0.\C,-0.3666456122,-1.6680362644,0.\N,0.48 72861285,-0.6312149831,0.\C,-3.3897221102,2.2141503632,0.\C,-2.0122498 294,2.060750726,0.\C,-1.4572149862,0.7779762824,0.\C,-2.2677467572,-0. 3773267205,0.\C,-3.6628092973,-0.2030522698,0.\C,-4.2036350167,1.07380 86023,0.\C,0.7468865165,1.7263184144,0.\C,0.1468519167,2.9963421012,0. \C,0.9409715629,4.1343869652,0.\C,2.3270870233,4.0299168742,0.\C,2.925 0452984,2.7659866872,0.\C,2.1397448677,1.6163074347,0.\C,0.2702949969, -3.011459415,0.\C,1.6636522649,-3.16146059,0.\C,2.236425175,-4.4287469 735,0.\C,1.4278693859,-5.5648498285,0.\C,0.0408806142,-5.424080462,0.\ C,-0.5349065907,-4.157992745,0.\O,-1.2195587715,3.1774257634,0.\H,-4.2 875360979,-1.087966434,0.\H,0.4524758583,5.1018734583,0.\H,2.578083172 3,0.6264117147,0.\H,2.2890481907,-2.2778522639,0.\H,3.3171088984,-4.53 03229085,0.\H,-0.5952144308,-6.3035014486,0.\H,-1.6103855872,-4.033555 8699,0.\H,-5.2810496103,1.2000710067,0.\H,-3.8077630938,3.2134607144,0 \H,2.9548695258,4.9124813092,0.\H,1.8765857017,-6.5531803464,0.\O,4.2 867252397,2.7193017612,0.\H,4.5714938405,1.7985254519,0.\\Version=ES64 L-G09RevD.01\State=2-A"\HF=-1045.9580301\S2=0.765697\S2-1=0.\S2A=0.750 193\RMSD=2.875e-09\RMSF=4.789e-06\Dipole=0.2463683,0.3878941,0.\Quadru pole=6.3996933,1.9819544,-8.3816477,-5.2024429,0.,0.\PG=CS [SG(C19H12N 302)]\\@

No imaginary frequencies.

# 1p (X=OBn)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C26H18N3O2(2)\PIOTR\07-May-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-OBn 2nd orien t benzotrazinyl (phenazinoBT), C1\\0,2\N,-1.7236151143,-0.6739409862,-0.0149607907\N,-4.2247124752,0.4665901651,0.0089230512\C,-3.085218189, 1.1589512651,-0.0252763119\N,-1.8328291219,0.6741260023,-0.038130581\C ,-3.8155196518,-3.7057757966,0.0753142614\C,-2.6908647189,-2.896548849 5,0.0409213224\C,-2.8356612385,-1.5066232011,0.0192118513\C,-4.1085298 **295**, -0.8971463097, 0.031487944\C, -5.2384877421, -1.7330616991, 0.06658715 14\C,-5.0838477481,-3.1109152744,0.087855627\C,-0.4487633742,-1.254201 9452,-0.022789116\C,-0.351608547,-2.6529436652,-0.0000933683\C,0.89967 27394,-3.2565341927,-0.0052871861\C,2.0516200669,-2.4846709181,-0.0338 317005\C,1.9589808783,-1.0856628516,-0.0570077994\C,0.7098883551,-0.46 85221481,-0.0500854098\C,-3.1889663422,2.6420112885,-0.0524786534\C,-2 .0489231597,3.4548247251,-0.1127686924\C,-2.1709464396,4.8399578718,-0 .1379451688\C,-3.4317235065,5.4347001419,-0.102791381\C,-4.5707116985, 4.6330207621,-0.0428307305\C,-4.4519572754,3.2474400887,-0.0181680649\ O,-1.4522282825,-3.481344247,0.0285206404\H,-6.2167397078,-1.267912829 9,0.0759636314\H,0.9497524824,-4.3390262778,0.0131876605\H,0.587959104 7,0.6030166816,-0.0610358549\H,-1.0714516606,2.9904210962,-0.141002774 7\H,-1.2794410342,5.457327182,-0.1856685511\H,-5.555607662,5.088311042 9,-0.0152840567\H,-5.3277768412,2.6126433848,0.0276408698\H,-5.9608348 831,-3.7488352652,0.1147983838\H,-3.6893667675,-4.7814988506,0.0918065 872\H,3.0329111374,-2.9432941007,-0.0374799259\H,-3.5252153852,6.51591 83484,-0.1223800693\0,3.1439927545,-0.4190551059,-0.0793142967\C,3.121 5825615,1.0047898261,-0.1452251902\H,2.6234925976,1.4170079984,0.74218 48262\H,2.5413867736,1.3161963993,-1.0266880579\C,4.539267398,1.509788 8435,-0.2362357993\C,5.4826343669,0.8546781664,-1.033044039\C,4.912754 7751,2.669339717,0.4449648374\C,6.7770576093,1.3542263611,-1.144670280 1\C,6.2058520242,3.1759991429,0.3261019878\C,7.1415802697,2.518370692, -0.4685894553\H,5.1991965906,-0.0539920571,-1.5522221143\H,4.189064662 3,3.1787955558,1.0751409828\H,7.5028840349,0.834225231,-1.7617574009\H ,6.482469797,4.0780591024,0.8622607606\H,8.1508082475,2.9071087894,-0. 5575086856\\Version=ES64L-G09RevD.01\State=2-A\HF=-1316.3237708\S2=0.7 65765\S2-1=0.\S2A=0.750196\RMSD=6.610e-09\RMSF=1.331e-06\Dipole=0.7036 28,-0.1956697,-0.0494546\Quadrupole=2.7653557,7.1419043,-9.9072599,6.1 137531,-1.7915708,1.7072673\PG=C01 [X(C26H18N3O2)]\\@

No imaginary frequencies.

#### lq (X=Ph)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C25H16N3O1(2)\PIOTR\09-Feb-2020\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-Ph benzotrazi nyl (phenazinoBT), C1\\0,2\N,-0.2971786719,-1.2456028721,-1.0550575944 \N,1.4980172435,-2.4699340769,0.628016017\C,0.1791606269,-2.4425177462 ,0.8299020214\N,-0.7544803062,-1.8653713235,0.0562727471\C,2.847773095 9,-0.5256495653,-2.8323353764\C,1.4961105589,-0.5547513093,-2.53158029 72\C,1.0527595978,-1.2045202316,-1.377019935\C,1.955010097,-1.83946246 73,-0.4972685671\C,3.3241525449,-1.8006068335,-0.8168339991\C,3.752731 5248, -1.1533090936, -1.9653754263\C, -1.2142211108, -0.6177599284, -1.9109 267005\C,-0.7228923836,0.0203217632,-3.0637497715\C,-1.6030446287,0.64 50700921,-3.9344444674\C,-2.9685680433,0.6409077799,-3.670457521\C,-3. 48200933,0.0086751954,-2.5278744474\C,-2.5855217917,-0.6194496567,-1.6 562351852\C,-0.3399578001,-3.1220133542,2.0457760117\C,-1.7117928763,-3.1674988092,2.3289781813\C,-2.1742059841,-3.8095351975,3.4727405436\C ,-1.2753848362,-4.4149010769,4.3502913976\C,0.0907320782,-4.3741263655 ,4.0752678535\C,0.556561567,-3.7333462421,2.932029204\0,0.6126060636,0 .061028913,-3.3826285735\H,4.0185750721,-2.2874725645,-0.1428784003\H, -1.1972102652,1.1386721737,-4.8099158579\H,-2.9357777101,-1.142680029, -0.7778981815\H,-2.4077399873,-2.6979281207,1.6455840647\H,-3.23939089 03,-3.8380158635,3.679203087\H,0.7964322739,-4.8432494365,4.7534868428 \H,1.6146044361,-3.6946740954,2.7057447703\H,4.810425373,-1.1280147378 ,-2.2046173382\H,3.1766335118,-0.0182380358,-3.7310857983\H,-3.6395651 567,1.1588783695,-4.3459737223\H,-1.6380034556,-4.9155953791,5.2424794 674\C,-4.9375937059,0.0062939337,-2.2444743333\C,-5.4170748848,0.12023 00164,-0.9312042286\C,-5.8724925072,-0.1084465311,-3.2838709818\C,-6.7 833231527,0.1189794552,-0.6666542738\C,-7.2388820197,-0.1084601212,-3. 019857435\C,-7.7006023893,0.0050866426,-1.7097966843\H,-4.7118246277,0 .2365244628,-0.1148854964\H,-5.5234871414,-0.226409092,-4.3044892576\H *,*−7.1315190893,0.2159170983,0.3567257881\H,−7.9437609702,−0.2066444576 ,-3.8393188461\H,-8.7658441788,0.0046175381,-1.5035354503\\Version=ES6 4L-G09RevD.01\State=2-A\HF=-1201.8004269\S2=0.765616\S2-1=0.\S2A=0.750 19\RMSD=3.318e-09\RMSF=2.208e-06\Dipole=-0.3452567,0.4263615,-0.630949 1\Quadrupole=7.1726485,-9.0513744,1.878726,0.3010548,-3.0159191,-4.931 7652\PG=C01 [X(C25H16N3O1)]\\

No imaginary frequencies.

### 1r (X=thienyl)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C23H14N3O1S1(2)\PIOTR\10-Fe b-2020\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-Thio benzot razinyl (phenazinoBT), C1\\0,2\N,-0.5100749881,-2.2146382221,-2.177187 2015\N,1.0764676153,-4.3784702938,-1.5823487388\C,-0.236448372,-4.3249 826045,-1.3500317509\N,-1.0719078925,-3.3063054149,-1.6110011507\C,2.7 528745816,-0.9596044368,-3.3366241669\C,1.3977516007,-1.005020143,-3.0 544049175\C,0.8454408024,-2.1472016808,-2.4697983587\C,1.6395889668,-3 .2703171237,-2.1542981975\C,3.0138723192,-3.2081705935,-2.4469455762\C ,3.5510163072,-2.0695927052,-3.0273593979\C,-1.3208689403,-1.110091016 5,-2.4769649018\C,-0.7218151374,0.0168994085,-3.0685434969\C,-1.496844 5007,1.1227196434,-3.3846668208\C,-2.860189399,1.1239986407,-3.1130305 473\C,-3.4796668491,0.0082851929,-2.5269309556\C,-2.6905034735,-1.1085 215502,-2.2205805022\C,-0.8695936971,-5.518498772,-0.7304915862\C,-2.2 46233018,-5.5637898694,-0.4719192783\C,-2.8174606713,-6.6911860607,0.1 081899868\C,-2.0239396537,-7.7891406302,0.4389818904\C,-0.6537216246,-

7.7517959557,0.1845977388\C,-0.0792624018,-6.626020712,-0.3960230537\O ,0.6184944334,0.0835910031,-3.358510602\H,3.6256922267,-4.0689793578,-2.2059154643\H,-1.0107610069,1.980658896,-3.8343860752\H,-3.1278032733 ,-2.0018428827,-1.7987844896\H,-2.8599449246,-4.7104454355,-0.73082673 85\H,-3.8851544432,-6.7133341667,0.302019734\H,-0.0297102667,-8.602615 6153,0.4390450021\H,0.983203994,-6.5835638658,-0.5998446998\H,4.611868 7764,-2.0297267387,-3.2500031649\H,3.1670626991,-0.0674098739,-3.79027 53845\H,-3.4436234939,2.0092099359,-3.3401232932\H,-2.4712874388,-8.66 83817253,0.8917223533\C,-4.9140201227,-0.0085638879,-2.2251302543\C,-5 .5761612808,-0.7189513669,-1.251496788\C,-6.9815959937,-0.5025951935,-1.2418943487\C,-7.3887389431,0.3717181344,-2.2101014373\S,-6.054982468 4,0.9378270752,-3.1524125197\H,-5.0629464658,-1.3572392699,-0.54297358 09\H,-7.6571183877,-0.9731265834,-0.5382624749\H,-8.3876063241,0.71708 34882,-2.4306249799\\Version=ES64L-G09RevD.01\State=2-A\HF=-1522.55560 1\S2=0.76587\S2-1=0.\S2A=0.750197\RMSD=2.447e-09\RMSF=2.208e-06\Dipole =-0.2130941,0.5711108,-0.0645579\Quadrupole=9.1781672,-1.5693477,-7.60 88195,1.983991,-5.4402635,-5.1294693\PG=C01 [X(C23H14N3O1S1)]\\ No imaginary frequencies.

# 1s (X=CCPh)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C27H16N3O1(2)\PIOTR\14-Feb-2020\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-CCPh benzotra zinyl (phenazinoBT), Cs\\0,2\N,0.7276841485,1.6986784905,0.\N,-0.78675 67277,3.9915911126,0.\C,-1.2950427192,2.7574130416,0.\N,-0.6204964611, 1.596085887,0.\C,3.3985999406,4.2340927276,0.\C,2.7715571274,2.9995586 808,0.\C,1.3768768789,2.9255783237,0.\C,0.5778128642,4.0885311606,0.\C ,1.2296876492,5.3350253376,0.\C,2.6145261269,5.3962025123,0.\C,1.49859 70175,0.5268385341,0.\C,2.9010504055,0.6493915094,0.\C,3.698783198,-0. 4869814404,0.\C,3.1195942932,-1.7489243521,0.\C,1.7199655557,-1.891173 679,0.\C,0.9181145215,-0.7392478526,0.\C,-2.7755575962,2.6281338923,0. \C,-3.3995723792,1.3731849309,0.\C,-4.786927912,1.2770584848,0.\C,-5.5 711847509,2.4301047304,0.\C,-4.9576882652,3.6819763691,0.\C,-3.5704476 835,3.7818986557,0.\0,3.5418150763,1.8621794216,0.\H,0.6187672266,6.22 9550761,0.\H,4.7749468906,-0.3589910982,0.\H,-0.1592632645,-0.81648699 57,0.\H,-2.7888111177,0.4794011608,0.\H,-5.2575463398,0.2990238039,0.\ H,-5.5613603263,4.5839503708,0.\H,-3.0804145758,4.7473103717,0.\H,3.10 94788498,6.3613841942,0.\H,4.4809993763,4.2759180651,0.\H,3.7451172198 ,-2.6332527051,0.\H,-6.6538617179,2.3527135553,0.\C,1.123006032,-3.182 5270184,0.\C,0.6179015402,-4.2856952506,0.\C,0.0201909143,-5.577843299 7,0.\C,-1.3795254302,-5.7172582548,0.\C,0.8182264325,-6.7361503589,0.\ C,-1.959692119,-6.9800784604,0.\C,0.2296917828,-7.995156418,0.\C,-1.15 93394022,-8.1225275223,0.\H,-1.9980934794,-4.8268496548,0.\H,1.8975517 113,-6.6328158168,0.\H,-3.0408582542,-7.0733537829,0.\H,0.857270616,-8 .8804484502,0.\H,-1.615758164,-9.1068448443,0.\\Version=ES64L-G09RevD. 01\State=2-A"\HF=-1277.9574937\S2=0.766056\S2-1=0.\S2A=0.750202\RMSD=2 .043e-09\RMSF=4.718e-07\Dipole=0.5946377,-0.48837,0.\Quadrupole=6.7679 82,8.208763,-14.976745,5.8086655,0.,0.\PG=CS [SG(C27H16N3O1)]\\ No imaginary frequencies.

# 1t (X=OAc)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C21H14N3O3(2)\PIOTR\27-Sep-2020\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-OAc benzotraz inyl (phenazinoBT), C1\\0,2\N,0.0162894508,0.6301359637,-0.0385883945\ N,-2.5959053823,-0.2176247815,0.0298982997\C,-1.5421607761,-1.03617695 9,0.0304617753\N,-0.2430336138,-0.6962244007,-0.0014674561\C,-1.715730

634,3.8799171423,-0.088017912\C,-0.6916424333,2.9474491368,-0.08378503 96\C,-0.9930866872,1.5838251812,-0.0439782252\C,-2.3265090205,1.123498 2505,-0.0079106787\C,-3.3543281889,2.0834543556,-0.0127588009\C,-3.044 1524336, 3.4340317539, -0.0520242534\C, 1.3483191721, 1.0613783854, -0.0720 402973\C,1.6072312009,2.4428669804,-0.1128819588\C,2.9149091904,2.9032 763276,-0.1514853522\C,3.9831850427,2.009988479,-0.1494319962\C,3.7168 672353,0.643355995,-0.1021590346\C,2.4154804665,0.1624283146,-0.063252 1339\C,-1.8117134249,-2.4973499583,0.0701505522\C,-0.768449689,-3.4331 42257,0.0745179858\C,-1.0445777711,-4.7956204286,0.1120558905\C,-2.364 5319639,-5.2441293483,0.1458074387\C,-3.4077355301,-4.3193284066,0.141 5730329\C,-3.1351431165,-2.9559529373,0.1041846511\0,0.607840462,3.387 0269105,-0.1200851432\H,-4.3790628088,1.7333860128,0.0149534854\H,3.08 23812017, 3.9733521642, -0.1842611657\H, 2.218865888, -0.8991778043, -0.033 3393159\H,0.2552986293,-3.0822555133,0.0483566788\H,-0.2270843555,-5.5 095931633,0.1149830552\H,-4.4376724238,-4.6607308234,0.1676127107\H,-3 .9352823641,-2.2266298728,0.1008371286\H,-3.842633771,4.1682184245,-0. 0551753174\H,-1.4683108716,4.9340364183,-0.1187889309\H,5.0006086691,2 .3724151491,-0.1746416649\H,-2.5781463838,-6.3079235543,0.1751229873\O ,4.7145362203,-0.3230393394,-0.1728066568\C,5.8227470089,-0.234220838, 0.6291390379\0,6.0207301649,0.6515434861,1.4140864813\C,6.7272121236,-1.4096094707,0.3659678717\H,6.1978218241,-2.342965555,0.5773420939\H,7 .0146588128,-1.4310414123,-0.6890385767\H,7.6128850905,-1.3313235472,0 .994782018\\Version=ES64L-G09RevD.01\State=2-A\HF=-1198.6203984\S2=0.7 65645\S2-1=0.\S2A=0.750189\RMSD=1.932e-09\RMSF=6.925e-07\Dipole=0.4960 087,0.0654465,-0.4502107\Quadrupole=3.3201283,7.5366976,-10.8568259,-8 .1856253,-5.281074,-2.3547451\PG=C01 [X(C21H14N3O3)]\\

No imaginary frequencies.

### $1u (X=NHCOCF_3)$

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C21H12F3N4O2(2)\PIOTR\09-Ma y-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance,NoAngle) fcheck/\Parent flat C(8)-O-Ph(N1)-10-NHCOCF 3 2nd orient benzotrazinyl, C1\\0,2\N,1.2710187132,-0.8598085029,0.000 0036279\N,3.6469137627,0.5168312149,-0.000014895\C,2.4461126557,1.0977 332315,-0.0000179467\N,1.2462108787,0.4924596514,-0.0000075953\C,3.644 777066,-3.6756326933,0.0000260833\C,2.4482733654,-2.9785478149,0.00002 33615\C,2.4574534068,-1.5813665306,0.0000087439\C,3.6647702138,-0.8514 218078,-0.0000021811\C,4.8710433444,-1.5744918415,0.0000006863\C,4.850 5458893,-2.9605665176,0.0000143565\C,0.0594820431,-1.5607992316,0.0000 020636\C,0.0953940349,-2.9669852818,0.0000179464\C,-1.0897254348,-3.68 54426698,0.0000151025\C,-2.3224618485,-3.0385759447,-0.0000070038\C,-2 .3578732078, -1.6389836329, -0.0000272438\C, -1.1693156334, -0.9052403708, -0.0000199383\C,2.4059373727,2.5834111709,-0.0000130585\C,1.1919045436 ,3.2835461932,0.0000120291\C,1.1800238163,4.6741869951,0.0000166388\C, 2.3787697802,5.3864875636,-0.0000037794\C,3.5906441813,4.6973883784,-0 .0000284484\C,3.6058950338,3.3066545659,-0.0000325435\0,1.268880731,-3 .6805877522,0.0000360122\H,-1.0336368818,-4.7677063698,0.0000290109\H,  $-1.1700568289, 0.1770943304, -0.0000367567 \ H, 0.2623054466, 2.7288522118, 0$ .0000287774\H,0.2325849365,5.2036774202,0.0000365468\H,4.5277846947,5. 2447801264,-0.0000443566\H,4.5397033478,2.7589097313,-0.0000511492\H,5 .7850773352,-3.5111294867,0.0000162566\H,3.6238300519,-4.7586106122,0. 000037081\H,-3.2431440626,-3.6011906199,-0.0000111834\H,2.3676755271,6 .4717849174,-0.0000001387\H,5.7998181939,-1.0170646353,-0.0000080291\N ,-3.5612553846,-0.9023936074,-0.0000640889\H,-3.4670153013,0.102833068 2,-0.0000606288\C,-4.835203126,-1.3748116216,-0.0001182399\0,-5.198691 1787, -2.5310815196, -0.0001073601\C, -5.9069047089, -0.2546737964, -0.0002 552451\F,-6.6782918089,-0.3599256872,1.0817571921\F,-5.3616635163,0.98 5480763,0.000022801\F,-6.6777299239,-0.3596740349,-1.0827024377\\Versi

on=ES64L-G09RevD.01\State=2-A\HF=-1476.4760905\S2=0.765777\S2-1=0.\S2A =0.750192\RMSD=8.742e-09\RMSF=2.867e-06\Dipole=0.877358,0.0317089,0.00 00633\Quadrupole=-7.8664746,10.1530096,-2.286535,-10.9601059,-0.000745 8,-0.0001726\PG=C01 [X(C21H12F3N4O2)]\@

No imaginary frequencies.

# 1v (X=NHCOOMe)

1\1\GINC-LOCALHOST\FOpt\UB3LYP\6-31G(2d,p)\C21H15N4O3(2)\PIOTR\09-May-2021\0\\#P UB3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-10-NHCOOMe 2nd orient benzotrazinyl, C1\\0,2\N,-0.7310286981,-0.8863007903,0.0000 025866\N,-3.1628247015,0.3927253433,0.0000052658\C,-1.9860712203,1.020 5785698,0.0000051157\N,-0.7627931118,0.4658527552,0.0000028761\C,-2.98 93505946,-3.7966272572,0.0000056396\C,-1.8207830884,-3.0518115116,0.00 00040444\C,-1.8874352404,-1.6556745088,0.0000042499\C,-3.1241760336,-0 .9755861487,0.00000558\C,-4.2996018984,-1.7469497906,0.0000068896\C,-4 .2225527808,-3.131479747,0.000007049\C,0.5090547814,-1.5373833488,-0.0 00000149\C,0.5293656322,-2.9423923207,-0.0000005909\C,1.7440715759,-3. 6091322193,-0.0000042829\C,2.9483762998,-2.9113063089,-0.0000083169\C, 2.9310632737,-1.5098282942,-0.0000081982\C,1.7097341845,-0.830629823,-0.0000034199\C,-2.0059771575,2.5071899382,-0.0000000554\C,-0.820637049 1,3.2546869958,-0.0000023337\C,-0.8635614862,4.6447031643,-0.000006674 9\C,-2.0893555561,5.3095191055,-0.0000091812\C,-3.2730572981,4.5730649 956,-0.0000072299\C,-3.2334033878,3.1827226025,-0.0000027062\O,-0.6163 756449,-3.7054300308,0.0000016479\H,1.7344516696,-4.6930105639,-0.0000 047704\H,1.6645438711,0.2505990014,-0.0000035894\H,0.1295348709,2.7359 944863,-0.0000003174\H,0.0623576968,5.211142319,-0.0000081185\H,-4.231 1803074,5.0829800456,-0.0000092158\H,-4.14462637,2.5980285636,-0.00000 11127\H,-5.134108403,-3.7195167381,0.0000080005\H,-2.9241838433,-4.877 8807168,0.0000054224\H,3.891964102,-3.4350062461,-0.0000120241\H,-2.12 10892275,6.3944661259,-0.0000126688\H,-5.2504247611,-1.2280085208,0.00 00077281\N,4.0965367524,-0.7265210636,-0.0000144006\H,3.9720475771,0.2 743580726,-0.0000150091\C,5.4008813173,-1.1475908122,-0.0000252965\O,5 .7994550344,-2.2903785868,-0.0000282382\0,6.2043590248,-0.0552470808,-0.0000317122\C,7.6058437773,-0.348522387,-0.0000438682\H,7.881159472,-0.920494686,0.8890974185\H,7.8811517904,-0.9204563881,-0.8892124718\H, 8.1062596963,0.6196361757,-0.000025971\\Version=ES64L-G09RevD.01\State =2-A\HF=-1253.9902246\S2=0.765535\S2-1=0.\S2A=0.750188\RMSD=4.290e-09\ RMSF=1.822e-06\Dipole=0.6466657,0.2122292,-0.0000049\Quadrupole=7.7046 37,1.5659275,-9.2705646,11.5967341,-0.0000526,-0.0000631\PG=C01 [X(C21 H15N4O3)]\\@

No imaginary frequencies.

# 1a-leuco (X=H)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H13N3O1\PIOTR\06-Apr-201 9\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance,NoAngle) fcheck\Parent C(8)-O-Ph(N1) benzotrazinyl-4H (ph enazinoBT), C1\\0,1\N,0.0167277772,0.7451214957,0.3708922059\N,1.15486 23131,-1.7161458632,0.38724341\C,-0.2270204202,-1.5189771724,0.2070427 82\N,-0.7915675717,-0.3619473404,0.2038294813\C,3.5393804118,1.6655850 455,-0.3518977142\C,2.1697159592,1.7792579174,-0.1172916585\C,1.399999 2908,0.6471106849,0.1169281347\C,1.9968058361,-0.6117489938,0.11486982 38\C,3.3587537463,-0.7394560519,-0.1315097284\C,4.1262518644,0.4055593 009,-0.3609443181\C,-0.5804547593,2.0089483589,0.2603083741\C,0.239532 7719,3.1294250841,0.0391826494\C,-0.3047499695,4.4002592318,-0.0453814 167\C,-1.6819154183,4.5840038847,0.08716088\C,-2.501989242,3.481264681 8,0.3006540108\C,-1.9568473231,2.2008277216,0.3867527469\C,-1.06570399

38,-2.7232846194,0.0564529698\C,-2.329136759,-2.6303749526,-0.54657280 95\C,-3.1232880971,-3.7597415302,-0.6938195705\C,-2.6730277563,-5.0032 086685,-0.2454452161\C,-1.423660435,-5.1048711895,0.359785964\C,-0.624 0384014, -3.9741342687, 0.5112414451\0, 1.6151069955, 3.0326801997, -0.1054 959669\H,3.816435608,-1.7233824153,-0.1320347781\H,0.3669148998,5.2329 813717,-0.2215270072\H,-3.5742999623,3.6085030655,0.404122909\H,-2.582 2242991,1.3336596503,0.5511865113\H,-2.6652766995,-1.6635665284,-0.900 8327962\H,-4.0957029009,-3.6727963027,-1.1676713577\H,-1.0698628825,-6 .0638450789,0.7240548013\H,0.3276278129,-4.0629926599,1.0246553126\H,5 .1910639475,0.3100480123,-0.5408698002\H,4.1156426437,2.5675354243,-0. 5194287141\H,-2.1006221952,5.5819369698,0.0217749758\H,-3.2939311296,-5.8846798643,-0.366853654\H,1.4908343576,-2.5924113106,0.0106096488\\V ersion=ES64L-G09RevD.01\State=1-A\HF=-971.3414708\RMSD=3.532e-09\RMSF= 7.946e-07\Dipole=0.2702364,-1.0986145,-0.3057615\Quadrupole=3.5557137, 6.1188852,-9.6745989,-0.882348,0.350537,-0.403506\PG=C01 [X(C19H13N301 )1//

No imaginary frequencies.

### 1b-leuco (X=COOMe)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H15N3O3\PIOTR\06-May-202 1\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance, NoAngle) fcheck/\Parent flat C(8)-O-Ph(N1)-COOMe benzotraz inyl 4H, C1\\0,1\N,0.2737290629,0.739901808,-0.3005789197\N,2.98182799 79,0.7582669409,-0.4174393953\C,2.2407666574,-0.4126685411,-0.17551278 97\N,0.9551406783,-0.4497646061,-0.1231961903\C,0.9096221294,4.3491080 433,0.2815335991\C,0.2376625744,3.1403814573,0.1125726969\C,0.94185465 49,1.9654444728,-0.1103810027\C,2.3340035074,1.9894996144,-0.162024221 5\C,3.0180225438,3.185976112,0.0190623539\C,2.2991269597,4.3643275915, 0.2368620916\C,-1.1182089122,0.7202436751,-0.1374020544\C,-1.792968063 8,1.938357351,0.0714434849\C,-3.1733746958,1.9713401724,0.2064930744\C ,-3.9099894023,0.7941594734,0.1391734463\C,-3.2546444933,-0.4216135716 ,-0.0612523479\C,-1.8612185956,-0.4550729493,-0.1988135156\C,2.9979450 117, -1.6688874751, -0.0143356262\C, 2.4167315645, -2.7587779736, 0.6507738 215\C,3.1227358856,-3.9439875213,0.808062512\C,4.4205154104,-4.0643758 913,0.307069412\C,5.0034276949,-2.9907331826,-0.3601919211\C,4.2986357 **196**, -1.7999085199, -0.5214380023\0, -1.1362878428, 3.1484826825, 0.1537225 307\H,-3.6493343087,2.9313787946,0.3701120665\H,-1.3448387172,-1.39079 28652,-0.352982835\H,1.4129227399,-2.6525763794,1.0435583914\H,2.66250 65855,-4.7765978581,1.3300739894\H,6.0062605262,-3.0789596649,-0.76508 55396\H,4.750262488,-0.9881091726,-1.0819926833\H,2.8305197586,5.30034 48894,0.3656354071\H,0.3309106568,5.250794348,0.4414164025\H,-4.987835 4969,0.7995161474,0.2413097278\H,4.9712528968,-4.9903228435,0.43575197 33\H,4.1023418407,3.1979879385,-0.0212178588\C,-4.0826776467,-1.652826 9405,-0.1249941848\0,-5.2884923566,-1.6782411711,-0.0153555881\0,-3.34 0928648, -2.7657301745, -0.3225168647\C, -4.0877217297, -3.9842355984, -0.3 975546808\H,-3.3523248597,-4.7721698192,-0.5603270569\H,-4.6369884357, -4.1580365498,0.5310813102\H,-4.8010963519,-3.9491299328,-1.2246083504 \H,3.9340454014,0.7136306892,-0.0804037424\\Version=ES64L-G09RevD.01\S tate=1-A\HF=-1199.2328528\RMSD=3.648e-09\RMSF=7.899e-07\Dipole=2.08856 68,-0.142675,0.2024914\Quadrupole=-2.75298,10.524139,-7.771159,-0.2527 713,0.2406442,0.313051\PG=C01 [X(C21H15N3O3)]\\ No imaginary frequencies.

# 1c-leuco (X=CN)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C20H12N4O1\PIOTR\08-Apr-201
9\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=
(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-CN benzotraziny

1 4H, C1\\0,1\N,-0.0069506008,-0.5901947333,-0.3282416145\N,-2.3536649 97,0.7676054778,-0.3513826988\C,-1.1129182724,1.4030864685,-0.18243454 58\N,0.0168109879,0.7850834415,-0.1773298766\C,-2.361709455,-3.3828506 803,0.3180875232\C,-1.1779754774,-2.6795295534,0.1091219479\C,-1.19753 32168,-1.3083353084,-0.1007588971\C,-2.4099315167,-0.6224535034,-0.103 4559141\C,-3.5984497293,-1.3094039096,0.1163058757\C,-3.567829008,-2.6 90737421,0.323910268\C,1.2039599427,-1.2752558326,-0.2180385268\C,1.17 88924387, -2.6710492861, -0.0206138013\C, 2.3566498693, -3.396912732, 0.065 3894592\C,3.5884058472,-2.7579066241,-0.0387517193\C,3.6259299976,-1.3 73042554,-0.2263893317\C,2.4358488957,-0.6348069192,-0.3149221376\C,-1 .1227712886,2.8721954546,-0.042303557\C,-0.0442751564,3.5261445942,0.5 712859796\C,-0.0466121395,4.9080765152,0.7074858139\C,-1.1235825135,5. 6614357039,0.2365918006\C,-2.1957893318,5.0218059074,-0.3793294407\C,-2.197464297, 3.6358854411, -0.5193566088\0,0.0052030945, -3.382424044, 0.0 980240078\H,2.2887631673,-4.4671398162,0.2216802987\H,2.4582456242,0.4 360620178,-0.4583532461\H,0.7824810407,2.9328021423,0.9421172681\H,0.7 919770902,5.4004250681,1.1887496113\H,-3.0307267978,5.600163076,-0.760 8888186\H,-3.0190676016,3.1561394425,-1.0409319728\H,-4.4949324343,-3. 2290584424,0.4839154368\H,-2.3144514535,-4.4545989606,0.4680465522\H,4 .508858131,-3.3240906592,0.0279044258\H,-1.1239458518,6.7406220884,0.3 483682412\H,-4.5402722602,-0.7706007858,0.1143155775\C,4.8846113292,-0 .6979699476,-0.328647149\N,5.9061032675,-0.1548878166,-0.4095103574\H, -3.1372136143,1.2920057904,0.0130542464\\Version=ES64L-G09RevD.01\Stat e=1-A\HF=-1063.5870263\RMSD=5.724e-09\RMSF=1.013e-06\Dipole=-2.9144592 ,0.1518635,0.4542467\Quadrupole=-14.0838188,16.9772445,-2.8934257,-6.3 360503,2.4617314,0.0785809\PG=C01 [X(C20H12N4O1)]\\

No imaginary frequencies.

### 1d-leuco (X=NO<sub>2</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H12N4O3\PIOTR\21-Aug-201 9\0\\#P B3LYP/6-31G(2d,p) Opt=(tight, ReadFC) freq(noraman, ReadIso) # P Geom=(NoDistance,NoAngle) fcheck guess=check\\Parent flat C(8)-O-Ph( N1)-N02 benzotrazinyl 4H, C1\\0,1\N,0.2413745445,0.7487165884,-0.25457 36698\N,2.9529050818,0.7398707176,-0.3476853503\C,2.1970960549,-0.4261 851271,-0.1462641971\N,0.9101664431,-0.4528941879,-0.108661213\C,0.904 3833949,4.3618540908,0.2531981906\C,0.2260019902,3.1554207603,0.100904 766\C,0.9211830924,1.9698324461,-0.0854876642\C,2.3137672187,1.9792373 209,-0.1226739768\C,3.0051739175,3.1743561096,0.0399000075\C,2.2946877 639,4.3630937166,0.2255934458\C,-1.1463282945,0.7419693916,-0.11798567 59\C,-1.8169588275,1.9723976292,0.054109364\C,-3.1991485768,2.02201533 82,0.1645826402\C,-3.9532314054,0.8533783694,0.1118389867\C,-3.2833158 233,-0.3516443096,-0.0480379303\C,-1.8967405005,-0.4287715685,-0.16305 92008\C,2.940814255,-1.6937140183,-0.0117522214\C,2.3450248407,-2.7941 725725,0.6217908133\C,3.0388366347,-3.9901162881,0.7507314049\C,4.3377 289312, -4.1094132063, 0.2528448648\C, 4.9349663722, -3.0244617999, -0.3829 674538\C,4.2427430021,-1.8230708325,-0.5158898229\O,-1.1513068126,3.17 37595108,0.1232455172\H,-3.6682131693,2.9895272856,0.2987230086\H,-1.4 100563809,-1.3839185815,-0.2853821487\H,1.340044484,-2.6904193718,1.01 20923468\H,2.5672031112,-4.8319119901,1.2468412392\H,5.9386510999,-3.1 121640021,-0.7856581951\H,4.7045126168,-1.001317841,-1.0531457203\H,2. 8331832679,5.2965346686,0.3418744953\H,0.3320039503,5.2717386365,0.386 7182326\H,-5.0304575374,0.8642184653,0.1959928213\H,4.8783184185,-5.04 41361445,0.3586932701\H,4.0898073691,3.1768089266,0.0104233509\N,-4.05 94618363,-1.5939164712,-0.0972694671\0,-3.4453379958,-2.6478720873,-0. 2270085933\0,-5.2802715161,-1.5084424191,-0.0049272385\H,3.9000268209, 0.682848847,0.0005219736\\Version=ES64L-G09RevD.01\State=1-A\HF=-1175. 8545581\RMSD=3.831e-09\RMSF=1.545e-06\Dipole=2.6648671,1.3140726,0.343 4036\Quadrupole=-0.9097982,4.4973376,-3.5875394,-13.0414928,-1.1025844

,-0.9778252\PG=C01 [X(C19H12N4O3)]\\ No imaginary frequencies.

### 1e-leuco (X=CF<sub>3</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C20H12F3N3O1\PIOTR\14-Feb-2 020\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geo m=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-CF3 benzotraz inyl leuco, C1\\0,1\N,-0.1470126049,-0.7621206254,-0.3222368077\N,-2.8 478551662,-1.0114641851,-0.3600014225\C,-2.2024919312,0.2220509054,-0. 1688369228\N,-0.923577615,0.3698912548,-0.1558794148\C,-0.4582771846,-4.4089935832,0.2863495713\C,0.1038314603,-3.1491533073,0.0920267424\C, -0.7043787032,-2.0391360364,-0.1101808628\C,-2.0901291005,-2.180620718 1,-0.1196583755\C,-2.6646765135,-3.429777672,0.0853293335\C,-1.8423228 066,-4.541515893,0.2852687901\C,1.2377417167,-0.6225674583,-0.19495889 28\C,2.0219939911,-1.7770813717,-0.0047126796\C,3.3994123485,-1.686918 7609,0.1056100591\C,4.032484832,-0.4472686681,0.0275845737\C,3.2638758 032,0.696515057,-0.157003459\C,1.8742559469,0.6145090052,-0.2634087769 \C,-3.0602028517,1.4130451396,-0.0146424236\C,-2.5600705072,2.56297906 84,0.6138745054\C,-3.3623749544,3.6862937483,0.764648322\C,-4.67682945 39,3.6831839919,0.2938284811\C,-5.180015102,2.5489103636,-0.3371452944 \C,-4.3785831167,1.4200949014,-0.4919642723\0,1.473933174,-3.041142595 2,0.0872068841\H,3.9622884107,-2.5997303655,0.2624147478\H,1.272696639 6,1.5030420849,-0.3923517433\H,-1.5424416783,2.552894628,0.9846500665\ H,-2.9638504196,4.5668625152,1.2577661002\H,-6.1956493993,2.5415755423 ,-0.7189109902\H,-4.7703616342,0.5601565968,-1.0250440847\H,-2.2883542 195,-5.5182701743,0.4337899064\H,0.1990749945,-5.2578253893,0.43074600 43\H,5.108608442,-0.3754458852,0.1181398267\H,-5.3022992839,4.56107931 81,0.4174167684\H,-3.7447398676,-3.5337004057,0.0773827047\C,3.9276344 113,2.0372722864,-0.2951417567\F,5.128934164,2.0690777435,0.3119520317 \F,4.1384433084,2.3656250926,-1.5881618685\F,3.1804439852,3.0260832002 ,0.2332081482\H,-3.7896687644,-1.041140559,0.0061482704\\Version=ES64L -G09RevD.01\State=1-A\HF=-1308.3879449\RMSD=9.273e-09\RMSF=1.002e-06\D ipole=-1.9310798,-0.8247491,0.4135255\Quadrupole=6.1989651,2.2011622,-8.4001273,-6.4984726,0.9657565,0.7515721\PG=C01 [X(C20H12F3N3O1)]\\ No imaginary frequencies.

### 1f-leuco (X=OMe)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C20H15N3O2\PIOTR\05-May-202 1\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance, NoAngle) fcheck/\Parent C(8)-O-Ph(N1)-10-)-10-OMe 2nd orin t benzotrazinyl (phenazinoBT) Leuco\\0,1\N,0.3072215837,0.4277042283,0 .3013737457\N,-2.2105811428,1.4325770503,0.4035332576\C,-1.9440776703, 0.0698914473,0.1759264613\N,-0.7586650237,-0.4317675881,0.1329498462\C ,1.0250086545,4.0208859962,-0.3030279882\C,1.2185334443,2.6511881681,-0.1222942136\C,0.1320711163,1.8138175718,0.1014637189\C,-1.1564869514, 2.341337942,0.1443651974\C,-1.3622359795,3.7023967511,-0.0476570519\C, -0.2643062587,4.5382718581,-0.2681876326\C,1.5990493619,-0.0941335962, 0.1520693295\C,2.6659805214,0.7904291551,-0.0551983645\C,3.9589525705, 0.3051045959,-0.1747148608\C,4.2155172013,-1.0587140584,-0.0927060086\ C,3.1557647432,-1.9464185282,0.1085692338\C,1.8493979043,-1.4670410073 ,0.2302353145\C,-3.1048149848,-0.827395925,0.0242147295\C,-2.959717022 3,-2.0627925949,-0.6250519991\C,-4.0480342972,-2.9121199207,-0.7732805 352\C,-5.3020493128,-2.5459265402,-0.2799092037\C,-5.455417143,-1.3248 301271,0.3705083116\C,-4.3658480596,-0.4700919428,0.5230557431\0,2.497 4577994,2.1676697025,-0.1528827307\H,-2.3690559733,4.1057423675,-0.013 3391363\H,4.7611323822,1.0158042083,-0.339000759\H,1.0068100833,-2.123 4879603,0.3844184748\H,-1.9857452052,-2.3326702914,-1.0146971973\H,-3.

921578757,-3.8615584226,-1.2835257048\H,-6.4225683208,-1.0363307647,0. 7691070328\H,-4.4918984116,0.4578643648,1.0708294072\H,-0.4200316876,5 .6022845892,-0.4062998763\H,1.8912467883,4.6512736832,-0.4640726766\H, 5.221675417,-1.4489162312,-0.1833117122\H,-6.151628638,-3.2096305814,-0.4022349763\O,3.4903140536,-3.2672024042,0.1748301798\C,2.4544149098, -4.2075097151,0.3849591993\H,1.7172692411,-4.1871966632,-0.4279445064\ H,2.9353952199,-5.1867131688,0.4083441041\H,1.9381685154,-4.0361265554 ,1.3381230558\H,-3.1090247818,1.7336682574,0.0502280611\\Version=ES64L -G09RevD.01\State=1-A\HF=-1085.8691812\RMSD=2.338e-09\RMSF=1.102e-06\D ipole=-1.4419098,-0.0403254,-0.1966803\Quadrupole=2.5626632,6.7739385, -9.3366017,-0.1461916,-0.2655979,-0.1238628\PG=C01 [X(C20H15N302)]\\ No imaginary frequencies.

### 1g-leuco (X=F)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H12F1N3O1\PIOTR\07-Feb-2 020\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geo m=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-Cl benzotraziny l (phenazinoBT) Leuco\\0,1\N,0.0073638744,0.6083329132,0.3158769204\N,  $-1.8486057973, -1.3651318849, 0.4713106896 \\ C, -0.4881034877, -1.6185392406$ ,0.2261704155\N,0.4138061277,-0.7017342776,0.1590180266\C,-3.085015372 5,2.5997546273,-0.1762543453\C,-1.7363684375,2.2730636973,-0.039713334 6\C,-1.3512272541,0.9539764996,0.1627333673\C,-2.3136866401,-0.0507359 554,0.2319920636\C,-3.6602298702,0.2611414148,0.0849738328\C,-4.039288 3442,1.5908438705,-0.1168309111\C,0.9626457784,1.6125990972,0.14745763 32\C,0.5289253633,2.9387869602,-0.0386027057\C,1.4445894769,3.96640964 55,-0.180415709\C,2.8169873743,3.709130124,-0.1436200745\C,3.227118031 3,2.3991579069,0.0335405508\C,2.3317743438,1.3477792422,0.1788373966\C ,-0.0816664351,-3.0295533224,0.0819139073\C,1.1055005022,-3.35400715,-0.5913372549\C,1.4944919234,-4.6795723837,-0.7315356932\C,0.7069307479 ,-5.7055973193,-0.2054522864\C,-0.4700327765,-5.3934210481,0.469187923 \C,-0.863872352,-4.0649566769,0.6133645754\0,-0.8143144505,3.284953394 2,-0.0925282671\H,-4.4049552807,-0.5261223485,0.1395364143\H,1.0679206 081,4.9722024481,-0.3265888254\H,2.6850566571,0.3358321141,0.314993751 2\H,1.7046104748,-2.5516886799,-1.0042890365\H,2.4126094619,-4.9155972 354,-1.2596186227\H,-1.0820019774,-6.182803528,0.8931961473\H,-1.76061 24666,-3.8353281447,1.1792678591\H,-5.0895628878,1.8386378526,-0.22080 08369\H,-3.3572456747,3.638003151,-0.3229995702\H,3.547086304,4.500882 5857,-0.251891561\H,1.0114099004,-6.7406243168,-0.3205713624\F,4.54180 92651,2.1216775013,0.0692003071\H,-2.46582672,-2.0927896833,0.13706492 56\\Version=ES64L-G09RevD.01\State=1-A\HF=-1070.576054\RMSD=4.653e-09\ RMSF=8.146e-07\Dipole=-1.2267874,-0.9903159,-0.264507\Quadrupole=-1.05 30803,8.9475382,-7.8944579,0.2546711,-1.4473683,-0.524228\PG=C01 [X(C1 9H12F1N3O1) ]\\

No imaginary frequencies.

### 1h-leuco (X=Cl)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H12C11N3O1\PIOTR\07-Feb-2020\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Ge om=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-Cl benzotrazin yl (phenazinoBT) Leuco\\0,1\N,-0.2324809419,-0.3394444773,-0.720182103 1\N,1.6015715396,-0.4712006933,1.2745196647\C,0.2371436029,-0.23401521 61,1.5124398714\N,-0.6548463207,-0.1764564544,0.5856286909\C,2.8773349 066,0.1838546887,-2.6768069894\C,1.5275264912,0.0337238594,-2.36391284 19\C,1.1283636283,-0.1719803524,-1.0500502109\C,2.0798948246,-0.229850 4312,-0.0342203431\C,3.4282808022,-0.0692762568,-0.3315118396\C,3.8207 389058,0.1349505348,-1.6568529155\C,-1.177087755,-0.1648898047,-1.7346 896182\C,-0.7288793338,0.0253014481,-3.0551837764\C,-1.6339144098,0.17

44463287,-4.0913903829\C,-3.0081995952,0.1406956078,-3.8479817067\C,-3 .4411133427,-0.0409279064,-2.5425586512\C,-2.5495156494,-0.1930400542, -1.4844981247\C,-0.1851981457,-0.0856411761,2.9185519041\C,-1.38170714 13,0.5784157739,3.227227278\C,-1.7848871794,0.7220856641,4.5481851628\ C,-1.0026691529,0.2090749444,5.5847653904\C,0.1833939656,-0.4566647818 ,5.2881553643\C,0.591277807,-0.6045884033,3.9644260533\O,0.6142763471, 0.0750385653,-3.3871806468\H,4.1646346149,-0.1147283164,0.4641692989\H ,-1.2480307492,0.324096805,-5.0932379547\H,-2.8988334388,-0.3321342988 ,-0.4720109996\H,-1.9770218375,0.9816931468,2.4172043156\H,-2.71017655 36,1.2427708271,4.7722190702\H,0.7912663537,-0.8709335558,6.0857865003 \H,1.4948358958,-1.1644820075,3.7470830525\H,4.8726954893,0.2489847341 ,-1.8925685403\H,3.1595308295,0.332232545,-3.7121105696\H,-3.718261440 6,0.2559067952,-4.6562580093\H,-1.318545877,0.3272308694,6.6160130096\ Cl, -5.1666410095, -0.0821711022, -2.2035884647\H, 2.2088573095, -0.1347682 492,2.0094015616\\Version=ES64L-G09RevD.01\State=1-A\HF=-1430.9377286\ RMSD=4.577e-09\RMSF=1.627e-06\Dipole=1.5162444,0.2840572,1.0329265\Oua drupole=-1.8032123,-8.2057642,10.0089764,-1.2602055,-0.2875415,-0.5572 144\PG=C01 [X(C19H12Cl1N3O1)]\\

No imaginary frequencies.

# li-leuco (X=Br)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\Gen\C19H12Br1N3O1\PIOTR\13-Feb-2020\0\\ #P B3LYP/gen FOpt=tight freg(noraman) SCF=Direct #P Geom=(NoDistance,N oAngle) fcheck Pseudo=Read\\Parent C(8)-O-Ph(N1)-10-Br benzotrazinyl ( phenazinoBT) Leuco\\0,1\N,-0.4258326291,0.3950283836,-0.2878367303\N,2 .0350104758,1.5360325796,-0.3766455675\C,1.8432548037,0.1595520373,-0. 1695877116\N,0.6875460414,-0.408085951,-0.1329669091\C,-1.3485316874,3 .9461529696,0.2806767801\C,-1.459938484,2.5664716675,0.1073918998\C,-0 .3270620287,1.7888841391,-0.098978709\C,0.9319285068,2.3866271718,-0.1 339336005\C,1.0575063838,3.7600458619,0.0495545219\C,-0.0883189315,4.5 347694465,0.2541357673\C,-1.6817241443,-0.1975999708,-0.140085344\C,-2 .8055485445,0.6293822778,0.0509306327\C,-4.0712431916,0.0803161237,0.1 732511706\C,-4.2582612077,-1.3032456408,0.1118039743\C,-3.143718908,-2 .1109985281,-0.0698343879\C,-1.8614232224,-1.581983822,-0.1958665051\C ,3.0525861342,-0.6760491678,-0.0275581444\C,2.9731924148,-1.9250112204 ,0.6082880624\C,4.1069609798,-2.7160205965,0.7479206036\C,5.3396504453 ,-2.2761350044,0.2587669848\C,5.4272256399,-1.0408803117,-0.3792296241 \C,4.292243806,-0.2444670137,-0.523251512\0,-2.7122630723,2.0070536973 ,0.1276740596\H,2.0405366953,4.219995065,0.02190721\H,-4.9105172192,0. 7504852535,0.3240060227\H,-0.9975257195,-2.2155321774,-0.3358813861\H, 2.0148631232,-2.2532445394,0.9932324631\H,4.0317904218,-3.6773145451,1 .2468099521\H,6.3776657081,-0.6966232512,-0.7750568719\H,4.3676073458, 0.6953026562,-1.0613230867\H,0.0064872928,5.6070809832,0.3866532989\H, -2.2505761705,4.5283971939,0.4292042557\H,-5.2485861266,-1.7298047986, 0.2063619253\H,6.2242756655,-2.8947418,0.3735145106\H,2.91723395,1.884 2953833,-0.0274068518\Br,-3.3648525967,-4.0246210218,-0.1518009336\\Ve rsion=ES64L-G09RevD.01\State=1-A\HF=-983.8898511\RMSD=3.607e-09\RMSF=8 .899e-07\Dipole=1.4824514,1.1880863,0.3209342\Quadrupole=9.2589984,0.2 682671, -9.5272655, -2.1080097, -0.5576112, -0.6330079\PG=C01 [X(C19H12Br1 N301)]\\

No imaginary frequencies.

# 1j-leuco (X=COMe)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H15N302\PIOTR\05-May-202 1\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-10-Ac benzotraz inyl-H, 2nd orient leuco C1\\0,1\N,-0.1575630648,0.6011764923,0.298622 3979\N,2.4652017691,1.271367821,0.4126788682\C,2.0289194731,-0.0436562 235,0.1718619509\N,0.7899190966,-0.3900118729,0.1203564123\C,-0.411702 6277,4.2565067827,-0.2874946495\C,-0.7723274108,2.921455106,-0.1176283 716\C,0.1948062786,1.951422048,0.1055850346\C,1.5398838504,2.310380721 4,0.1564621602\C,1.9152156436,3.6362029498,-0.0257900964\C,0.933163118 7,4.6062337263,-0.2437167268\C,-1.504500451,0.2475687734,0.1404238414\ C,-2.4529153067,1.2655059309,-0.0687823389\C,-3.8016447041,0.961898907 9,-0.196999007\C,-4.2300878502,-0.3572108642,-0.1229260395\C,-3.304296 6315,-1.3854845795,0.0779695629\C,-1.9439632471,-1.07205237,0.20822873 66\C,3.067630519,-1.0795493868,0.0130423925\C,2.7746001417,-2.27162042 52,-0.6657066445\C,3.7468639605,-3.2513005396,-0.818072605\C,5.0287116 909,-3.060204751,-0.2985976339\C,5.3276934794,-1.8828591797,0.38136386 82\C,4.3553029678,-0.8975567255,0.53736115\O,-2.1077890676,2.597593791 4,-0.1580113957\H,-4.4961891487,1.7781134678,-0.3608778063\H,-1.198878 9427,-1.8396782838,0.3628442012\H,1.780428415,-2.4063801116,-1.0739996 768\H,3.5075124384,-4.1657908739,-1.3509483582\H,6.3169919571,-1.73043 40374,0.8001676366\H,4.590793837,-0.0047123684,1.1070608284\H,1.223155 4942,5.642655291,-0.3732330236\H,-1.1908292871,4.9919704139,-0.4472949 401\H,-5.2774896874,-0.6142302719,-0.2204416175\H,5.7874313986,-3.8256 941665,-0.4232554681\H,2.9645860884,3.9096101096,0.013940938\C,-3.8108 263991,-2.789647387,0.1473722193\0,-4.9987667545,-3.0293633509,0.03211 7002\C,-2.8150687056,-3.9164508975,0.3650968101\H,-2.0674026937,-3.939 0787372,-0.4348910196\H,-2.275450002,-3.7856018167,1.3091942633\H,-3.3 574571604,-4.8618050685,0.3839323903\H,3.4008772249,1.4569365256,0.077 4249146\\Version=ES64L-G09RevD.01\State=1-A\HF=-1123.9974364\RMSD=2.93 5e-09\RMSF=6.932e-07\Dipole=2.4469887,0.7225207,-0.1950154\Ouadrupole= -3.0453229,6.9139044,-3.8685815,-8.6660597,0.1744619,0.0459584\PG=C01 [X(C21H15N3O2)]\\

No imaginary frequencies.

### 11-leuco (X=NH<sub>2</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H14N401\PIOTR\23-Aug-201 9\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance, NoAngle) fcheck/\Parent flat C(8)-O-Ph(N1)-NH2 benzotrazin yl 4H, C1\\0,1\N,0.2358419812,0.7390880434,-0.2556608378\N,2.946429161 2,0.7383962307,-0.4092859893\C,2.1966040168,-0.4256073784,-0.157868587 5\N,0.9107453799,-0.4517723101,-0.0927815185\C,0.9093749059,4.35318506 26,0.2636509925\C,0.2189859618,3.1491426652,0.1188250813\C,0.915119088 1,1.9645635722,-0.0930134097\C,2.3067836203,1.977070391,-0.1610447653\  $\texttt{C,3.0046584496,3.1686713163,-0.0048434754} \\ \texttt{C,2.297565364,4.3558460833,0}$ .2048981242\C,-1.1549829155,0.7328295773,-0.0933595798\C,-1.8167065324 ,1.9567401207,0.1017482888\C,-3.1931447604,1.9848637674,0.2325223074\C ,-3.9397181251,0.809203582,0.1741074108\C,-3.2951048339,-0.4175190576, -0.0133114857\C,-1.9000527433,-0.4426609396,-0.1467304169\C,2.94342426 56, -1.6885825271, -0.0075729101\C, 2.3615310722, -2.7746849432, 0.66373905 72\C,3.0584020713,-3.9666015844,0.8105003455\C,4.3489901758,-4.0984273 569,0.2935174009\C,4.9331356348,-3.0285704497,-0.3786512951\C,4.237298 7201,-1.8310162751,-0.5295820843\0,-1.146137854,3.174514234,0.17405436 16\H,-3.6748999331,2.9444719047,0.3841301035\H,-1.3746988207,-1.378575 1693,-0.2885174724\H,1.3644647007,-2.6587318626,1.0708214163\H,2.59728 38328,-4.7955193042,1.3377935936\H,5.9304978329,-3.1248112747,-0.79530 06085\H,4.6891622623,-1.0215928518,-1.0932510659\H,2.8380912175,5.2891 564037,0.3157453108\H,0.3407998913,5.2625500606,0.4171532427\H,-5.0188 957883,0.8474936335,0.280797375\H,4.8929366298,-5.0294575823,0.4144583 972\H,4.088455167,3.1697210681,-0.0588308773\N,-4.01964666649,-1.619525 8842,-0.0062380008\H,3.8960676582,0.6896258953,-0.0649883212\H,-3.5744 77442,-2.3606170671,-0.5316452351\H,-4.9795764774,-1.5105590736,-0.306 2240627\\Version=ES64L-G09RevD.01\State=1-A\HF=-1026.7000702\RMSD=4.51

```
6e-09\RMSF=7.009e-07\Dipole=0.7137666,-0.5224288,-0.1773772\Quadrupole
=10.158486,1.6047048,-11.7631908,2.3917306,3.0949437,1.6471008\PG=C01
[X(C19H14N4O1)]\\
```

No imaginary frequencies.

#### 1m-leuco (X=NHAc)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H16N4O2\PIOTR\07-May-202 1\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance, NoAngle) fcheck/\Parent flat C(8)-O-Ph(N1)-NHAc 2nd benzot razinyl-H, leuco C1\\0,1\N,-0.1156168843,0.8929375091,-0.2732281545\N, -2.8112680489,0.6495960079,-0.4322013213\C,-1.9645614879,-0.4416142185 ,-0.167819861\N,-0.6815605213,-0.354069096,-0.0971006867\C,-1.10834244 28,4.4313480958,0.2532019033\C,-0.3147275905,3.2934207621,0.109130487\ C,-0.9013161687,2.0527579239,-0.1084086103\C,-2.28794316,1.9411003719, -0.1816227873\C,-3.0893225548,3.0657312595,-0.0260693409\C,-2.49125613 45,4.3106010874,0.1882709267\C,1.2680178788,1.0125232037,-0.0947614597 \C,1.8196877047,2.289101595,0.1062507878\C,3.1865246633,2.4377778481,0 .2541494391\C,4.0464093539,1.3399173151,0.2098964337\C,3.5039002871,0. 0674266782,0.0164532081\C,2.1184270919,-0.0872248627,-0.1339463151\C,-2.5994472916,-1.7636823029,-0.0080190939\C,-1.9346060821,-2.7842861148 ,0.6880546164\C,-2.526043001,-4.0308537014,0.8438354718\C,-3.791759524 5,-4.2830528131,0.3107266344\C,-4.4575657791,-3.278570085,-0.386090389 3\C,-3.8675518669,-2.0266929352,-0.5458356771\0,1.0450738536,3.4389766 729,0.168902171\H,3.5779294408,3.4365251973,0.4123591555\H,1.678708616 3,-1.0660719983,-0.2825088887\H,-0.9583687383,-2.5747797132,1.10803875 7\H,-2.0025560546,-4.8083043523,1.390888118\H,-5.4360563384,-3.4683783 071,-0.8150224727\H,-4.380231988,-1.2680839908,-1.1278824152\H,-3.1129 683784,5.1919395364,0.2980585356\H,-0.623337186,5.3872486429,0.4102601 68\H,5.1119783682,1.4595543735,0.3234838371\H,-4.2536200165,-5.2564959 691,0.4384820396\H,-4.168781272,2.9710935762,-0.0835427502\N,4.2810671 247,-1.1078737542,-0.044144874\H,3.7548211216,-1.954815173,-0.19413284 84\C,5.6415506161,-1.2568289791,0.0920723224\0,6.4147469098,-0.3344681 209,0.2751833026\C,6.1125412647,-2.702852443,0.0235378587\H,6.09648075 04,-3.141139826,1.0274440745\H,5.495053691,-3.3253139287,-0.6308741101 \H,7.1430192293,-2.7116013319,-0.3324255849\H,-3.7580564854,0.51731809 01,-0.1025928271\\Version=ES64L-G09RevD.01\State=1-A\HF=-1179.3690777\ RMSD=1.952e-09\RMSF=9.368e-07\Dipole=-1.9845237,-1.2259717,0.0865709\Q uadrupole=-3.9068964,11.1421413,-7.235245,-7.5160972,-0.856773,-0.1241 723\PG=C01 [X(C21H16N4O2)]\\@

No imaginary frequencies.

# 1n-leuco (X=I)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\Gen\C19H12I1N3O1\PIOTR\11-Feb-2020\0\\#
P B3LYP/gen FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance,No
Angle) fcheck Pseudo=Read\\Parent C(8)-O-Ph(N1)-10-I benzotrazinyl (ph
enazinoBT) Leuco\\0,1\N,-0.4263884612,0.3916557444,-0.2796180577\N,2.0
331826912,1.5318348126,-0.3827289163\C,1.8425443588,0.1563098643,-0.16
7000776\N,0.6869758331,-0.4112879179,-0.1235249879\C,-1.3460313494,3.9
441581953,0.2867961396\C,-1.4582670077,2.5641262465,0.1173017501\C,-0.
326947301,1.7857534935,-0.0938506947\C,0.9317586096,2.3835192601,-0.13
67738079\C,1.0585973299,3.7572654417,0.043358781\C,-0.0859701121,4.532
6910987,0.2522110264\C,-1.683630227,-0.2000301751,-0.1363671321\C,-2.8
05413749,0.628372088,0.0595915716\C,-4.0723050181,0.0816107581,0.17665
14698\C,-4.2623434381,-1.3008278976,0.1042374745\C,-3.1513474076,-2.11
49627962,-0.0834495469\C,-1.8671770017,-1.5840614357,-0.2032699385\C,3
.0533270664,-0.6768907829,-0.0242592525\C,2.979618843,-1.9210930276,0.
6214470787\C,4.1157407302,-2.7089864613,0.7608554335\C,5.3449421535,-2

No imaginary frequencies.

# 10-leuco (X=OH)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H13N3O2\PIOTR\06-May-202 1\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance, NoAngle) fcheck/\Parent C(8)-O-Ph(N1)-10-OH 2nd orint benz otrazinyl lecuo\\0,1\N,-0.6063827115,0.0822259378,-0.2963519076\N,1.60 72353882,1.6477021358,-0.3882327605\C,1.666001892,0.2590991888,-0.1736 342084\N,0.6309934358,-0.5066635767,-0.1367988791\C,-2.147507862,3.405 5742021,0.3051455845\C,-2.0145203375,2.0288322476,0.122603543\C,-0.760 7103711,1.4701400268,-0.0951386337\C,0.3689087667,2.2844318625,-0.1321 387397\C,0.2495174285,3.6554518171,0.0615361913\C,-1.0148870039,4.2102 583401,0.2772863769\C,-1.7388056826,-0.7276133709,-0.1614110825\C,-2.9 881177771,-0.119089175,0.0407329903\C,-4.1311184348,-0.8928685387,0.14 73286464\C,-4.0654278395,-2.282133203,0.0581300541\C,-2.8271445372,-2. 889463082,-0.136503246\C,-1.668212715,-2.1181693068,-0.2451959127\C,3. 0045305508,-0.3437347781,-0.028972573\C,3.1547644967,-1.576958495,0.62 2819064\C,4.4115645671,-2.1503865052,0.7631914657\C,5.542354906,-1.504 7289227,0.2588066509\C,5.4032811301,-0.2830706188,-0.3938705395\C,4.14 42072016,0.2955790155,-0.5380056867\0,-3.1446192074,1.2592596038,0.146 4460715\H,1.1339242606,4.2834624568,0.0318618085\H,-5.0775806396,-0.38 8848917,0.3078378907\H,-0.6986331948,-2.5780829226,-0.3949579283\H,2.2 729345554, -2.0641081045, 1.0207630741\H, 4.5126881334, -3.1016751618, 1.27 55841627\H,6.2741190394,0.2206219474,-0.8005878756\H,4.0468832101,1.22 66074439,-1.0864518782\H,-1.1133951963,5.2808371646,0.4172483924\H,-3. 1378144513, 3.8157930014, 0.4623516398\H, -4.955363035, -2.8937279417, 0.13 89224555\H,6.5236707046,-1.9529443211,0.374410758\O,-2.7951172504,-4.2 531814452,-0.2165619409\H,-1.8843745665,-4.5340556746,-0.3577452431\H, 2.4103637565,2.1475014992,-0.0308411849\\Version=ES64L-G09RevD.01\Stat e=1-A\HF=-1046.5653141\RMSD=3.533e-09\RMSF=1.023e-06\Dipole=1.502717,0 .49029,0.2056594\Quadrupole=3.5831837,4.7226814,-8.3058651,-2.8227687, -0.4751933,-0.1365053\PG=C01 [X(C19H13N3O2)]\\@

No imaginary frequencies.

#### 1p-leuco (X=OBn)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C26H19N302\PIOTR\08-May-202 1\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance,NoAngle) fcheck\\Parent C(8)-0-Ph(N1)-10-OBn 2nd orient be nzotrazinyl leuco, C1\\0,1\N,-1.6848221201,-0.6839098644,0.2747081037\ N,-4.1551787527,0.4167731731,0.45934388\C,-3.0077156174,1.1720528701,0 .1553219661\N,-1.8229981178,0.6740312576,0.0716561465\C,-3.7730987143, -3.7220353943,-0.1675915256\C,-2.6523744796,-2.8990865328,-0.055801144 9\C,-2.8048416739,-1.5322029721,0.143801707\C,-4.0800349908,-0.9782602

241,0.2301439923\C,-5.2038215734,-1.7866874429,0.1063893521\C,-5.04217 24198,-3.1608528857,-0.0894089151\C,-0.4153272907,-1.2472517993,0.0945 602314\C,-0.3088609979,-2.6328217184,-0.0857525937\C,0.9377421715,-3.2 211348946,-0.2319582648\C,2.0942745488,-2.4499249861,-0.2049144903\C,1 .9946477137,-1.0676085878,-0.0311165166\C,0.7432589516,-0.4653909336,0 .1190257314\C,-3.1867884889,2.6241401683,-0.0320594094\C,-2.2429418908 ,3.3620801665,-0.7621220784\C,-2.406277607,4.7289421564,-0.9442069176\ C,-3.5138445801,5.3859070786,-0.4041622863\C,-4.4529553799,4.663715346 5,0.326753925\C,-4.2927044957,3.2924051392,0.5128993908\0,-1.4140112,-3.4757555314,-0.1293702982\H,-6.1941139688,-1.3482158291,0.1738795511\ H,0.9856990083,-4.2949563724,-0.3738743214\H,0.627039836,0.5984603506, 0.2580199377\H,-1.3931411614,2.8416488244,-1.1867673737\H,-1.671110531 6,5.2849441923,-1.5170230669\H,-5.3103112513,5.166785537,0.7619107895\ H,-5.0102900258,2.7518848208,1.1211452332\H,-5.9163639092,-3.796477632 ,-0.1743585073\H,-3.6249769762,-4.7856301971,-0.3108777301\H,3.0730195 691,-2.8998595568,-0.3163767677\H,-3.6412064369,6.4531254048,-0.552679 1054\0,3.1761263252,-0.3839728937,-0.0132813654\C,3.1385031982,1.02923 80354,0.1191174398\H,2.6742037512,1.3117160232,1.0739699987\H,2.519048 8582,1.456270217,-0.6846097409\C,4.5448315448,1.5713139617,0.041984025 6\C,5.5180837491,0.9497829597,-0.7442827301\C,4.8737468361,2.740758676 4,0.7309999046\C,6.7975199765,1.4921346071,-0.8388980452\C,6.150635874 3,3.2888215985,0.6298605268\C,7.1172474411,2.6644672891,-0.1557672364\ H,5.2688808813,0.0344309667,-1.2680482981\H,4.1267156987,3.224616637,1 .3545136282\H,7.5469010277,0.9967572852,-1.4482660314\H,6.3917482052,4 .1971644315,1.1728048151\H,8.1146970627,3.0854174562,-0.2306634498\H,-5.0153152072,0.8407151579,0.1382069143\\Version=ES64L-G09RevD.01\State =1-A\HF=-1316.9308291\RMSD=9.741e-09\RMSF=8.295e-07\Dipole=-1.0469766, 0.9725443,-0.2275291\Quadrupole=10.1234544,1.7219076,-11.845362,-0.031 0142,-1.8311539,2.005953\PG=C01 [X(C26H19N3O2)]\\ No imaginary frequencies.

# 1q-leuco (X=Ph)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C25H17N301\PIOTR\09-Feb-202 0\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance, NoAngle) fcheck/\Parent C(8)-O-Ph(N1)-10-Ph benzotrazinyl leuco (phenazinoBT), C1\\0,1\N,-0.272352841,-0.9471521701,-0.884110085 1\N,1.5124062871,-2.0174623028,0.8590822147\C,0.1260586388,-2.23406807 59,0.9598910446\N,-0.7403713895,-1.7299188034,0.1520689334\C,2.8395566 383,-0.6357024819,-2.8827504765\C,1.4972167551,-0.5592241048,-2.514138 4755\C,1.0785718032,-1.0319239194,-1.2770298636\C,2.0044154013,-1.5867 670238,-0.3958361986\C,3.3432129343,-1.6810447801,-0.7571066719\C,3.75 54638072, -1.2002262207, -2.0028183239\C, -1.2018940672, -0.4867603461, -1. 8263669457\C,-0.7304429632,-0.0074673123,-3.0610024664\C,-1.6174687006 ,0.4753727848,-4.0077204314\C,-2.9864908443,0.488355003,-3.748878405\C ,-3.4829079811,0.0101381407,-2.5314137704\C,-2.5728335855,-0.475777673 9,-1.5802148264\C,-0.3469139764,-3.0543183102,2.0912979745\C,-1.600485 4663,-3.6812619085,2.0297753369\C,-2.0528280475,-4.4544796253,3.090637 7696\C,-1.2639797254,-4.6193930781,4.2309879817\C,-0.0210017818,-3.996 9249613,4.3039180948\C,0.4365580626,-3.2189926498,3.2425900699\O,0.613 2915469,0.0086602268,-3.3954640781\H,4.0583327255,-2.1150228813,-0.065 8491547\H,-1.2168699313,0.842490523,-4.9459948507\H,-2.9215367559,-0.8 804460285,-0.6400036861\H,-2.2009879399,-3.5558572553,1.1371072782\H,-3.0223415769,-4.9376852181,3.0261644329\H,0.5939459493,-4.1077786456,5 .1910765103\H,1.3876792481,-2.7048092905,3.3325546634\H,4.8012197501,-1.2617074919,-2.2818780347\H,3.1370536248,-0.2487686352,-3.8499181745\ H,-3.6642372559,0.8998936813,-4.4877060316\H,-1.6184274678,-5.22819706 82,5.0562148112\C,-4.9376686069,0.0177788175,-2.2425736375\C,-5.418750 685,0.2992057069,-0.9550005391\C,-5.8739870627,-0.2549860209,-3.251277 3169\C,-6.7842632071,0.3075791406,-0.6859998751\C,-7.2397365022,-0.244 6516436,-2.9837672762\C,-7.7020243703,0.0364607879,-1.6993095377\H,-4. 7139808698,0.5377880766,-0.1653798771\H,-5.523671165,-0.5029555483,-4. 2478069565\H,-7.1318313314,0.5354448704,0.3168435828\H,-7.9440668084,-0.4662098917,-3.7795653078\H,-8.7667790732,0.0435407033,-1.4899920586\ H,2.0690825871,-2.7394870757,1.2963674239\\Version=ES64L-G09RevD.01\St ate=1-A\HF=-1202.4080488\RMSD=6.274e-09\RMSF=1.702e-06\Dipole=0.685372 7,-0.8014166,0.7051276\Quadrupole=6.3694194,-8.9334323,2.5640129,-2.38 53667,2.8898315,-6.3366172\PG=C01 [X(C25H17N301)]\\ No imaginary frequencies.

1r-leuco (X=thienyl)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C23H15N3O1S1\PIOTR\13-Feb-2 020\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geo m=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-Thio benzotrazi nyl Leuco (phenazinoBT), C1\\0,1\N,-0.5730864355,-2.315085979,-2.44725 94243\N,0.9537744986,-4.517798067,-2.03875457\C,-0.3494010262,-4.39068 31929,-1.5243782646\N,-1.0976945341,-3.3598306306,-1.712046867\C,2.784 5319476,-0.9032115268,-3.1596756711\C,1.4042720807,-0.9968944653,-2.98 81084969\C,0.8219602345,-2.1996509186,-2.6098987259\C,1.6199096174,-3. 3216677815,-2.3965739994\C,2.9987116048,-3.2376488497,-2.5502954211\C, 3.5751269685, -2.024374691, -2.9360205314\C, -1.3474416896, -1.1557058116, -2.5789832703\C,-0.717198805,0.035519345,-2.982326736\C,-1.4576609698, 1.191782517,-3.1586768033\C,-2.8316968646,1.1919087187,-2.9321638213\C ,-3.4826642442,0.0193258383,-2.5300595361\C,-2.7224032811,-1.150615622 1,-2.3636057044\C,-0.8871986692,-5.5343535022,-0.7631994129\C,-1.94004 16366,-5.3433073098,0.1440309564\C,-2.4507945318,-6.4149920984,0.86427 9711\C,-1.9209455295,-7.6958028607,0.6953377873\C,-0.8800395211,-7.896 6520542,-0.2068629031\C,-0.3649513901,-6.8246565165,-0.9323371227\0,0. 6434396912,0.1205192224,-3.219782385\H,3.6142898968,-4.1151861101,-2.3 815052601\H,-0.9369624744,2.0939479078,-3.4591649312\H,-3.196338656,-2 .0811884234,-2.0839632499\H,-2.3373489691,-4.344168224,0.274984096\H,-3.2612531532, -6.2509768152, 1.5670588465\H, -0.470344212, -8.8903945844, -0.3552970857\H,0.4165685023,-7.0047473508,-1.6630734089\H,4.649108842, -1.9594730271,-3.0686213191\H,3.2084508231,0.0451874047,-3.4669707848\ H,-3.3899275462,2.1143010436,-3.0452133028\H,-2.3192303198,-8.53010422 65,1.2632724223\C,-4.9264000026,-0.0124571886,-2.2755685528\C,-5.63268 17902,-0.8362224628,-1.4310731986\C,-7.0344651329,-0.5937591359,-1.432 7000463\C,-7.3963974476,0.4142508527,-2.2811547951\S,-6.0225025238,1.0 756772751,-3.0969961774\H,-5.1523630218,-1.5777408365,-0.8048970239\H, -7.739851314,-1.14319681,-0.8212965866\H,-8.3818412424,0.8080321841,-2 .4798698357\H,1.5290840467,-5.1742530564,-1.5283545237\\Version=ES64L-G09RevD.01\State=1-A\HF=-1523.1635224\RMSD=8.659e-09\RMSF=1.220e-06\Di pole=0.7188296,-1.154,0.6979233\Quadrupole=6.6930246,2.9255512,-9.6185 759,-3.7697979,-3.6028197,-5.9690165\PG=C01 [X(C23H15N3O1S1)]\\ No imaginary frequencies.

# 1s-leuco (X=CCPh)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C27H17N3O1\PIOTR\14-Feb-202
0\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=
(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-CCPh benzotraziny
1 leuco (phenazinoBT), C1\\0,1\N,0.7305289939,1.6819129669,0.319109693
\N,-0.7598708781,3.9367209378,0.5145312937\C,-1.318506663,2.682120721,
0.2094746088\N,-0.6343792989,1.5953824851,0.1196741497\C,3.3843366683,
4.2381509953,-0.1249707977\C,2.7524111083,3.000704535,-0.0158507725\C,
1.381253564,2.9249034341,0.1886877005\C,0.6267837498,4.0925654934,0.28
14271117\C,1.2423179301,5.3328296795,0.1596862819\C,2.6239300977,5.398

7753881,-0.0397861364\C,1.4901672156,0.5209459236,0.1262764563\C,2.879 3525878,0.6448730102,-0.0638217239\C,3.6708558161,-0.4809232122,-0.229 732757\C,3.1038113354,-1.7507927548,-0.2117266453\C,1.7208568988,-1.89 74825312,-0.0273806852\C,0.9242408342,-0.7496464401,0.1399727202\C,-2. 7810360168,2.6221365385,0.0242353946\C,-3.3544608866,1.5698557463,-0.7 050437332\C,-4.7298521428,1.5072350089,-0.8855102435\C,-5.5584903751,2 .4922101629,-0.3444054725\C,-4.999485412,3.5367892188,0.3864690163\C,-3.6202498593,3.6033281816,0.5710488444\0,3.5229116489,1.8675019397,-0. 0974938243\H,0.6487981389,6.2383970159,0.2317653705\H,4.7355388651,-0. 3410440761,-0.3784516721\H,-0.1433766728,-0.8417682236,0.2809641663\H, -2.7027159723,0.8157965788,-1.1291729619\H,-5.1584432678,0.6904833773, -1.4571678554\H,-5.6358643785,4.2996359643,0.8229481163\H,-3.204443111 6,4.3992375263,1.1799281149\H,3.1079848974,6.3652524101,-0.1223052547\ H,4.4573226558,4.2650750825,-0.2717657274\H,3.7254225914,-2.6283880848 ,-0.3399396359\H,-6.6323656509,2.4428922105,-0.4913841395\C,1.12494504 65, -3.1898544359, -0.0044246911\C, 0.6189511403, -4.2927530126, 0.01776008 04\C,0.0248156674,-5.5860420161,0.0470300152\C,-1.3519943694,-5.736724 0992,0.2944286232\C,0.8032253647,-6.7378448481,-0.1694086676\C,-1.9278 161937, -7.0013070845, 0.3239783894\C, 0.2194254032, -7.9987214283, -0.1383 745929\C,-1.1465727969,-8.1365891674,0.1081077555\H,-1.9562950089,-4.8 523294521,0.4626753605\H,1.864803792,-6.6273244135,-0.360458447\H,-2.9 911810383,-7.1015535246,0.5167461478\H,0.8331651649,-8.8777922708,-0.3 070751321\H,-1.5993458149,-9.1223483926,0.1321484992\H,-1.3216944079,4 .7178869162,0.2037674992\\Version=ES64L-G09RevD.01\State=1-A\HF=-1278. 5657506\RMSD=1.585e-09\RMSF=1.031e-06\Dipole=-0.7947286,1.1153647,-0.2 391737\Quadrupole=3.9867,12.564858,-16.5515579,-2.6427588,-1.0565746,1 .0717422\PG=C01 [X(C27H17N3O1)]\\

No imaginary frequencies.

### 1t-leuco (X=OAc)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H15N3O3\PIOTR\29-Sep-202 0\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom= (NoDistance, NoAngle) fcheck/\Parent flat C(8)-O-Ph(N1)-10-OAc benzotra zinyl-H, leuco C1\\0,1\N,-0.2696257976,0.7514850191,0.3829818941\N,-2. 9809592154,0.7537779493,0.3261203522\C,-2.2194849171,-0.4197227428,0.1 829273941\N,-0.9327182157,-0.4490292632,0.2150399659\C,-0.8900834053,4 .3324116771,-0.3744444454\C,-0.2193440225,3.1378539213,-0.1157354474\C ,-0.9314191042,1.9657781922,0.1044468791\C,-2.3238465923,1.9795873761, 0.0657389779\C,-3.0036167084,3.1615952771,-0.2040191632\C,-2.279309929 2,4.3368052417,-0.4203944452\C,1.1272190437,0.7378274178,0.2979592155\ C,1.8084884861,1.9498735994,0.090461882\C,3.1913186197,1.9786625245,0. 0339600009\C,3.9381263722,0.8092293753,0.1802029109\C,3.2589391515,-0. 3855265048,0.374117795\C,1.8697810007,-0.4338088511,0.4334774823\C,-2. 9583548053,-1.687676954,0.029512138\C,-2.3337823764,-2.7990253647,-0.5 559731997\C,-3.0228947364,-3.9951880852,-0.7054498048\C,-4.3470625241, -4.1052900071,-0.2762609673\C,-4.9737137077,-3.0098931926,0.3112622117 \C,-4.2859745711,-1.8080900231,0.4644526418\0,1.1502165283,3.160041679 ,-0.0649897655\H,-4.0883352902,3.1650143335,-0.2332603682\H,3.67773264 63,2.9329007719,-0.1326019496\H,1.3614469873,-1.3744347261,0.590293729 2\H,-1.30989874,-2.7002995083,-0.8952928483\H,-2.5287093875,-4.8445276 9,-1.1658899017\H,-5.9981261076,-3.0893408657,0.660126277\H,-4.7736835 602,-0.9772533519,0.9634922721\H,-2.8070627478,5.2626634456,-0.6192614 075\H,-0.3085747417,5.2329027726,-0.5311684013\H,5.0172388542,0.833153 664,0.1302748268\H,-4.884377442,-5.0399066325,-0.3989169958\O,3.914781 0511,-1.5950407306,0.6059770095\C,4.9023536363,-2.0158171337,-0.239893 4881\0,5.2775897367,-1.4097116434,-1.2060314968\C,5.4341599399,-3.3456 329817,0.2321074991\H,5.8306998759,-3.2498619536,1.2469672282\H,4.6259 219913,-4.0814557781,0.2678136099\H,6.2177810223,-3.6822396969,-0.4452 530988\H,-3.9074402977,0.6881834435,-0.0734949984\\Version=ES64L-G09Re vD.01\State=1-A\HF=-1199.2284708\RMSD=4.708e-09\RMSF=4.826e-07\Dipole= -1.4587533,-0.4492958,0.1951928\Quadrupole=6.079383,6.7628533,-12.8422 363,-3.1060008,6.6319385,-1.2011255\PG=C01 [X(C21H15N3O3)]\\

No imaginary frequencies.

# 1u-leuco (X=NHCOCF<sub>3</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H13F3N402\PIOTR\09-May-2 021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geo m=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-10-NHCOCF3 2n d benzotrazinyl-H, leuco C1\\0,1\N,-1.2416505455,-0.8782728321,0.27817 47278\N,-3.5936703539,0.4634047892,0.4039509135\C,-2.3675751342,1.1046 933932,0.1617712512\N,-1.235141001,0.493498894,0.1070795347\C,-3.60681 75977,-3.6886205423,-0.2537054573\C,-2.4156919451,-2.9804163093,-0.101 6593301\C,-2.4364418605,-1.60735813,0.1055006304\C,-3.6518622046,-0.92 94543808,0.1619349315\C,-4.8456887398,-1.6220453149,-0.0013924362\C,-4 .8156814356,-3.0040817819,-0.2062134348\C,-0.0326483598,-1.5594632622, 0.1172032072\C,-0.0566421801,-2.9529916712,-0.0754666743\C,1.125669127 3,-3.6578153426,-0.2094939166\C,2.3633074183,-3.0149922137,-0.15948277 45\C,2.389714212,-1.6326550212,0.0250144175\C,1.1969604181,-0.91091742 26,0.1614511797\C,-2.3944744797,2.5716528918,0.004320984\C,-1.36329693 84,3.2238683411,-0.6874575931\C,-1.3819124022,4.6040167941,-0.83982739 95\C,-2.42920267,5.3584180803,-0.3074256185\C,-3.4547354561,4.72073209 81,0.3852089347\C,-3.4397775383,3.336538737,0.541282748\O,-1.235204998 1,-3.6768347181,-0.1430674837\H,1.0677771862,-4.7296045245,-0.36152834 32\H,1.2045662404,0.1630365997,0.3013423407\H,-0.5613219871,2.62879581 16,-1.1069240867\H,-0.5807885319,5.0943859833,-1.3832165397\H,-4.26628 96978,5.2995818734,0.8137243451\H,-4.2229134146,2.8583005609,1.1201416 098\H,-5.7458123739,-3.5486564221,-0.3222029791\H,-3.5606080779,-4.760 5876946,-0.4029237646\H,3.2829606481,-3.5690431761,-0.2636840921\H,-2. 4433370894,6.4360819612,-0.4322391472\H,-5.7893322646,-1.0881594712,0. 0424640197\N,3.5873383365,-0.8848859549,0.0867836291\H,3.4811471161,0. 2464697108,-2.4618062997,-0.2263747337\C,5.9175440355,-0.1944655031,0. 0666054482\H,-4.3968696449,0.9782667737,0.0692994721\F,5.3625793715,1. 0138146333,0.329939154\F,6.5923739895,-0.086714789,-1.0801239117\F,6.7 853383331,-0.4633338166,1.0419838991\\Version=ES64L-G09RevD.01\State=1 -A\HF=-1477.0851582\RMSD=3.855e-09\RMSF=5.730e-07\Dipole=-2.4544922,1. 4042853,-0.1131452\Quadrupole=-2.7889618,7.6519615,-4.8629996,3.270043 ,0.8389889,-0.4204144\PG=C01 [X(C21H13F3N4O2)]\\@

No imaginary frequencies.

# 1v-leuco (X=NHCOOMe)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H16N403\PIOTR\11-May-202
1\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=
(NoDistance,NoAngle) fcheck guess=check\\Parent flat C(8)-O-Ph(N1)-10NHCOOMe 2nd benzotrazinyl-H, leuco C1\\0,1\N,-0.6956190499,-0.90062781
56,-0.2755873936\N,-3.1050591626,0.3336128723,-0.4255670157\C,-1.91050
7185,1.0287509564,-0.1654290499\N,-0.7532514436,0.467532597,-0.0992748
317\C,-2.9387034991,-3.8111553384,0.2552250028\C,-1.7772594823,-3.0528
14139,0.1084293134\C,-1.8576769882,-1.6825624768,-0.1080864027\C,-3.10
1975855,-1.0601042834,-0.1769017275\C,-4.2655488173,-1.8033019418,-0.0
186022549\C,-4.1761561014,-3.1816804292,0.1942877271\C,0.5432655327,-1
.5291627515,-0.1038056489\C,0.5777483794,-2.9193212038,0.0974840381\C,
1.7901927318,-3.5683462,0.2406629506\C,2.9976641464,-2.8713575495,0.19
0439135\C,2.969207563,-1.4892650533,-0.0045589673\C,1.7430378259,-0.82
64214493,-0.149500986\C,-2.0044789797,2.4922670282,-0.0050382639\C,-1.
0024231388,3.1912690521,0.6845266708\C,-1.0850939155,4.5686865613,0.83

97752557\C,-2.1685940715,5.2748215448,0.3132283967\C,-3.165462817,4.59 10671224,-0.3770526304\C,-3.0861258288,3.2093518778,-0.5363682677\0,-0 .5706976039,-3.6964455854,0.1651966832\H,1.780534983,-4.640850344,0.39 98023998\H,1.7024392541,0.2455426782,-0.2983416826\H,-0.1720297943,2.6 330341917,1.0994271929\H,-0.3056159681,5.0948409891,1.3813474833\H,-4. 0050751795,5.1320168947,-0.8011440756\H,-3.8482716691,2.6968212454,-1. 1138962686\H,-5.0822091958,-3.7664190654,0.3061150348\H,-2.8461809644, -4.8792178292,0.4112074679\H,3.9406098377,-3.3835172496,0.3019732928\H *,*−2.2327708221,6.3503657086,0.4409975848\H,−5.23126279,−1.3113846054,− 0.0727176959\N,4.1282392201,-0.693138506,-0.0701968574\H,3.9919600562, 0.2931950674,-0.2293469256\C,5.432956389,-1.0829774385,0.0539417737\O, 5.8502658704, -2.2029604832, 0.2473433261\0, 6.2251638334, 0.0145902355, -0 .0766496886\C,7.6261145993,-0.2520412366,0.0307456705\H,7.867168912,-0 .6748219757,1.009142553\H,7.9489447188,-0.9508930435,-0.7447324472\H,8 .1182813581,0.7121178018,-0.0979904084\H,-3.9320547584,0.8100075292,-0 .0914357131\\Version=ES64L-G09RevD.01\State=1-A\HF=-1254.5978043\RMSD= 3.614e-09\RMSF=1.834e-06\Dipole=-1.008754,1.5254916,0.1188601\Quadrupo le=11.1696735,-0.1269464,-11.0427271,5.5502957,-0.5053337,0.457126\PG= C01 [X(C21H16N4O3)]\\@

No imaginary frequencies.

# $1a^+$ (X=H)

 $1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H12N3O1(1+)\PIOTR\04-May$ -2016\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman, ReadIso) SCF=Di rect #P Geom=(NoDistance,NoAngle) fcheck\\Oxo benzotrazinyl cat (phena zinoBT), start at the radical Cs geom/\1,1/N,-0.1988756319,0.,-0.69250 91965\N,1.649128296,0.,1.2964759969\C,0.3412030135,0.,1.5256934831\N,-0.6134412803,0.,0.5410135783\C,2.8625278201,0.,-2.6962208256\C,1.51966 04648,0.,-2.3978540063\C,1.118153928,0.,-1.0434203374\C,2.0740464367,0 .,0.0203671905\C,3.4412905429,0.,-0.3178600457\C,3.8089626238,0.,-1.64 80047498\C,-1.1732753446,0.,-1.7287606829\C,-0.7240976806,0.,-3.060539 4953\C,-1.6438131199,0.,-4.1041960641\C,-3.0001260818,0.,-3.8129766803 \C,-3.4508090052,0.,-2.4846954744\C,-2.5429470151,0.,-1.4412025678\C,-0.1569013212,0.,2.9039115534\C,-1.5346643329,0.,3.1818566201\C,-1.9792 283511,0.,4.4972434193\C,-1.059841532,0.,5.546625932\C,0.3101547508,0. ,5.2781598268\C,0.7630283998,0.,3.9664806456\O,0.5966566135,0.,-3.3938 721534\H,4.1706632214,0.,0.4818754068\H,-1.2738937171,0.,-5.1222885159 \H,-4.5128356526,0.,-2.2714798608\H,-2.8645748475,0.,-0.4094441052\H,-2.2500106585,0.,2.3697819535\H,-3.0432015111,0.,4.7057863922\H,1.02439 10228,0.,6.0938504792\H,1.8235924053,0.,3.749516488\H,4.8613610169,0., -1.9094092749\H,3.1747001851,0.,-3.7333910196\H,-3.7170824135,0.,-4.62 61666533\H,-1.4105242441,0.,6.5730927436\\Version=ES64L-G09RevD.01\Sta te=1-A'\HF=-970.5216544\RMSD=3.632e-09\RMSF=3.145e-06\Dipole=-0.082706 1,0.,-1.4724509\Quadrupole=8.4409884,-28.9286831,20.4876947,0.,0.32620 55,0.\PG=CS [SG(C19H12N3O1)]\\

No imaginary frequencies.

# $1b^+$ (X=COOMe)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H14N3O3(1+)\PIOTR\09-May
-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G
eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-COOMe sec o
rient cat benzotrazinyl, Cs\1,1\N,-0.1838497452,0.8332110225,0.\N,-2.
8978479055,0.8992782189,0.\C,-2.2026127901,-0.2324852157,0.\N,-0.83263
55385,-0.2945320811,0.\C,-0.7120374364,4.4535623663,0.\C,-0.0464956414
,3.2503165179,0.\C,-0.7940304287,2.0519926514,0.\C,-2.2239846733,2.062
7316244,0.\C,-2.8769482445,3.311275201,0.\C,-2.1248129902,4.4678731717
,0.\C,1.2389450058,0.7910340847,0.\C,1.9380552823,2.0117919295,0.\C,3.

3300549581,2.0159123926,0.\C,4.0094584259,0.8102952149,0.\C,3.31584464 48,-0.4127748076,0.\C,1.9293096863,-0.4236460355,0.\C,-2.9043325972,-1 .5187406257,0.\C,-2.1985850975,-2.7343221766,0.\C,-2.8889710742,-3.938 9964515,0.\C,-4.2841410544,-3.9463864144,0.\C,-4.9915499936,-2.7428199 525,0.\C,-4.3097433031,-1.5342622934,0.\O,1.3124248803,3.2189803856,0. \H,3.8481457247,2.9671994533,0.\H,1.3821506798,-1.3545738941,0.\H,-1.1 163380548,-2.7309897577,0.\H,-2.339980041,-4.8739550902,0.\H,-6.075720 0251,-2.7489398907,0.\H,-4.8505359653,-0.596493602,0.\H,-2.6263168204, 5.4293036609,0.\H,-0.1421080712,5.3746376608,0.\H,5.0929606374,0.78204 37863,0.\H,-4.8201321337,-4.8894281291,0.\H,-3.9592412858,3.327222131, 0.\C,4.1306650906,-1.6706426891,0.\O,5.3368187035,-1.6670380192,0.\O,3 .364764001,-2.7670088992,0.\C,4.0840319767,-4.0193608974,0.\H,3.319385 4627,-4.7940048089,0.\H,4.7109043691,-4.0910737376,-0.8904501794\H,4.7 109043691,-4.0910737376,0.8904501794\\Version=ES64L-G09RevD.01\State=1 -A'\HF=-1198.4086879\RMSD=5.732e-09\RMSF=2.561e-06\Dipole=-0.9660029,1 .395755,0.\Quadrupole=3.6598874,25.1296873,-28.7895747,0.0917096,0.,0. \PG=CS [SG(C21H12N3O3),X(H2)]\\@

No imaginary frequencies.

# $1c^+$ (X=CN)

 $1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C20H11N4O1(1+)\PIOTR\10-May$ -2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-CN benzotra zinyl cat, Cs\\1,1\N,0.4714064961,-0.3340878567,0.\N,-1.9155619688,-1. 6188126063,0.\C,-1.8104472302,-0.2928126554,0.\N,-0.6151023891,0.38017 89754,0.\C,1.6410209183,-3.7989353221,0.\C,1.6901105128,-2.4258991558, 0.\C,0.4813813637,-1.6954077116,0.\C,-0.7902707006,-2.3516884198,0.\C, -0.8073917089,-3.7616052864,0.\C,0.3863071396,-4.4517800603,0.\C,1.723 7655933,0.3475893317,0.\C,2.8986143413,-0.4232724992,0.\C,4.1411101674 ,0.2069589796,0.\C,4.2066555853,1.5887673905,0.\C,3.0289497239,2.36460 09964,0.\C,1.7851159259,1.7402443157,0.\C,-3.0166776825,0.5352572817,0 .\C,-2.9380566379,1.939310656,0.\C,-4.0986785031,2.7008009981,0.\C,-5. 3457760799,2.0749225609,0.\C,-5.4318255106,0.6812094673,0.\C,-4.277146 6395,-0.0878714646,0.\0,2.8894508558,-1.7808969004,0.\H,5.0351778861,-0.404481426,0.\H,0.8713271615,2.3167662481,0.\H,-1.9727798984,2.428569 0886,0.\H,-4.0322692964,3.7828760749,0.\H,-6.4013626497,0.196050965,0. \H,-4.3352679849,-1.1688255504,0.\H,0.375101915,-5.5360586378,0.\H,2.5 655778275,-4.3633414954,0.\H,5.1702251399,2.0843139765,0.\H,-6.2507456 727,2.6729014071,0.\H,-1.7652154862,-4.2657971571,0.\C,3.1065883118,3. 7942267006,0.\N,3.1668742944,4.9506923109,0.\\Version=ES64L-G09RevD.01 \State=1-A'\HF=-1062.7511038\RMSD=4.922e-09\RMSF=1.844e-06\Dipole=0.50 17247, -2.5609908, 0. \Quadrupole=24.8661209, -1.6884381, -23.1776828, -13.1 602527,0.,0.\PG=CS [SG(C20H11N4O1)]\\

No imaginary frequencies.

# $1d^+$ (X=NO<sub>2</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H11N4O3(1+)\PIOTR\11-May
-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G
eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-NO2 benzotr
azinyl cat, Cs\\1,1\N,0.1488758498,-0.6143173056,0.\N,-2.469022437,-1.
3147092577,0.\C,-2.0613379997,-0.047892488,0.\N,-0.7430169924,0.330986
6746,0.\C,0.4909211474,-4.2540562242,0.\C,0.8544141609,-2.9295258324,0
.\C,-0.1543855407,-1.9412118807,0.\C,-1.5430452417,-2.286686041,0.\C,1.8839727805,-3.6554143356,0.\C,-0.8808885078,-4.6010249233,0.\C,1.524
655176,-0.23941782,0.\C,2.4934988919,-1.2594194578,0.\C,3.8489447515,0.9344943438,0.\C,4.2327189478,0.3966005258,0.\C,3.2528284341,1.392194
9399,0.\C,1.9039188664,1.1015838271,0.\C,-3.0428127981,1.0365722365,0.

\C,-2.639799022,2.3840987253,0.\C,-3.5922378544,3.3939117581,0.\C,-4.9 504962234,3.0742683938,0.\C,-5.3580236248,1.7385728218,0.\C,-4.4134255 964,0.7225592171,0.\0,2.1709216872,-2.5777788155,0.\H,4.5769009503,-1. 7365013315,0.\H,1.1720237937,1.8956803287,0.\H,-1.5873147049,2.6360421 873,0.\H,-3.2764632632,4.4309969077,0.\H,-6.4137297733,1.4919113289,0. \H,-4.7207297617,-0.3154032044,0.\H,-1.1407897292,-5.6537517573,0.\H,1 .2605853896,-5.0162948039,0.\H,5.2762973068,0.6842222898,0.\H,-5.69200 24399,3.865947964,0.\H,-2.9320751865,-3.9258696481,0.\N,3.6655550896,2 .8121053411,0.\0,2.7739682548,3.6469465286,0.\0,4.8645816197,3.0355991 349,0.\\Version=ES64L-G09RevD.01\State=1-A'\HF=-1175.0175948\RMSD=3.14 0e-09\RMSF=1.374e-06\Dipole=-0.5630317,-2.8929906,0.\Quadrupole=15.074 8608,8.6000356,-23.6748964,-14.9554046,0.,0.\PG=CS [SG(C19H11N403)]\\ No imaginary frequencies.

# $1e^+$ (X=CF<sub>3</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C20H11F3N301(1+)\PIOTR\11-M ay-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance, NoAngle) fcheck/\Parent flat C(8)-O-Ph(N1)-CF3 benzo trazinyl, C1\\1,1\N,-0.1803658991,-0.7663288318,0.0052429049\N,-2.8801 636159,-1.0265969822,-0.0156797013\C,-2.2690176848,0.1537493946,-0.017 3470721\N,-0.9064690161,0.3124095095,-0.0068140236\C,-0.4449212954,-4. 414386978,0.0232431896\C,0.1324017736,-3.1669890424,0.0210163287\C,-0. 6996731149,-2.0256962259,0.0078531294\C,-2.1255607309,-2.1384490088,-0 .003233344\C,-2.6871743956,-3.43122032,-0.0005905092\C,-1.8536993184,-4.5301385091,0.0123844388\C,1.2364259417,-0.6228428597,0.0170741723\C, 2.0209361637,-1.787087864,0.0291767795\C,3.4105572506,-1.6878389143,0. 0375408911\C,4.001747068,-0.4363959442,0.0348857123\C,3.2146768183,0.7 266561172,0.0257572825\C,1.8361663361,0.6398570822,0.0145869368\C,-3.0 602498142,1.3853762485,-0.0308469522\C,-2.4430851584,2.6486729982,-0.0 337620415\C,-3.2175348979,3.8007948264,-0.0465620991\C,-4.6096376285,3 .7080895535,-0.0565174124\C,-5.2295262111,2.4569296624,-0.0537165807\C ,-4.4634399173,1.300225284,-0.0409925936\0,1.4867169025,-3.0369970354, 0.0311815626\H, 3.9976601737, -2.5980238115, 0.043684656\H, 1.2201763246, 1 .5269320911,0.0022693805\H,-1.3635534992,2.7244330231,-0.0260857127\H, -2.7364819839,4.7723688093,-0.0487878364\H,-6.3113239563,2.3856279685, -0.0614657584\H,-4.9360641355,0.3263236975,-0.038701511\H,-2.284249760 4,-5.5253463691,0.0144119392\H,0.1891597636,-5.2925319722,0.0332788691 \H,5.0825514747,-0.3525864724,0.0359123783\H,-5.2116716258,4.610328093 9,-0.0664656024\H,-3.765455028,-3.5253056789,-0.0089061748\C,3.8993042 5,2.0760116528,0.0451180172\F,4.8324258379,2.1431251593,-0.9134446313\ F,3.0245179346,3.0719503707,-0.1455085116\F,4.5105454159,2.2771871816, 1.2208094992\\Version=ES64L-G09RevD.01\State=1-A\HF=-1307.5581919\RMSD =2.565e-09\RMSF=2.351e-06\Dipole=-0.9638605,-2.4253393,-0.0169639\Quad rupole=12.6985269,15.0709282,-27.7694551,-8.9768706,0.2815242,-0.33189 76\PG=C01 [X(C20H11F3N3O1)]\\

No imaginary frequencies.

# $1f^+$ (X=OMe)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C20H14N302(1+)\PIOTR\10-May
-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G
eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-OMe 2nd orint
benzotrazinyl (phenazinoBT), Cs\\1,1\N,-0.3903760638,0.4808437228,0.\
N,-1.8422802643,-1.8161876787,0.\C,-0.5167406261,-1.7997234229,0.\N,0.
2443160198,-0.6582287346,0.\C,-3.7717836398,1.8881443558,0.\C,-2.39502
2643,1.8397634048,0.\C,-1.7508822631,0.5829199394,0.\C,-2.4956058109,0.637316401,0.\C,-3.8994629219,-0.5554428771,0.\C,-4.507287188,0.68584
04873,0.\C,0.378190382,1.6742077874,0.\C,-0.3106638007,2.8953703794,0.

\C,0.4110155722,4.0902425027,0.\C,1.7881499899,4.0535545826,0.\C,2.487 7870732,2.8226471699,0.\C,1.7780963931,1.6270907336,0.\C,0.2252320781, -3.0657475777,0.\C,1.6299795056,-3.0892560641,0.\C,2.3066443998,-4.301 923165,0.\C,1.5939774324,-5.5011468478,0.\C,0.1982002305,-5.4857197105 ,0.\C,-0.4853461858,-4.2778328218,0.\O,-1.6689573131,2.9850127344,0.\H ,-4.4698249222,-1.4753625579,0.\H,-0.1322205697,5.0273676609,0.\H,2.26 49982927,0.6650102887,0.\H,2.184965191,-2.1601483143,0.\H,3.3909000225 *,*−4.3138246177,0.\H,−0.3563294846,−6.4174097333,0.\H,−1.5676250208,−4. 2564780524,0.\H,-5.5899006226,0.7476488214,0.\H,-4.2678482977,2.850903 9757,0.\H,2.3683269364,4.9688984934,0.\H,2.1255334682,-6.4466851897,0. \0,3.823197456,2.9266505433,0.\C,4.6088334812,1.7345823954,0.\H,4.4136 795032,1.1379395405,-0.8978194327\H,5.6461823938,2.0656545477,0.\H,4.4 136795032,1.1379395405,0.8978194327\\Version=ES64L-G09RevD.01\State=1-A'\HF=-1085.0535646\RMSD=6.671e-09\RMSF=1.713e-06\Dipole=-0.30248,0.89 26329,0.\Quadrupole=15.6751945,13.8309531,-29.5061477,-3.5778632,0.,0. PG=CS [SG(C20H12N3O2),X(H2)]//

No imaginary frequencies.

# $1g^+$ (X=F)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H11F1N3O1(1+)\PIOTR\11-M ay-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-F benzotraz inyl (phenazinoBT), Cs\\1,1\N,-0.1976912344,0.,-0.6928742098\N,1.64726 67009,0.,1.2954604074\C,0.33916695,0.,1.5255647658\N,-0.6151190625,0., 0.539786225\C,2.8635589966,0.,-2.6967623607\C,1.5202160319,0.,-2.39942 29547\C,1.1183326378,0.,-1.0449204285\C,2.0737970902,0.,0.0199921746\C ,3.4407623252,0.,-0.3175054372\C,3.8089725181,0.,-1.647888882\C,-1.172 1475631,0.,-1.7293422404\C,-0.7232417067,0.,-3.0597317809\C,-1.6476189 09,0.,-4.1023283392\C,-3.0026313882,0.,-3.8181022098\C,-3.4294589247,0 **.**,-2.4851231247\C,-2.5372889753,0.,-1.4317235341\C,-0.158694043,0.,2.9 031158687\C,-1.5366450875,0.,3.1812609324\C,-1.9805090662,0.,4.4967995 369\C,-1.0605821813,0.,5.5457440519\C,0.3095162735,0.,5.277134818\C,0. 7618178516,0.,3.9653978639\0,0.5969196886,0.,-3.3951044486\H,4.1699694 516,0.,0.4823533614\H,-1.282245549,0.,-5.1219599822\H,-2.8827487458,0. ,-0.4084030957\H,-2.2529296506,0.,2.3699911285\H,-3.0443508742,0.,4.70 58537151\H,1.0239554381,0.,6.0926163296\H,1.8222762019,0.,3.7479935952 \H,4.8614965942,0.,-1.9087865674\H,3.1767619944,0.,-3.7336354122\H,-3. 7415875048,0.,-4.6105093652\H,-1.4110008118,0.,6.572299281\F,-4.729612 0266,0.,-2.228269902\\Version=ES64L-G09RevD.01\State=1-A'\HF=-1069.750 8946\RMSD=5.307e-09\RMSF=1.406e-06\Dipole=0.8405885,0.,-1.2952468\Quad rupole=3.8652904,-27.1898766,23.3245862,0.,-1.5305675,0.\PG=CS [SG(C19 H11F1N3O1) ]\\

No imaginary frequencies.

# $1h^+$ (X=C1)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H11Cl1N3O1(1+)\PIOTR\11-May-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct # P Geom=(NoDistance,NoAngle) fcheck\Parent C(8)-O-Ph(N1)-10-Cl benzotr azinyl (phenazinoBT), Cs\\1,1\N,-0.1976569996,0.,-0.6925854007\N,1.648 1923376,0.,1.2952993551\C,0.339836367,0.,1.5257476734\N,-0.6141744531, 0.,0.5401004146\C,2.8634598695,0.,-2.6969372637\C,1.5207159623,0.,-2.3 989607285\C,1.1184222545,0.,-1.0447536264\C,2.0740182623,0.,0.01981465 46\C,3.4414318542,0.,-0.3181043328\C,3.8095876111,0.,-1.6481269237\C,-1.1721091102,0.,-1.7301182732\C,-0.7221026948,0.,-3.0600643046\C,-1.64 72058961,0.,-4.1006930875\C,-3.0022391458,0.,-3.8147168256\C,-3.442990 6273,0.,-2.4816074047\C,-2.5379708063,0.,-1.4343509514\C,-0.1584654304 ,0.,2.903081771\C,-1.5365862046,0.,3.1807838536\C,-1.9811013727,0.,4.4  $\begin{array}{l} 961315179\C,-1.0616545141,0.,5.5454451291\C,0.3085434322,0.,5.27725039\\42\C,0.7615528223,0.,3.9657177177\O,0.5965871071,0.,-3.3952777618\H,4.\\1704489055,0.,0.4819863773\H,-1.2844097055,0.,-5.1213667821\H,-2.86688\\44559,0.,-0.4057267103\H,-2.2526334151,0.,2.3693214861\H,-3.0450832732\\,0.,4.7044465049\H,1.0226030937,0.,6.0930720451\H,1.8221182244,0.,3.74\\89541295\H,4.8620367027,0.,-1.9092296573\H,3.1763173158,0.,-3.73391789\\37\H,-3.7284009267,0.,-4.6184587635\H,-1.4124652893,0.,6.5718556549\Cl\\,-5.1452721016,0.,-2.1455381874\Version=ES64L-G09RevD.01\State=1-A'\H\\F=-1430.1106646\RMSD=3.647e-09\RMSF=4.486e-06\Dipole=1.310372,0.,-1.08\\32957\Quadrupole=6.0304869,-28.0843397,22.0538528,0.,-2.2180346,0.\PG=CS [SG(C19H11C11N301)]\\label{eq:state}$ 

No imaginary frequencies.

# $1i^+$ (X=Br)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\Gen\C19H11Br1N3O1(1+)\PIOTR\11-May-2021 \0\\#P B3LYP/gen FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistan ce,NoAngle) fcheck Pseudo=Read\\Parent C(8)-O-Ph(N1)-10-Br benzotrazin yl (phenazinoBT) cat, Cs\\1,1\N,-0.2524646909,0.7810753508,0.\N,-2.961 3848462,0.9378392923,0.\C,-2.3050215792,-0.217700441,0.\N,-0.937516027 4,-0.3250755705,0.\C,-0.6570303823,4.4193379064,0.\C,-0.0307741642,3.1 93205539,0.\C,-0.8194241506,2.0200141918,0.\C,-2.2498621997,2.07879521 91,0.\C,-2.8609222822,3.3493964782,0.\C,-2.0691501418,4.480843581,0.\C ,1.1683190664,0.6909694359,0.\C,1.9068305272,1.8860852926,0.\C,3.29923 71205,1.8352668508,0.\C,3.942234353,0.6069643853,0.\C,3.1967528784,-0. 584489338,0.\C,1.8119216431,-0.551520239,0.\C,-3.0503659359,-1.4799227 382,0.\C,-2.3861446903,-2.719883894,0.\C,-3.1176696327,-3.9010464194,0 .\C,-4.5131955151,-3.860188958,0.\C,-5.1796765944,-2.6321644494,0.\C,-4.4565142592,-1.4468493351,0.\0,1.3250298169,3.1148162185,0.\H,-3.9426 253898,3.4020458982,0.\H,3.8559939295,2.7651716795,0.\H,1.2221063261,-1.4567464048,0.\H,-1.3039228495,-2.7548467573,0.\H,-2.6006883357,-4.85 46341753,0.\H,-6.2639815514,-2.6012800254,0.\H,-4.9641976998,-0.490178 4516,0.\H,-2.5381584668,5.4591397964,0.\H,-0.0564827969,5.3214669458,0 .\H,5.025049242,0.5656059773,0.\H,-5.0816059385,-4.7846841898,0.\Br,4. 1007855471,-2.2596651521,0.\\Version=ES64L-G09RevD.01\State=1-A'\HF=-9 83.0625834\RMSD=9.662e-09\RMSF=3.782e-06\Dipole=-0.796885,2.1112732,0. \Quadrupole=13.3238502,16.1030864,-29.4269366,5.5570998,0.,0.\PG=CS [S G(C19H11Br1N3O1)]\\

No imaginary frequencies.

# $1j^+$ (X=Ac)

 $1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H14N3O2(1+)\PIOTR\11-May$ -2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-COMe benzot razinyl cat, sec orient Ac, Cs\\1,1\N,-0.1862105169,0.6345618623,0.\N, 2.4072596737,1.4383193651,0.\C,2.0473013947,0.1598471568,0.\N,0.746169 3216,-0.2738399465,0.\C,-0.6649268544,4.2617667307,0.\C,-0.9768073341, 2.9226101343,0.\C,0.0688676738,1.973434392,0.\C,1.441663463,2.37397989 09,0.\C,1.7293940937,3.7531966317,0.\C,0.6903326718,4.6609592043,0.\C, -1.5432410367,0.2065338851,0.\C,-2.5478616984,1.189911611,0.\C,-3.8887 682633,0.8125574944,0.\C,-4.211636857,-0.5315034945,0.\C,-3.214127962, -1.5273075974,0.\C,-1.8787454625,-1.151534814,0.\C,3.0747864874,-0.884 99783,0.\C,2.7305494558,-2.2477021545,0.\C,3.7246697682,-3.2169045442, 0.\C,5.0682504896,-2.8408992405,0.\C,5.4179071228,-1.4893695134,0.\C,4 .4305172434,-0.5143218669,0.\0,-2.2757243581,2.5212690721,0.\H,-4.6469 628393,1.5864741325,0.\H,-1.0811305886,-1.8805534518,0.\H,1.6890641547 ,-2.5418301989,0.\H,3.4535791683,-4.2666876549,0.\H,6.4620679023,-1.19 75265757,0.\H,4.693136239,0.5358123305,0.\H,0.9105321768,5.7227195505, 0.\H,-1.4645934208,4.9923690671,0.\H,-5.2460340707,-0.8559978296,0.\H, 5.8425625474,-3.6005082847,0.\H,2.766335215,4.063625949,0.\C,-3.667276 9776,-2.9703687114,0.\O,-4.8548270276,-3.2059864424,0.\C,-2.6260828861 ,-4.0654931646,0.\H,-1.9834990677,-3.9941771626,-0.8846941032\H,-1.983 4990677,-3.9941771626,0.8846941032\H,-3.1327367821,-5.0300257815,0.\\V ersion=ES64L-G09RevD.01\State=1-A'\HF=-1123.1708162\RMSD=7.177e-09\RMS F=1.011e-06\Dipole=0.6182815,1.6510001,0.\Quadrupole=6.422527,18.16469 68,-24.5872238,-10.7332652,0.,0.\PG=CS [SG(C21H12N3O2),X(H2)]\\ No imaginary frequencies.

# $11^{+}$ (X=NH<sub>2</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C19H13N4O1(1+)\PIOTR\10-May -2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-NH2 benzotr azinyl cat, C1\\1,1\N,0.1611049368,-0.6043423051,-0.0018467601\N,-2.46 40139392,-1.3060774791,0.0035097137\C,-2.0533233391,-0.0461413767,0.00 07173834\N,-0.7375392117,0.341454392,-0.0010349326\C,0.4970858171,-4.2 525938283,-0.0039097414\C,0.8618605352,-2.9231385182,-0.0045008809\C,- $0.1459202424, -1.9332672518, -0.001362595 \ \ (-1.5327347919, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979331, -2.2814979332, -2.28149793, -2.281497932, -2.281497932, -2.28149793, -2.28149793, -2.28149792, -2.28149792, -2.28149792, -2.28149792, -2.28149792, -2.28149792, -2.28149792, -2.28149792, -2.28149792, -2.28149792, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.2814972, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472, -2.281472,$ 0.0022179664\C,-1.8727220876,-3.6450923696,0.0032930144\C,-0.868740097 6,-4.5960679514,0.0001163372\C,1.5291910269,-0.2231731404,-0.003301495 3\C,2.4893887103,-1.2477553217,-0.0071833727\C,3.8417238544,-0.9093990 026,-0.0088636503\C,4.2176568391,0.4171789231,-0.0083991145\C,3.257081 8002,1.4632665428,-0.0042268863\C,1.9019319332,1.1204415969,0.00167658 72\C,-3.0412494093,1.0395332849,-0.0004986949\C,-2.6448161539,2.386936 0889,-0.0262025252\C,-3.6004678241,3.3946841461,-0.0285135068\C,-4.957 4204223,3.0724002934,-0.0044545368\C,-5.3588384347,1.735797727,0.02130 99204\C,-4.4098105179,0.7229742217,0.0228566665\O,2.170080395,-2.57183 75199,-0.0084228365\H,4.5774747614,-1.7044790446,-0.0105682497\H,1.131 6773204,1.8785052649,0.004896223\H,-1.5925275524,2.6389232587,-0.04648 95841\H,-3.2883487257,4.4328985852,-0.0495866983\H,-6.4134440013,1.484 6185006,0.039966406\H,-4.7121455798,-0.3162943146,0.0422470581\H,-1.13 28914732, -5.6477706576, 0.0005338192\H, 1.2686276151, -5.0126398092, -0.00 67021222\H,5.2730844596,0.668910778,-0.0150016948\H,-5.7014947481,3.86 16966142,-0.0061001753\H,-2.920806056,-3.9153873983,0.0059734138\N,3.6 651581001,2.768079245,-0.055232277\H,3.0017995874,3.4927509633,0.16922 87764\H,4.6203677558,2.982936455,0.1838590451\\Version=ES64L-G09RevD.0 1\State=1-A\HF=-1025.887688\RMSD=5.102e-09\RMSF=1.536e-06\Dipole=1.804 312,0.0318124,0.2543333\Quadrupole=19.8179719,13.1744402,-32.9924121,3 .059585,1.997198,1.7925956\PG=C01 [X(C19H13N4O1)]\\

No imaginary frequencies.

### $1m^+$ (X=NHAC)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H15N4O2(1+)\PIOTR\10-May
-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G
eom=(NoDistance,NoAngle) fcheck\Parent flat C(8)-O-Ph(N1)-NHAc benzot
razinyl cat, C1\\1,1\N,0.3718112963,0.7311935285,0.0010054678\N,3.0884
265842,0.715552541,0.0010727131\C,2.359952321,-0.3922553639,0.00231906
01\N,0.9886318984,-0.4178097556,0.0023235754\C,1.0104873642,4.33730507
68,-0.0030864325\C,0.3076138315,3.1524987368,-0.0017508833\C,1.0187014
5,1.9318105868,-0.0003492015\C,2.4483871299,1.9012669189,-0.0002883371
\C,3.1371542059,3.1273044678,-0.0016704452\C,2.4197991127,4.3085084187
,-0.0030277976\C,-1.0477884302,0.7292687809,0.0009856347\C,-1.70669842
72,1.9691213604,-0.00043761\C,-3.0976321645,1.9975963509,-0.0004926433
\C,-3.8224871751,0.8206520732,0.000837675\C,-3.1631094815,-0.435362774
8,0.0022813362\C,-1.768932088,-0.464932678,0.002335937\C,3.0272978419,
-1.699267766,0.0038184729\C,2.2909727081,-2.8956754346,0.0051515744\C,

 $2.9484269214, -4.1188887915, 0.0065559404 \\ \verb|C, 4.3426863251, -4.163813548, 0.$ 0066484599\C,5.0810651413,-2.9793045001,0.0053289471\C,4.4312512938,-1 .7528826351,0.0039204411\0,-1.0478087929,3.1607108717,-0.0017843475\H, -3.5975347335,2.958810147,-0.0015964657\H,-1.2243368929,-1.3994319068, 0.0034098542\H,1.2092273167,-2.8626800136,0.0050815794\H,2.3747835288, -5.039036569,0.0075804696\H,6.1647512098,-3.013712458,0.0054004357\H,4 .9961982787,-0.8295215732,0.0028915823\H,2.9514453509,5.253607707,-0.0 040933995\H,0.4673430748,5.2743512551,-0.0041625772\H,-4.9021931054,0. 8385739463,0.0007997971\H,4.8535039182,-5.1207183207,0.0077474179\H,4. 2194048576,3.1109567527,-0.0016318828\N,-3.8509460088,-1.6439626501,0. 0036502751\H,-3.2769613986,-2.4746596968,0.0046109997\C,-5.2339423516, -1.8576721798,0.0038834322\0,-6.0346961463,-0.9496498349,0.0028358593\ C,-5.6175979547,-3.3214071555,0.0055573472\H,-5.2219084878,-3.83040234 9,-0.8797197612\H,-5.2219406309,-3.828367173,0.8920158938\H,-6.7040156 913,-3.3929333928,0.0056196061\\Version=ES64L-G09RevD.01\State=1-A\HF= -1178.5512413\RMSD=3.733e-09\RMSF=5.279e-07\Dipole=0.7344484,0.3250275 ,-0.0003527\Quadrupole=5.8429963,23.5231153,-29.3661116,8.6998052,-0.0 093032,-0.0601303\PG=C01 [X(C21H15N4O2)]\\

No imaginary frequencies.

# $1n^+$ (X=I)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\Gen\C19H1111N3O1(1+)\PIOTR\11-May-2021\ 0\\#P B3LYP/gen FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistanc e,NoAngle) fcheck Pseudo=Read\\Parent C(8)-O-Ph(N1)-10-I benzotrazinyl (phenazinoBT) cat, Cs\\1,1\N,-0.2528327453,0.7824188907,0.\N,-2.96208 1681,0.9389644068,0.\C,-2.3056266899,-0.2162243583,0.\N,-0.9382157782, -0.3236520661,0.\C,-0.6569488338,4.4206167752,0.\C,-0.0307659555,3.194 3618869,0.\C,-0.8199372927,2.0213494066,0.\C,-2.2502051454,2.079991038 1,0.\C,-2.8609479752,3.3505479926,0.\C,-2.0690001106,4.4820134289,0.\C ,1.1676927251,0.6920596058,0.\C,1.9066095835,1.886716975,0.\C,3.298646 2688,1.8337823414,0.\C,3.9400393188,0.6040248858,0.\C,3.1975463111,-0. 5918684739,0.\C,1.8113835753,-0.5505974927,0.\C,-3.0501482418,-1.47922 00632,0.\C,-2.3844365203,-2.7183246767,0.\C,-3.1145162237,-3.900410739 4,0.\C,-4.5100960427,-3.8612884782,0.\C,-5.178027541,-2.6341427371,0.\ C,-4.456255653,-1.4478987936,0.\0,1.3251681301,3.1155708993,0.\H,-3.94 26539406,3.4034931488,0.\H,3.8566551372,2.7630630565,0.\H,1.2133552526 ,-1.4503921344,0.\H,-1.3021872837,-2.751755824,0.\H,-2.596300278,-4.85 335217,0.\H,-6.262365167,-2.6045984201,0.\H,-4.9653241252,-0.491929135 *,*0.\*H,*−2.5381828668,5.4602350422,0.\*H,*−0.0564393045,5.3227475928,0.\*H,* 5.0234662987,0.5701389183,0.\H,-5.0772850347,-4.7865424504,0.\I,4.1868 506389,-2.4394417885,0.\\Version=ES64L-G09RevD.01\State=1-A'\HF=-981.2 768486\RMSD=5.504e-09\RMSF=1.650e-06\Dipole=-1.3726553,2.3943704,0.\Qu adrupole=14.0620568,17.4813742,-31.5434311,1.5647732,0.,0.\PG=CS [SG(C 19H11I1N3O1)]\\

No imaginary frequencies.

# $1p^+$ (X=OBn)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C26H18N302(1+)\PIOTR\13-May
-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G
eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-OBn 2nd orien
t benzotrazinyl (phenazinoBT) cat, C1\\1,1\N,-1.7540889369,-0.66090886
11,0.0241652988\N,-4.2417210836,0.4343179902,-0.0121878494\C,-3.133153
3696,1.1565872627,-0.0880080755\N,-1.8643303708,0.6351896592,-0.072297
6803\C,-3.773658588,-3.7051898883,0.2937176052\C,-2.6587207074,-2.8995
317932,0.2114342559\C,-2.8261620626,-1.501220959,0.1082759552\C,-4.125
0030281,-0.9052503515,0.0874592124\C,-5.2433611851,-1.7530579228,0.173
0109712\C,-5.0545991999,-3.1188030579,0.2732913302\C,-0.4505199736,-1.

2210533176,0.0421633479\C,-0.3406274041,-2.6152179292,0.1460936907\C,0 .9250035659,-3.2034499739,0.1669443385\C,2.0462078701,-2.4076855717,0. 0852872142\C,1.9426776897,-0.9978242177,-0.0199587679\C,0.6840994877,-0.4037929621,-0.0413812267\C,-3.2244920744,2.6174330356,-0.1973508951\ C,-2.0724410069,3.4172527414,-0.2798586635\C,-2.1879981514,4.797381964 6,-0.3826063499\C,-3.4485287631,5.3943965116,-0.4042509426\C,-4.597672 7879,4.6061504053,-0.3226783703\C,-4.4904784076,3.2262580261,-0.219789 8527\0,-1.417409274,-3.4440245384,0.2294227173\H,-6.2300469374,-1.3083 157195,0.1578050772\H,0.9977791253,-4.2812192274,0.2475188875\H,0.5491 780086,0.6628790029,-0.1199396002\H,-1.0935476744,2.9560219302,-0.2632 308912\H,-1.2950738434,5.4092806897,-0.445944847\H,-5.5777093902,5.069 6943788,-0.339459556\H,-5.3763754811,2.6074141273,-0.1560544092\H,-5.9 181120786, -3.77139232, 0.3391944771\H, -3.6469528511, -4.7778687958, 0.372 8861521\H,3.0385313758,-2.8431362737,0.0996760759\H,-3.5355981331,6.47 26392215,-0.4845847936\0,3.1078997409,-0.3473831084,-0.0913996338\C,3. 1060216478,1.1006519257,-0.2014719108\H,2.5877409215,1.512206885,0.672 7019911\H,2.5541322272,1.3768227657,-1.1077390092\C,4.5295029822,1.567 584443,-0.2638486865\C,5.1782857004,1.6875206145,-1.4956576912\C,5.223 6986666,1.8705111345,0.9104533767\C,6.5064844972,2.1009454827,-1.55308 30249\C,6.5519320538,2.284074759,0.854846391\C,7.1939900708,2.39883307 58,-0.3773569665\H,4.6418823613,1.4575688792,-2.4117657407\H,4.7227015 776,1.7832275701,1.870268011\H,7.0026768434,2.1946373288,-2.5130191906 \H,7.083520601,2.5203936195,1.7702860387\H,8.2276965802,2.724790659,-0 .4216569205\\Version=ES64L-G09RevD.01\State=1-A\HF=-1316.1169621\RMSD= 2.064e-09\RMSF=1.078e-06\Dipole=-1.7021816,-1.4117713,0.1394586\Quadru pole=24.4445931,9.5223489,-33.966942,11.4892162,-1.9812561,-3.5465444 PG=C01 [X(C26H18N3O2)]\\@

No imaginary frequencies.

# $1q^+$ (X=Ph)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C25H16N3O1(1+)\PIOTR\12-May -2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent C(8)-O-Ph(N1)-10-Ph benzotrazi nyl (phenazinoBT) cat, C1\\1,1\N,-0.2707841031,-1.2482511569,-1.049940 6531\N,1.5069703121,-2.4552131415,0.6129618688\C,0.1992494456,-2.44562 40221,0.8366936912\N,-0.7209548808,-1.8431192902,0.0179576681\C,2.8410 218924,-0.5195622777,-2.8364295974\C,1.4944892391,-0.5426658154,-2.550 582065\C,1.0513808461,-1.1991662835,-1.3809519965\C,1.9695622921,-1.83 85712032,-0.4910905633\C,3.3396918355,-1.7973984196,-0.8104116608\C,3. 7487655246,-1.1493154858,-1.9592329573\C,-1.2077319478,-0.616436652,-1 .9123081725\C,-0.7158846709,0.0143642634,-3.0675773743\C,-1.6059738591 ,0.6315962666,-3.939898976\C,-2.9600746101,0.6157886716,-3.6544985684\ C,-3.4780272762,-0.0136077738,-2.4984012652\C,-2.5765999911,-0.6320995 439,-1.6345670555\C,-0.3398166794,-3.1107427633,2.0276654033\C,-1.7211 702023,-3.1431311802,2.2833793997\C,-2.2042476228,-3.7817884861,3.4180 102322\C,-1.3200838465,-4.3921558477,4.307744681\C,0.0534479395,-4.363 8606124,4.0600955986\C,0.5443546325,-3.7286878371,2.9280258092\0,0.607 600302,0.0570931791,-3.3840321216\H,4.0398524865,-2.2797701654,-0.1405 767938\H,-1.2143058864,1.1234503046,-4.822088582\H,-2.9214501515,-1.15 04346871,-0.7516831733\H,-2.4094134414,-2.6719092207,1.5937867616\H,-3 .2712705401,-3.8048613379,3.6092928756\H,0.7408769404,-4.8382434125,4. 7514555845\H,1.6078903648,-3.702370941,2.727966782\H,4.8043416831,-1.1 178562357,-2.2054288206\H,3.1831204226,-0.0170348405,-3.7328163049\H,-3.6415708061,1.1222508093,-4.328106045\H,-1.7007762432,-4.889913172,5. 1931585158\C,-4.9296795675,-0.0093123128,-2.2160754204\C,-5.4032606154 ,0.1043390274,-0.9003450007\C,-5.8596507843,-0.1190938031,-3.260852073 2\C,-6.7688479406,0.1078595448,-0.6376369551\C,-7.2248883818,-0.121690 1219,-2.9952168875\C,-7.6832308058,-0.0069789575,-1.6838207181\H,-4.70 03472988,0.2286343572,-0.0827934235\H,-5.5151638425,-0.2374836769,-4.2 829940052\H,-7.1196958534,0.2108253983,0.3834637287\H,-7.9307235649,-0 .2189063489,-3.812830826\H,-8.748054975,-0.0039259761,-1.4782166943\\V ersion=ES64L-G09RevD.01\State=1-A\HF=-1201.591051\RMSD=2.549e-09\RMSF= 2.954e-06\Dipole=1.3113743,0.27872,-0.7450005\Quadrupole=22.7100265,-2 4.5055985,1.795572,-4.7733948,-1.6203061,-19.4094576\PG=C01 [X(C25H16N 301)]\\

No imaginary frequencies.

# $1r^+$ (X=2-thienyl)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C23H14N3O1S1(1+)\PIOTR\12-M ay-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance, NoAngle) fcheck/\Parent C(8)-O-Ph(N1)-10-Thio benzot razinyl (phenazinoBT), C1\\1,1\N,-0.4842604176,-2.2243639445,-2.174869 0501\N,1.0895375958,-4.3586947875,-1.5834592201\C,-0.2145549554,-4.333 3450528,-1.3422765422\N,-1.0339441629,-3.2712358188,-1.6264309851\C,2. 7456767678,-0.953382077,-3.3415890495\C,1.39685324,-0.9866903394,-3.06 62460421\C,0.8443885248,-2.142011201,-2.4708322783\C,1.6549944207,-3.2 750781523,-2.1494089572\C,3.0296620207,-3.210883672,-2.4423428034\C,3. 5467785263,-2.0698595569,-3.0245813473\C,-1.3159752999,-1.1113554492,- $2.4772675668 \\ \texttt{C}, -0.7169412877, 0.0093838938, -3.0772450333 \\ \texttt{C}, -1.504211935$ 4,1.1106703023,-3.3997641847\C,-2.8569683575,1.0886999617,-3.117652409 3\C,-3.4830041907,-0.0299698153,-2.5124436564\C,-2.684019135,-1.134368 4555,-2.2068114835\C,-0.8627598682,-5.4984723525,-0.7304892634\C,-2.24 57585545,-5.5179892234,-0.4835798379\C,-2.8344032026,-6.6347304733,0.0 95019144\C,-2.0542161011,-7.7403758667,0.4338958189\C,-0.679535852,-7. 7281265936,0.1915897655\C,-0.0837426354,-6.6163902417,-0.3873306102\O, 0.6105443551,0.0781655337,-3.3653000959\H,3.6486402227,-4.0655267329,- $\texttt{2.2015013135} \\ \texttt{H,-1.0335736387,1.9716990379,-3.8586621438} \\ \texttt{H,-3.109833867} \\ \texttt{H,-1.09833867} \\ \texttt{H,-1.0983387} \\ \texttt{H,-1.09833867} \\ \texttt{H,-1.0983387} \\ \texttt{H,-1.0983387} \\ \texttt{H,-1.0983387}$ 1,-2.0280983077,-1.7754445931\H,-2.852836689,-4.6617361349,-0.74725691 05\H,-3.9024132252,-6.6446692559,0.2818218399\H,-0.0730538183,-8.58747 74072,0.454832255\H,0.981501301,-6.598685659,-0.5791847476\H,4.6061972 088,-2.0208572537,-3.2505027831\H,3.1708720829,-0.0682142059,-3.798513 3728\H,-3.4497921959,1.9651119978,-3.3547796502\H,-2.5167066635,-8.611 2155769,0.885992914\C,-4.9093559709,-0.0340200597,-2.2105603977\C,-5.5 86038495,-0.8125937249,-1.2948355161\C,-6.9799160939,-0.5613046762,-1. 2592224983\C,-7.3630033482,0.4059904752,-2.1501330404\S,-6.0257134481, 1.0231130567,-3.0418361507\H,-5.0935690661,-1.5218570522,-0.6409489539 \H,-7.6685665371,-1.0697055578,-0.5969845813\H,-8.3536283835,0.7923180 892,-2.3390248571\\Version=ES64L-G09RevD.01\State=1-A\HF=-1522.3453716 \RMSD=6.910e-09\RMSF=1.830e-06\Dipole=1.2747426,0.2978556,-0.2465756\Q uadrupole=23.2423822,3.620537,-26.8629193,-5.6975095,-9.4290689,-16.70 52568\PG=C01 [X(C23H14N3O1S1)]\\

No imaginary frequencies.

### $1s^+$ (X=CCPh)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C27H16N3O1(1+)\PIOTR\12-May
-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G
eom=(NoDistance,NoAngle) fcheck\Parent C(8)-O-Ph(N1)-10-CCPh benzotra
zinyl (phenazinoBT), Cs\\1,1\N,0.7111553334,1.7308806367,0.\N,-0.76089
46222,4.0145067312,0.\C,-1.3039269955,2.8040812548,0.\N,-0.58873193,1.
6343586956,0.\C,3.4101802017,4.2053911245,0.\C,2.786702182,2.977591653
7,0.\C,1.3760153315,2.9216345242,0.\C,0.5828209529,4.1107947248,0.\C,1.
2483024513,5.3506691592,0.\C,2.6294575733,5.3797020905,0.\C,1.4714368
756,0.5295335221,0.\C,2.8734348738,0.6415082355,0.\C,3.6558945074,-0.5
110533659,0.\C,3.0447004533,-1.7493355491,0.\C,1.6308747698,-1.8822471
755,0.\C,0.8526173287,-0.7202192208,0.\C,-2.7641509385,2.6627856058,0.

\C,-3.3749375249,1.3973938808,0.\C,-4.7597480753,1.2928554286,0.\C,-5. 5486613279,2.4432774645,0.\C,-4.948590902,3.7036976416,0.\C,-3.5654411 745,3.8169780818,0.\0,3.5218192339,1.8364667358,0.\H,0.6535313171,6.25 50072594,0.\H,4.734228042,-0.4078875334,0.\H,-0.2255815773,-0.77918142 48,0.\H,-2.7649415026,0.5034249398,0.\H,-5.2253410388,0.3136335776,0.\ H,-5.5615178231,4.5980913763,0.\H,-3.0916789712,4.7903210507,0.\H,3.14 16504041,6.3354583216,0.\H,4.4923366755,4.2498111951,0.\H,3.6517158339 ,-2.6468095334,0.\H,-6.6300662135,2.35822805,0.\C,1.0386976263,-3.1662 708599,0.\C,0.5581754991,-4.2822485808,0.\C,0.0007110649,-5.5882246686 ,0.\C,-1.3952810352,-5.7668873263,0.\C,0.842285055,-6.7165090302,0.\C, -1.9325025687,-7.047192415,0.\C,0.2944637542,-7.9922933797,0.\C,-1.090 9367613,-8.1605196321,0.\H,-2.0421976468,-4.8970171307,0.\H,1.91737105 64,-6.5778961539,0.\H,-3.0089459916,-7.1791202348,0.\H,0.9476747322,-8 .8579712494,0.\H,-1.514563799,-9.1590296673,0.\\Version=ES64L-G09RevD. 01\State=1-A'\HF=-1277.7477752\RMSD=1.394e-09\RMSF=1.860e-06\Dipole=1. 2035483,1.6584158,0.\Quadrupole=7.8186796,37.8014973,-45.6201769,7.741 9546,0.,0.\PG=CS [SG(C27H16N3O1)]\\

No imaginary frequencies.

# $1u^+$ (X=NHCOCF<sub>3</sub>)

1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H12F3N4O2(1+)\PIOTR\13-M ay-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P Geom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-10-NHCOCF 3 2nd orient benzotrazinyl, C1\\1,1\N,-1.3378654687,-0.7927629844,-0.0 038992592\N,-3.9151048507,0.0579534443,0.0078002655\C,-2.8810488094,0. 889951279,-0.0015078129\N,-1.5690746051,0.489435871,-0.0071467036\C,-3 .0533976022,-4.0263677262,0.0160353476\C,-2.0203679856,-3.1167908166,0 .006866324\C,-2.321280396,-1.7362687374,0.0044072138\C,-3.6722379333,- $1.2657853805, 0.0109444587 \ C, -4.7059371082, -2.220806786, 0.0204336896 \ C,$ -4.3867807097,-3.5644244888,0.0228142992\C,0.0146507837,-1.2301191499, -0.008742816\C,0.2610715318,-2.6119604723,-0.0066281994\C,1.5752941786 ,-3.069140604,-0.0114479436\C,2.6277401315,-2.171958096,-0.0173276506\ C,2.3810265153,-0.7788800409,-0.0181682135\C,1.0680343221,-0.315959727 4,-0.0144778356\C,-3.1129138927,2.3375788204,-0.0061784592\C,-2.043539 9822,3.2492636058,-0.0201468938\C,-2.2926017836,4.6152437049,-0.024635 9332\C,-3.6054592534,5.0871526574,-0.0151157744\C,-4.6729237251,4.1877 07094,-0.0011999736\C,-4.4324214548,2.8209297231,0.0031932695\O,-0.731 8426042,-3.5426063056,0.0001270215\H,1.753810644,-4.1376837631,-0.0102 45881\H,0.8410457248,0.7415890179,-0.0149196696\H,-1.0240938296,2.8860 53767,-0.0278220443\H,-1.4635746535,5.3139610613,-0.0356077519\H,-5.69 3248629,4.5542418286,0.0061971169\H,-5.2543907377,2.1166745776,0.01389 68072\H,-5.1830858108,-4.3004189229,0.0301175286\H,-2.8263670629,-5.08 54276411,0.0179714497\H,3.6487627558,-2.5246239789,-0.021056811\H,-3.7 965915212,6.1548617042,-0.0185998329\H,-5.7305800477,-1.87200915,0.025 5407586\N,3.4103093384,0.165367772,-0.0208258169\H,3.1407748312,1.1394 04465,-0.0242662275\C,4.7642071911,-0.0701559419,-0.0201789472\O,5.308 6872875, -1.1466181358, -0.0270151718\C, 5.612997584, 1.2293128528, 0.00403 08846\F,6.4503679496,1.2398229331,-1.0239328349\F,4.8322615575,2.33363 97113,-0.0707827105\F,6.3053391305,1.2883929592,1.1364797335\\Version= ES64L-G09RevD.01\State=1-A\HF=-1476.2583512\RMSD=2.044e-09\RMSF=2.742e -06\Dipole=-3.3183364,-1.1806603,-0.0037685\Quadrupole=8.374713,19.339 5271,-27.7142401,6.4252451,-0.231846,-0.1976576\PG=C01 [X(C21H12F3N4O2 )]\\

No imaginary frequencies.

# $1v^+$ (X=NHCOOMe)

 $1\1\GINC-LOCALHOST\FOpt\RB3LYP\6-31G(2d,p)\C21H15N4O3(1+)\PIOTR\13-May$
-2021\0\\#P B3LYP/6-31G(2d,p) FOpt=tight freq(noraman) SCF=Direct #P G eom=(NoDistance,NoAngle) fcheck\\Parent flat C(8)-O-Ph(N1)-10-NHCOOMe 2nd orient benzotrazinyl cat, C1\\1,1\N,-0.7580464186,-0.8795713628,-0 .0000012084\N,-3.1696559097,0.3709699279,0.0000111706\C,-2.0168142884, 1.0256731194,0.0000049415\N,-0.7841502932,0.424048557,-0.0000011721\C, -2.9672772713,-3.8004804121,0.0000068447\C,-1.8022000648,-3.0650969421 ,0.0000017701\C,-1.8804317762,-1.6544741908,0.0000037169\C,-3.13939231 92,-0.9763024072,0.0000107577\C,-4.3103494322,-1.7549038895,0.00001620 32\C,-4.2088221318,-3.1332629139,0.0000141644\C,0.5070984055,-1.523163 8749,-0.0000074007\C,0.5299272266,-2.9267433024,-0.0000094315\C,1.7562 303993,-3.5848795359,-0.0000159991\C,2.9361653407,-2.8657492547,-0.000 0197051\C,2.9189410649,-1.4478263042,-0.0000167393\C,1.6915193114,-0.7 86399853,-0.000011026\C,-2.0150668066,2.4930670463,0.0000005505\C,-0.8 137243302, 3.2213819041, -0.0000108585\C, -0.8403006288, 4.6097663884, -0.0 000172679\C,-2.0602831806,5.2862761957,-0.0000122226\C,-3.2580352279,4 .5694602683,-0.0000004914\C,-3.2397993775,3.1816731388,0.0000058508\0, -0.5987120081,-3.6886439682,-0.0000053742\H,1.7642918338,-4.668260514, -0.0000179497\H,1.6334188124,0.2934045156,-0.0000088841\H,0.1337709581 ,2.6984594734,-0.0000153575\H,0.090236935,5.1663730461,-0.0000265549\H ,-4.206546085,5.0947275343,0.0000033663\H,-4.16393837,2.6178919189,0.0 000144493\H,-5.1123712492,-3.7328397722,0.000018119\H,-2.9102266026,-4 .8820425515,0.0000051637\H,3.8899956523,-3.3732685858,-0.0000245717\H, -2.0779001542,6.3708505748,-0.0000175682\H,-5.2668947515,-1.2484219173 ,0.0000215563\N,4.0773892871,-0.6866949534,-0.0000189745\H,3.977395378 2,0.3180226637,-0.000016394\C,5.3918962512,-1.1404974319,-0.0000228654 \0,5.7392496228,-2.2963999861,-0.0000277292\0,6.2007429006,-0.07430836 92,-0.0000237356\C,7.6110884961,-0.3774195356,-0.0000293538\H,7.873846 5181,-0.9492646851,0.8915281121\H,7.8738428151,-0.9492483161,-0.891598 5504\H,8.1115060083,0.5892009274,-0.0000217607\\Version=ES64L-G09RevD. 01\State=1-A\HF=-1253.7809266\RMSD=3.142e-09\RMSF=1.765e-06\Dipole=-0. 8778451,-0.284044,0.000003\Quadrupole=26.2451958,7.7578317,-34.0030275 ,8.2512311,-0.0002042,-0.000098\PG=C01 [X(C21H15N4O3)]\\@ No imaginary frequencies.

## 9. References

- 1 L. Hunter, R. S. Barnes, J. Chem. Soc., 1928, 2058-2067
- 2 T. Okitsu, M. Ogasahara, A. Wada, Chem. Pharm. Bull., 2016, 64, 1149-1153.
- 3 K. Shibuya, K. Kawamine, T. Miura, C. Ozaki, T. Edano, K. Mizuno, Y. Yoshinaka, Y. Tsunenari, *Bioorg. Med. Chem.*, 2018, 26, 4001-4013.
- 4 A. H. J. Schoustinssen, J. Am. Chem Soc., 1933, 55, 4545–4546.
- 5 G. W. Muller, F. Payvandi, L. H. Zhang, M. J. Robarge, R. Chen, H.-W. Man, A. L. Ruchelman US, 2005; Vol. US20050107339A1.
- R. Crossley, Z. Goolamali, P. G. Sammes, J. Chem. Soc., Perkin Trans. 2, 1994, 1615– 1623.
- D. Pendin, R. Norante, A. De Nadai, G. Gherardi, N. Vajente, E. Basso, N. Kaludercic, C. Mammucari, C. Paradisi, T. Pozzan, A. Mattarei, *Angew. Chem. Int. Ed.*, 2019, 58, 9917-9922.

- 8 F. Kehrmann, W. Klopfenstein, Helv. Chim. Acta, 1923, 6, 952-954.
- 9 G. A. Smith, J. C. Metcalfe, S. D. Clarke, J. Chem. Soc., Perkin Trans. 2, 1993, 1195-1204.
- 10 T. W. Doyle, Can. J. Chem., 1977, 55, 2714-2718.
- 11 CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- 12 G. M. Sheldrick, Acta Cryst., Sect. A, 2015, A71, 3-8.
- 13 G. M. Sheldrick, Acta Cryst., Sect. C, 2015, C71, 3-8.
- 14 P. Kaszynski, C. P. Constantinides, V. G. Young, Jr., Angew. Chem. Int. Ed., 2016, 55, 11149 –11152.
- 15 P. Bartos, B. Anand, A. Pietrzak, P. Kaszyński, Org. Lett., 2020, 22, 180-184.
- 16 A. A. Hande, C. Darrigan, P. Bartos, P. Baylère, A. Pietrzak, P. Kaszyński, A. Chrostowska, *Phys. Chem. Chem. Phys.*, 2020, 22, 23637-23644.
- 17 N. G. Connelly, W. E. Geiger, Chem. Rev., 1996, 96, 877-910.
- 18 Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 19 M. Cossi, G. Scalmani, N. Rega, V. Barone, *J. Chem. Phys.*, 2002, **117**, 43-54, and references therein.
- 20 F. De Vleeschouwer, A. Chankisjijev, W. Yang, P. Geerlings, F. De Proft, J. Org. Chem., 2013, 78, 3151-3158.
- 21 M. Lucarini, P. Pedrielli, G. F. Pedulli, L. Valgimigli, D. Gigmes, P. Tordo, J. Am. Chem Soc., 1999, 121, 11546-11553.
- 22 S. J. Blanksby, G. B. Ellison, Acc. Chem. Res., 2003, 36, 255-263, and references therein.

- 23 S. Trasatti, Pure Appl. Chem., 1986, 58, 955–966.
- 24 R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys., 1998, 109, 8218-8224.