SUPPLEMENTARY INFORMATION

Diverse "roof shape" chiral diamidophosphites: Palladium coordination and catalytic application

Konstantin N. Gavrilov, Ilya V. Chuchelkin, Vladislav K. Gavrilov, Sergey V. Zheglov, Ilya D. Firsin, Valeria M. Trunina, Ilya A. Zamilatskov, Vladimir S. Tyurin, Victor A. Tafeenko, Vladimir V. Chernyshev, Vladislav S. Zimarev and Nataliya S. Goulioukina

TABLE OF CONTENTS
General S2
Experimental section S5
Crystal data for new ligands S27
Calculated structures of palladium(ii) complexes S32
Catalytic results S33
HPLC traces for the Pd-catalyzed allylic substitution S40
NMR and mass spectra S44
References S118
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded with Bruker Avance $600(242.9 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 150.9 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and 600.1 MHz for ${ }^{1} \mathrm{H}$) and Varian Inova $500\left(202.3 \mathrm{MHz}\right.$ for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 125.7$ MHz for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and 499.8 MHz for ${ }^{1} \mathrm{H}$) instruments. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ signals were attributed using APT, DEPT, ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\operatorname{COSY},{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\operatorname{TOCSY},{ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\operatorname{NOESY},{ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{HSQC}$ and ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{HMBC}$ techniques. The chemical shifts are referenced to residual solvent peaks (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$) or $\mathrm{H}_{3} \mathrm{PO}_{4} 85 \%$ as external standard (${ }^{31} \mathrm{P}$ NMR). Data are represented as follows: chemical shift, multiplicity ($\mathrm{br}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{vt}=$ virtual triplet, $\mathrm{q}=$ quartet). Diffusion-ordered NMR spectroscopy (DOSY) was performed on a Bruker Avance 600 spectrometer equipped with a direct Quattro Nucleus Probe (QNP) and a z-gradient coil controlled by a Great $1 / 10$ gradient unit, by using the double-stimulated echo pulse sequence dstegp3s from the Bruker TopSpin 4.0.7 program package without spinning in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 303 K . The residual resonance of CHDCl_{2} was used as internal standard. Hydrodynamic radii were calculated from diffusion coefficients using the Stokes-Einstein equation with correction factor 1 (assuming the spherical particle). The structures of molecules were calculated using the Gaussian $09 \mathrm{~W}^{[1]}$ software package with density functional theory (DFT) method implementing the hybrid correlation-exchange functional B3LYP. ${ }^{[2]}$ For mononuclear complex [Pd(allyl)(L1a)]BF ${ }_{4}$ the 3-21G basis set was used for geometry optimizations and the 6-31G(d) basis set was used for volume and energy calculations, electrons of palladium atom were rendered by the LaNL2DZ basis set with an effective potential for internal electrons. The solvent effects were accounted by the polarizable continuum model (PCM). Geometries of dinuclear complex $[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$ were optimized using the semi-empirical PM6 method and molecular volumes were computed by the DFT method with the 321G basis set. Mass spectra were recorded on a Bruker FT-ICR-MS solariX XR 15T spectrometer (ESITOF). HPLC analyses were performed on a Stayer instrument using Kromasil 5-CelluCoat and Daicel Chiralcel OD-H columns. Optical rotations were measured with an Atago AP-300 polarimeter. Elemental analyses were performed on a CHN-microanalyzer Carlo Erba EA1108 CHNS-O.

The molecular structures of L1a and L1b were confirmed by single-crystal X-ray structure determinations. The diffraction intensities of L1a and L1b were collected on STOE diffractometer equipped with Pilatus100K detector and focusing mirror collimation (Cu K α_{1} radiation, $\mathrm{I}=1.54086 \mathrm{~A}$) in a rotation mode. STOE X-Area software was used for cells refinement and data reduction. Data collection and image processing was performed with X-Area 1.67. ${ }^{[3]}$ Intensity data were scaled with LANA (part of X-Area) in order to minimize differences of intensities of symmetry-equivalent reflections (multi-scan method). The structures were solved and refined with SHELX ${ }^{[4]}$ programs. The non-hydrogen atoms were refined by using the anisotropic full matrix least-square procedure. H -atoms were placed in calculated positions and refined in a riding mode. The crystal data, data collection and refinement
parameters for L1a and L1b are given in Table S2. The molecular structures of L1a and L1b are shown in Figure 2, prepared with DIAMOND ${ }^{[5]}$ software.

The crystal structures of L4 and L5a were determined from powder data measured at room temperature on the beamline ID22 of the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The instrument is equipped with a cryogenically cooled double-crystal Si 111 monochromator and Si 111 analyzers. Each powder sample was loaded into a 1 mm diameter borosilicate thin-walled glass capillary which was rotated during measurements at a rate of 1200 rpm to improve the powder averaging. The powder patterns of $\mathbf{L 4}$ and L5a were indexed in orthorhombic and monoclinic unit cells, respectively, and based on the systematic extinction rules the chiral space groups $P 2_{1} 2_{1} 2_{1}$ and $P 2_{1}$ were selected for the structure determination. The crystal structures were solved with the use of simulated annealing technique ${ }^{[6]}$ and refined with the program MRIA ${ }^{[7]}$ following the known procedures described by us earlier. ${ }^{[8-11]}$ In the refinement, geometrical parameters of the rigid ferrocene fragment were kept close to the reported values (see, for example ${ }^{[12-14]}$). All non-H atoms were isotropically refined. H atoms were placed in calculated positions and not refined. The experimental and calculated diffraction profiles after the final bond-restrained Rietveld refinement are shown in Figures S1 and S2. The crystal data, data collection and refinement parameters for L4 and L5a are given in Table S3. The molecular structures of L4 and L5a are shown on Figure 3, prepared with Mercury. ${ }^{[15]}$

All reactions were carried out under a dry argon atmosphere in flame-dried glassware and in freshly dried and distilled solvents. For example, toluene and tetrahydrofuran were freshly distilled from sodium benzophenone ketyl before use; dichloromethane was distilled from NaH. Triethylamine and pyrrolidine were distilled over KOH and then over a small amount of LiAlH_{4} before use. PCl_{3} was freshly distilled. Thin-layer chromatography was performed on E. Merck pre-coated silica gel 60 F254 and Macherey-Nagel Alugram Alox $\mathrm{N} / \mathrm{UV}_{254}$ plates. Column chromatography was performed using silica gel MN Kieselgel 60 (230 - 400 mesh) and MN-Aluminum oxide, basic, Brockmann Activity 1. For the preparation of analytically pure samples, the obtained compounds were additionally dried in high vacuum (10^{-3} Torr) for 16 h .

The following compounds were synthesized according to literature procedures: $(115,12 S)$ -bis(hydroxymethyl)-9,10-dihydro-9,10-ethanoanthracene (1), ${ }^{[16]}$ (5S)-2-chloro-3-phenyl-1,3-diaza-2phosphabicyclo[3.3.0]octane and (5R)-2-chloro-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octane ((S_{C})7 and $\left.\left(R_{C}\right)-7\right),{ }^{[17]} \quad(1 S, 2 S)-N^{1}, N^{2}$-diphenylcyclohexane-1,2-diamine and $(1 R, 2 R)-N^{1}, N^{2}-$ diphenylcyclohexane-1,2-diamine $((S, S)$-S1 and $(R, R)-S 1),{ }^{[18]}[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$ and (E)-1,3-diphenylallyl acetate (9), ${ }^{[19]}$ ethyl 2 -acetamido-3-oxobutanoate (14), ${ }^{[20]} 2$-(diethoxyphosphoryl)-1-phenylallyl acetate (18). ${ }^{[21]}(1 S, 2 S)$ - and ($1 R, 2 R$)-Cyclohexane-1,2-diamine (starting compound for the preparation of $\mathbf{S} 1$) was
resolved from the racemic mixture using (S, S) - and (R, R)-tartaric acid, respectively, following the known procedure. ${ }^{[22]}$ Pd-catalyzed allylic alkylation of 9 with dimethyl malonate, its amination with pyrrolidine or phthalimide, allylic alkylation of cinnamyl acetate (11) with ethyl 2-oxocyclohexane-1-carboxylate (12), ethyl 2 -acetamido-3-oxobutanoate (14) or 2-acetyl-3,4-dihydronaphthalen-1(2H)-one (16), allylic amination of 18 with aniline were performed according to the appropriate procedures. ${ }^{[9,17,21,23-25]}$
p-Toluenesulfonyl chloride, thiophenol, ferrocenecarboxaldehyde, racemic cyclohexane-1,2diamine, dimethyl malonate, BSA (N, O-bis(trimethylsilyl)acetamide), cinnamyl acetate (11), ethyl 2-oxocyclohexane-1-carboxylate (12) and 2-acetyl-3,4-dihydronaphthalen-1(2H)-one (16) were purchased from Aldrich and Acros Organics.

EXPERIMENTAL SECTION

Procedure for the Preparation of Monotosylate 2: A solution of p-toluenesulfonyl chloride (4.39 $\mathrm{g}, 23 \mathrm{mmol})$ in pyridine (10 mL) was added at $0^{\circ} \mathrm{C}$ to a stirred solution of diol $1(5.86 \mathrm{~g}, 22 \mathrm{mmol})$ in pyridine (15 mL) over 5 min . The reaction mixture was stirred for 16 h at $0^{\circ} \mathrm{C} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and ice (4.0 g) were then added. The organic layer was washed in turn with $4 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(20$ mL) and brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum (40 Torr). The residue was dried for 30 min at 10 Torr and chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (hexane/EtOAc $=2 / 1$).
((11S,12S)-12-((Tosyloxy)methyl)-9,10-dihydro-9,10-ethanoanthracen-11-yl)methanol (2): White viscous foam that solidified on standing, yield $4.26 \mathrm{~g}(46 \%) .{ }^{1} \mathrm{H}$ NMR $\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=1.42-$ 1.45 (m, 1H; CHCHCH 2 OH), 1.58 (br.s, $1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}$), 1.72-1.76 (m, 1H; $\mathrm{CHCHCH}_{2} \mathrm{OTs}$), 2.47 ($\mathrm{s}, 3 \mathrm{H}$; CH_{3}), 3.11-3.14 (dd, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H})=10.4 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 3.28-3.30\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=10.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=6.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 3.38\left(\mathrm{t},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H}) \sim^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 3.81-3.84$ (dd, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H})=9.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 4.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 4.29$ (d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=2.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 6.97-7.01(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar}))$, 7.07-7.10 (m, 1H; CH(Ar)), 7.10-7.14 (m, $2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.22-7.27(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.35$ (br.d, ${ }^{3}{ }^{3}(\mathrm{H}, \mathrm{H}) \sim 8.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ts})$), 7.77 (br.d, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H}) \sim 8.3$ $\mathrm{Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ts}))$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=21.59\left(\mathrm{CH}_{3}\right), 42.29\left(\mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 45.04$ $\left(\underline{C H C H C H}_{2} \mathrm{OTs}\right), 45.15\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 45.30\left(\mathrm{C}_{\mathrm{HCHCH}}^{2} \mathrm{OH}\right), 65.23\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 72.16\left(\mathrm{CHCHCH}_{2} \mathrm{OTs}\right)$, 123.34 ($\mathrm{CH}(\mathrm{Ar})$), 123.64 ($\mathrm{CH}(\mathrm{Ar})$), 125.23 ($\mathrm{CH}(\mathrm{Ar})), 125.50(\mathrm{CH}(\mathrm{Ar})), 125.76$ ($\mathrm{CH}(\mathrm{Ar})$), $125.98(\mathrm{CH}(\mathrm{Ar}))$, 126.24 (CH(Ar)), 126.26 (CH(Ar)), 127.91 (CH(Ts)), 129.87 (CH(Ts)), 132.90 (C(Ts)), 139.62 (C(Ar)), 140.40 (C(Ar)), 142.44 (C(Ar)), 143.16 (C(Ar)), 144.82 (C(Ts)) ppm. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}$ (420.14): calcd. C, 71.41; H, 5.75; found C 71.56, H 5.70.

EXPERIMENTAL SECTION

Procedure for the Preparation of Azido Alcohol 3: Monotosylate 2 ($3.28 \mathrm{~g}, 7.8 \mathrm{mmol}$) was dissolved in DMF (30 mL) and $\mathrm{NaN}_{3}(1.01 \mathrm{~g}, 15.6 \mathrm{mmol})$ was added. The reaction mixture was stirred for 12 h at $100^{\circ} \mathrm{C}$. The DMF was removed under reduced pressure (1 Torr) and EtOAc (30 mL) and water (15 mL) were added to the residue. The aqueous phase was further extracted with EtOAc ($2 \times 30 \mathrm{~mL}$). The combined organic phases was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum (40 Torr). The residue was dried for 30 min at 10 Torr and chromatographed on $\mathrm{SiO}_{2}($ hexane/EtOAc $=2 / 1)$.
((11S,12S)-12-(Azidomethyl)-9,10-dihydro-9,10-ethanoanthracen-11-yl)methanol (3): White solid, yield $1.95 \mathrm{~g}(86 \%) .{ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2 \mathrm{C}^{\circ} \mathrm{C}$): $\delta=1.56-1.64\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}\right.$), 1.70 (br.s, $1 \mathrm{H} ; \mathrm{OH}$), $2.87-2.93\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{H})=12.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}\right), 3.06-3.10\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=12.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $6.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}$), 3.14-3.19 ($\left.\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=10.3 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}\right), 3.31-3.35\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{H})=\right.$ $\left.10.3 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}\right), 4.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 4.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right)$, 7.11-7.19 (m, 4H; CH(Ar)), 7.29-7.33 (m, 4H; CH(Ar)) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}\right.$): $\delta=$ $42.95(\mathrm{CH}), 45.66(\mathrm{CH}), 46.30(\mathrm{CH}), 46.52(\mathrm{CH}), 55.41\left(\mathrm{CH}_{2}\right), 65.49\left(\mathrm{CH}_{2}\right), 123.54(\mathrm{CH}(\mathrm{Ar})), 123.56(\mathrm{CH}(\mathrm{Ar}))$, 125.21 ($\mathrm{CH}(\mathrm{Ar})$), 125.40 ($\mathrm{CH}(\mathrm{Ar})$), 125.89 ($\mathrm{CH}(\mathrm{Ar})$), 125.94 (CH(Ar)), 126.19 (CH(Ar)), 126.32 (CH(Ar)), 140.06 (C(Ar)), 140.45 (C(Ar)), 142.77 (C(Ar)), 143.19 (C(Ar)) ppm. All spectroscopic data for compound 3 were in good agreement with the literature. ${ }^{[26]}$

EXPERIMENTAL SECTION

Procedure for the Preparation of Amino Alcohol 4: Azido alcohol 3 ($1.46 \mathrm{~g}, 5.02 \mathrm{mmol}$) was dissolved in ethanol (30 mL) and hydrogenated with $10 \% \mathrm{Pd} / \mathrm{C}(0.17 \mathrm{~g})$ at room temperature in a hydrogen atmosphere for 5 h . The reaction mixture was filtered through a thin layer of Celite and concentrated in vacuum (40 Torr). The residue was dried for 30 min at 10 Torr and then for 12 h at 10^{-3} Torr.
((11S,12S)-12-(Aminomethyl)-9,10-dihydro-9,10-ethanoanthracen-11-yl)methanol (4): White solid, yield 1.29 g (97%). ($499.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ambient temperature): $\delta=1.56-1.61\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{NH}_{2}\right.$), 1.70$1.74\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 1.89-1.93\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{H})=12.4 \mathrm{~Hz},{ }^{3}(\mathrm{H}, \mathrm{H})=10.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{NH}_{2}\right), 2.39$ (br.s, 3H; CHCHCH2 OH_{2} and $\mathrm{CHCHCH}_{2} \mathrm{NH}_{2}$), $2.87\left(\mathrm{t},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})={ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 2.90-2.93$ (dd, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H})=12.4 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{NH}_{2}\right), 3.62-3.65\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{H})=9.8 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=4.8\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 4.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{NH}_{2}\right), 4.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 7.08-7.14(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.23-7.28(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar}))$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ambient temperature): $\delta=46.10\left(\mathrm{CHCHCH}_{2} \mathrm{NH}_{2}\right), 47.34\left(\underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{OH}\right), 47.85\left(\mathrm{CHCHCH} 2 \mathrm{NH}_{2}\right), 48.07$ $\left(\underline{C} \mathrm{HCHCH}_{2} \mathrm{NH}_{2}\right), 48.18\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 66.44\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 123.03(\mathrm{CH}(\mathrm{Ar})), 123.12(\mathrm{CH}(\mathrm{Ar})), 124.88$ $(\mathrm{CH}(\mathrm{Ar})), 125.56(\mathrm{CH}(\mathrm{Ar})), 125.68(\mathrm{CH}(\mathrm{Ar})), 125.95(\mathrm{CH}(\mathrm{Ar})), 126.00(\mathrm{CH}(\mathrm{Ar})), 140.62(\mathrm{C}(\mathrm{Ar})), 140.66$ (C(Ar)), 143.75 (C(Ar)), 143.97 (C(Ar)) ppm. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ (265.15): calcd. C, 81.47; H, 7.22; N, 5.28; found C, 81.75; H, 7.30; N, 5.17.

EXPERIMENTAL SECTION

Procedure for the Preparation of Imino Alcohol 5: Amino alcohol 4 ($1.33 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Ferrocenecarboxaldehyde ($1.07 \mathrm{~g}, 5 \mathrm{mmol}$) and $\mathrm{Na}_{2} \mathrm{SO}_{4}(1.42 \mathrm{~g}, 10 \mathrm{mmol})$ were added to this solution with stirring, and the reaction mixture was heated under reflux for 4 h . After the mixture had cooled to room temperature, the $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was passed through a short plug of SiO_{2} and concentrated in vacuum (40 Torr). The residue was dried for 30 \min at 10 Torr and crystallized from toluene.
((11S,12S)-12-((((E)-Ferrocenylidene)amino)methyl)-9,10-dihydro-9,10-ethanoanthracen-11yl)methanol (5): Orange-red solid, yield $1.89 \mathrm{~g}(82 \%) .{ }^{1} \mathrm{H}$ NMR (600.1 MHz , Toluene-d8, $30^{\circ} \mathrm{C}$): $\delta=1.89$ $1.94\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right), 1.91-1.96\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 2.67-2.71\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right), 3.07\left(\mathrm{t},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})\right.$ $\left.={ }^{3} J(\mathrm{H}, \mathrm{H})=9.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 3.18-3.21\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=12.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right)$, $3.71-3.73\left(\mathrm{dd}^{2}{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 3.95-3.96\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 3.98$ (s, $5 \mathrm{H} ; \mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{Fc})$), $4.00\left(\mathrm{~d},{ }^{3}(\mathrm{H}, \mathrm{H})=1.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right), 4.04-4.06(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Fc})), 4.12(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}$; $\mathrm{CHCHCH}_{2} \mathrm{OH}$), 4.47 (br.s, 1 H ; $\mathrm{CH}(\mathrm{Fc})$), 4.54 (br.s, $1 \mathrm{H} ; \mathrm{CH}(\mathrm{Fc})$), $6.95-7.05$ (m, $4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})$), 7.08-7.14 (m, 4 H ; $\mathrm{CH}(\mathrm{Ar})), 7.65(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{FcCH}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}\right.$, Toluene-d8, $\left.30^{\circ} \mathrm{C}\right): \delta=46.36\left(\mathrm{CHCHCH} \mathrm{N}_{2} \mathrm{~N}\right)$, $47.85\left(\mathrm{C}_{\mathrm{HCHCH}}^{2} 2 \mathrm{OH}\right), 48.14\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 48.71\left(\mathrm{CHCHCH}_{2} \mathrm{~N}\right), 65.57\left(\mathrm{CHCHCH}_{2} \mathrm{~N}\right), 67.25\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right)$, $68.79(\mathrm{CH}(\mathrm{Fc})), 69.08(\mathrm{CH}(\mathrm{Fc})), 69.53\left(\mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{Fc})\right), 70.68(\mathrm{CH}(\mathrm{Fc})), 70.79(\mathrm{CH}(\mathrm{Fc})), 80.27(\mathrm{C}(\mathrm{Fc})), 123.37$ ($\mathrm{CH}(\mathrm{Ar})), 123.54(\mathrm{CH}(\mathrm{Ar})), 125.18(\mathrm{CH}(\mathrm{Ar})), 125.19(\mathrm{CH}(\mathrm{Ar})), 125.74$ ($\mathrm{CH}(\mathrm{Ar})), 125.94(\mathrm{CH}(\mathrm{Ar})), 126.15$ (CH(Ar)), 126.29 (CH(Ar)), 141.16 (C(Ar)), 141.30 ($C(A r)), 144.04$ (C(Ar)), 144.61 (C(Ar)), 162.17 (FcCH) ppm. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FeNO}$ (461.14): calcd. C, 75.49; H, 5.90; N, 3.04; found C, 75.69; H, 5.94; N, 3.12.

EXPERIMENTAL SECTION

Procedure for the Preparation of Thioether Alcohol 6: Monotosylate 2 ($3.49 \mathrm{~g}, 8.3 \mathrm{mmol}$) was dissolved in DMF (25 mL), thiophenol ($1.7 \mathrm{~mL}, 16.6 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.29 \mathrm{~g}, 16.6 \mathrm{mmol})$ were added. The reaction mixture was stirred for 12 h at room temperature, diluted with water (50 mL), and then extracted with hexane/EtOAc $=2 / 1(2 \times 50 \mathrm{~mL})$. The combined organic extracts was washed with brine (50 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum (40 Torr). The residue was dried for 30 min at 10 Torr and chromatographed on SiO_{2} (hexane/ $\mathrm{AcOEt}=3 / 1$).
((11S,12S)-12-((Phenylthio)methyl)-9,10-dihydro-9,10-ethanoanthracen-11-yl)methanol (6): White foam, yield $2.41 \mathrm{~g}(81 \%) .{ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=1.56-1.60$ (br.m, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}$ and $\mathrm{CHCHCH}_{2} \mathrm{~S}$), 1.70-1.74 (m, 1H; CHCHCH2 2 OH$), 2.59-2.62\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CHCHCH}_{2} \mathrm{~S}\right), 2.66-2.69\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{H})=13.0 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 3.02-3.06\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{H})=\right.$ $\left.10.3 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 3.37-3.40\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=10.4 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 4.36\left(\mathrm{~d},{ }^{3}(\mathrm{H}, \mathrm{H})=2.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OH}\right), 4.37\left(\mathrm{~d},{ }^{3}(\mathrm{H}, \mathrm{H})=2.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 7.08-$ 7.17 ($\mathrm{m}, 5 \mathrm{H}$; $\mathrm{CH}(\mathrm{Ar})$ and $\mathrm{CH}(\mathrm{Ph})$), 7.24-7.32 (m, $8 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})$ and $\mathrm{CH}(\mathrm{Ph}))$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(150.9 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=39.22\left(\mathrm{CHCHCH}_{2} \mathrm{~S}\right), 42.24\left(\mathrm{CHCHCH}_{2} \mathrm{~S}\right), 45.87\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 47.84\left(\underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{~S}\right), 49.07$ $\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 65.64\left(\mathrm{CHCHCH}_{2} \mathrm{OH}\right), 123.49(\mathrm{CH}(\mathrm{Ar})), 123.53(\mathrm{CH}(\mathrm{Ar})), 125.18(\mathrm{CH}(\mathrm{Ar})), 125.51(\mathrm{CH}(\mathrm{Ar}))$, 125.72 ($\mathrm{CH}(\mathrm{Ar})), 125.80(\mathrm{CH}(\mathrm{Ar})), 126.03(\mathrm{CH}(\mathrm{Ar})), 126.19(p-\mathrm{CH}(\mathrm{Ph}))$, 128.94 (o-CH(Ph)), $129.16(m-$ CH(Ph)), 136.16 ($p-\mathrm{C}(\mathrm{Ph})$), 140.51 (C(Ar)), 140.61 (C(Ar)), 143.19 (C(Ar)), 143.28 (C(Ar)) ppm. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{OS}$ (358.14): calcd. C, 80.41; H, 6.19; found C, 80.58; H, 6.13.

EXPERIMENTAL SECTION

General Procedure for the Preparation of Phosphorylating Reagent $(S, S)-8$ and $(R, R)-8$: A solution of the 1,2-diamine $(S, S)-\mathbf{S 1}$ or $(R, R)-\mathbf{S 1}(1.09 \mathrm{~g}, 4.1 \mathrm{mmol})$ in benzene $(20 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$ over 15 min to a vigorously stirred solution of $\mathrm{PCl}_{3}(0.36 \mathrm{~mL}, 4.1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.14 \mathrm{~mL}, 8.2 \mathrm{mmol})$ in benzene (40 mL). The mixture was then briefly heated to boiling point and cooled down to $20^{\circ} \mathrm{C}$. Solid $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was filtered off, and the filtrate was concentrated in vacuum (40 Torr). The residue was dried in vacuum (10^{-3} Torr) for 8 h .
($1 R, 5 R$)-3-chloro-2,4-diphenyl-2,4-diaza-3-phosphabicyclo[3.4.0]nonane ((R, R)-8): Yellowish solid, yield $1.30 \mathrm{~g}(96 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(499.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ambient temperature): $\delta=1.25-1.45$ (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}$), 1.33-1.53 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2}$), 1.91-1.92 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2}$), 2.33 (br.s, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}$), 2.46 (br.s, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}$), 3.65 (br.s, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}$), 3.94 (br.s, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}$), 7.03-7.16 (br.m, $2 \mathrm{H} ; p-\mathrm{CH}(\mathrm{Ph})$), 7.16-7.28 (br.m, $4 \mathrm{H} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})$), 7.31-7.46 (br.m, 4H; m-CH(Ph)) ppm. $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ambient temperature): $\delta=24.32$ (s; CH_{2}), 28.57 ($\mathrm{s} ; \underline{\mathrm{C}}_{2} \mathrm{CH}$), 28.99 ($\mathrm{s} ; \underline{\mathrm{CH}}_{2} \mathrm{CH}$), 65.77 (br.s; $\mathrm{CH}_{2} \underline{\mathrm{CH}}$), 66.08 (br.s; $\mathrm{CH}_{2} \underline{\mathrm{CH}}$), 119.69 (br.s; oCH(Ph)), 124.76 (br.s; o-CH(Ph)), 123.00 (br.s; p-CH(Ph)), 125.38 (br.s; p-CH(Ph)), 129.22 (s; m-CH(Ph)), 139.37 (br.s; $i-\mathrm{C}(\mathrm{Ph})$), 141.81 (br.s; $i-\mathrm{C}(\mathrm{Ph}))$ ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ambient temperature): $\delta=156.19$ (s) ppm.
(1S,5S)-3-chloro-2,4-diphenyl-2,4-diaza-3-phosphabicyclo[3.4.0]nonane (($(, S)-8)$: Yellowish solid, yield $1.22 \mathrm{~g}(90 \%)$. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signals match the corresponding signals for $(R, R)-8$.

General Procedure for the Preparation of Ligands: The relevant compound 1 (1 mmol) or 2,5,6 (2 mmol) was added in one portion to a vigorously stirred solution of the appropriate phosphorylating reagent $\left.\left(S_{\mathrm{C}}\right)-7,\left(R_{\mathrm{C}}\right)-7\right),(S, S)-8$ or $(R, R)-8(2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.56 \mathrm{~mL}, 4 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. The mixture that obtained was stirred for 24 h at $20^{\circ} \mathrm{C}$. The resulting suspension was filtered through a short plug of $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$, the column was washed with toluene ($2 \times 15 \mathrm{~mL}$), and the solvent was evaporated under reduced pressure (40 Torr). Products were additionally purified by flash chromatography on SiO_{2} (toluene). The obtained ligands were dried in vacuum ($10^{-3} \mathrm{Torr}$).
(11S,12S)-Bis[((2R,5S)-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octyloxy)methyl]-9,10-dihydro9,10 -ethanoanthracene (L1a): White solid, yield $0.63 \mathrm{~g}(94 \%) .{ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=$ 1.25-1.29 (m, 2H; CHCHCH 2), 1.50-1.55 (m, 2H; CH2), 1.69-1.77 (m, 2H; CH2 $\mathrm{CH}_{2} \mathrm{~N}$), 1.78-1.84 ($\mathrm{m}, 2 \mathrm{H}$; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.90-1.96 (m, 2H; CH2), 2.82-2.87 (m, 2H; CHCHCH2 2), 3.01-3.04 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.13-3.17

EXPERIMENTAL SECTION

 $\mathrm{CH}_{2} \mathrm{CHN}$), 3.54-3.60 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.70-3.75 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), $4.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$; $\left.\mathrm{CHCHCH}_{2} \mathrm{O}\right), 6.79-6.82\left(\mathrm{tt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.0 \mathrm{~Hz}, 2 \mathrm{H} ; p-\mathrm{CH}(\mathrm{Ph})\right)$, 6.93-6.95 (m, 4H;o-CH(Ph)), 7.04-7.08 (m, 2H; CHCHC(Ar)), 7.05-7.09 (m, 2H; C$^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})$), 7.18-7.20 (m, 2H; CHCHC(Ar)), 7.18-7.21 (m, 4H; m-CH(Ph)), 7.23-7.25 (m, 2H; CH'CH $\left.\underline{H}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right)$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}$): $\delta=$ $26.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=3.9 \mathrm{~Hz} ;{\underset{\mathrm{C}}{2}}^{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), $\left.32.09\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 43.93\left(\mathrm{~d},{ }^{3}\right)(\mathrm{C}, \mathrm{P})=2.7 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right), 45.42(\mathrm{~s}$; $\left.\underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{O}\right), 48.61\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=38.5 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 54.61\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.2 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 63.17\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=\right.$ $8.7 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CH}} \mathrm{H}$), $64.35\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=4.3 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right), 114.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=11.8 \mathrm{~Hz} ; o-\mathrm{CH}(\mathrm{Ph})\right), 118.74(\mathrm{~s}$;
 $\underline{\left.\mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right), 129.02(\mathrm{~s} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})), 140.75(\mathrm{~s} ; \mathrm{CHCHC}(\mathrm{Ar})), 143.61\left(\mathrm{~s} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \underline{\mathrm{C}}^{\prime}(\mathrm{Ar})\right), 145.65\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=\right.}$ $15.7 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph}))$ ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right.$): $\delta=121.26$ (s) ppm. $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ (674.29): calcd. C 71.20, H 6.57, N 8.30; found C 71.34, H 6.63, N 8.24.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (left part of the picture) and ${ }^{1} \mathrm{H}$ (right part of the picture) NMR Signals Assignment for L1a.

EXPERIMENTAL SECTION

(11S,12S)-Bis[((2S,5R)-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octyloxy)methyl]-9,10-dihydro-9,10-ethanoanthracene (L1b): White solid, yield $0.57 \mathrm{~g}(85 \%) .{ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=$ 1.42-1.46 (m, 2H; CHCHCH2 2), 1.55-1.60 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}$), 1.72-1.79 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.79-1.85 (m, 2 H ; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.95-2.01 (m, 2H; CH CH_{2}), 2.84-2.88 (m, 2H; CHCHCH2$\underline{2}_{2}$), 3.11-3.14 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.14-3.20 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.47-3.51 (m, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 3.54-3.59 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.58-3.60 (dd, ${ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=$ $8.8 \mathrm{~Hz},{ }^{3}{ }^{3}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.91-3.95 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{C} \underline{H}$), 4.17 (br.s, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 6.63 (br.d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H}) \sim 7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}^{\prime} \underline{\mathrm{H}}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right), 6.80-6.83\left(\mathrm{td},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})\right), 6.90$ $\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H} ; p-\mathrm{CH}(\mathrm{Ph})\right), 6.98-7.00\left(\mathrm{td},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right)$, 7.07-7.08 (m, 4H; o-CH(Ph)), 7.16 (br.d, ${ }^{3}$ J(H,H) ~ $7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})$), 7.29-7.33 (m, 4H; m-CH(Ph)) ppm. $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right): \delta=26.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=3.9 \mathrm{~Hz} ; \underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 32.26\left(\mathrm{~s} ; \mathrm{CH}_{2}\right) \text {, }, ~, ~}\right.$ $44.39\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=2.2 \mathrm{~Hz} ; \mathrm{CH}_{\mathrm{C}}^{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{O}\right), 45.54\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right), 48.76\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=38.3 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\right), 54.86$ (d, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=7.5 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 63.32\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=8.9 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{HN}\right), 64.49\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=5.0 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right)$, 114.92 ($\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=12.4 \mathrm{~Hz} ;$ o-CH(Ph)), 118.85 ($\left.\mathrm{s} ; \mathrm{p}-\mathrm{CH}(\mathrm{Ph})\right)$, 122.95 ($\mathrm{s} ; \mathrm{CHCHC}(\mathrm{Ar})$), 125.30 ($\mathrm{s} ;$ $\underline{C H C H C}(\mathrm{Ar})), 125.54$ ($\left.\mathrm{s} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right)$, $125.80\left(\mathrm{~s} ; \mathrm{CH}^{\prime} \underline{\mathrm{CH}}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right) 129.13$ ($\left.\mathrm{s} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})\right), 140.43$ (s ; CHCHC(Ar)), $143.60\left(\mathrm{~s} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \underline{\mathrm{C}}^{\prime}(\mathrm{Ar})\right), 145.73\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=15.8 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(242.9 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=120.58$ (s) ppm. $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ (674.29): calcd. C 71.20, H 6.57, N 8.30 ; found $\mathrm{C} 71.44, \mathrm{H}$ 6.64, N 8.17.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (left part of the picture) and ${ }^{1} \mathrm{H}$ (right part of the picture) NMR Signals Assignment for L1b.

EXPERIMENTAL SECTION

(11S,12S)-Bis[((1S,5S)-2,4-diphenyl-2,4-diaza-3-phosphabicyclo[3.4.0]nonan-3-yloxy)methyl]-9,10-dihydro-9,10-ethanoanthracene (L2a): White solid, yield $0.81 \mathrm{~g}(95 \%) .{ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30$ ${ }^{\circ} \mathrm{C}$): $\delta=0.92-0.98\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}\right.$), 1.01-1.06 (br.m, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 1.08-1.14 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 1.27$1.36\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.64-1.67\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.80-1.84\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right.$), 2.21-2.23 (br.m, 2H; $\mathrm{CH}_{2} \mathrm{CHN}$), 2.312.33 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 2.69-2.78 (br.m, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 3.38-3.42 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.45-3.50 (br.m, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 3.51-3.55 (m, 2H; CH2CHN), $4.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=3.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right)$, 6.94-6.96(m, 2 H ; $\mathrm{CH}(\mathrm{Ar}))$, 6.97-7.01 (m, 4H; CH(Ar)), 6.98-7.02 (m, 2H; CH(Ar)), 7.02-7.08 (m, 10H; CH(Ar)), 7.09-7.13 (m, $2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.23-7.26(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.27-7.31(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $30^{\circ} \mathrm{C}$): $\delta=24.25\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 24.31\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 28.41\left(\mathrm{~s} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 29.11\left(\mathrm{~s} ; \mathrm{CH}_{2} \mathrm{CHN}\right.$), 44.54 (br.s; $\mathrm{CHCHCH}_{2} \mathrm{O}$), 45.20 ($\mathrm{s} ; \underline{\mathrm{CH}} \mathrm{CHCH}_{2} \mathrm{O}$), $63.47\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.2 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right.$), $64.89\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=6.9 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right.$), 65.97 (d , $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=4.4 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right), 118.88\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=9.4 \mathrm{~Hz} ; o-\mathrm{CH}(\mathrm{Ph})\right), 121.44(\mathrm{~s} ; p-\mathrm{CH}(\mathrm{Ph})), 122.63$ (br.s; p$\mathrm{CH}(\mathrm{Ph})), 122.72\left(\mathrm{~d},{ }^{3}(\mathrm{C}, \mathrm{P})=6.6 \mathrm{~Hz} ; o-\mathrm{CH}(\mathrm{Ph})\right), 123.20(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 125.61(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 125.90(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar}))$, 128.89 ($s ; m-C H(P h)), 129.16(s ; m-C H(P h)), 140.30(s ; C(A r)), 142.26\left(d,{ }^{2}\right.$ J(C,P) $\left.=7.1 \mathrm{~Hz} ; C(P h)\right), 143.62$ ($\mathrm{s} ; \mathrm{C}(\mathrm{Ar})), 144.69\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=23.5 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=125.44(\mathrm{~s})$ ppm. $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ (854.39): calcd. C 75.86, H6.60, N 6.55; found C 76.07, H 6.69, N 6.70.
(11S,12S)-Bis[((1R,5R)-2,4-diphenyl-2,4-diaza-3-phosphabicyclo[3.4.0]nonan-3-yloxy)methyl]-9,10-dihydro-9,10-ethanoanthracene (L2b): White solid, yield $0.82 \mathrm{~g}(96 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta=1.15-1.22\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 1.24-1.28\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right), 1.28-1.34\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}{ }^{\prime} \mathrm{CH}{ }^{\prime} \mathrm{N}\right), 1.40-$ 1.49 ($\mathrm{m}, 4 \mathrm{H} ; \mathrm{CH}_{2}$ and $\mathrm{CH}_{2}{ }^{\prime}$), 1.85-1.92 ($\mathrm{m}, 4 \mathrm{H} ; \mathrm{CH}_{2}$ and $\mathrm{CH}_{2}{ }^{\prime}$), 2.38-2.40 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 2.43-2.45 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2}{ }^{\prime} \mathrm{CH}^{\prime} \mathrm{N}$), 3.08-3.13 (m, 2H; $\mathrm{CHCHCH}_{2} \mathrm{O}$), 3.40-3.43 (m, 2H; $\mathrm{CHCHCH}_{2} \mathrm{O}$), 3.46-3.50 (m, 2 H ; $\mathrm{CH}_{2}{ }^{\prime} \mathrm{CH}^{\prime} \mathrm{N}$), 3.72-3.76 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}$), 3.79 ($\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 6.99-7.01 (m, $4 \mathrm{H} ; 0-$ $\left.\mathrm{CH}^{\prime}(\mathrm{Ph})\right), 7.01-7.03\left(\mathrm{~m}, 2 \mathrm{H} ; p-\mathrm{CH}^{\prime}(\mathrm{Ph})\right)$, 7.01-7.04 (m,4H; $\underline{H}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})$ and $\left.\mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right)$, 7.06-7.08 (m, 2H; CHCHC(Ar)), 7.07-7.08 (m, 2H; CHCHC(Ar)), 7.09-7.12 (m, 2H; p-CH(Ph)), 7.13-7.15 (m, 4H; o-CH(Ph)), 7.30-7.34 (m, 4H; m-CH $\left.\left.{ }^{\prime}(\mathrm{Ph})\right), 7.33-7.36(\mathrm{~m}, 4 \mathrm{H} ; m-\mathrm{CH}(\mathrm{Ph})) \mathrm{ppm} .{ }^{13} \mathrm{C}_{\{ }{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right.$): $\delta=24.39\left(\mathrm{~s} ; \mathrm{CH}_{2}{ }^{\prime}\right), 24.42\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 28.86\left(\mathrm{~s} ; \underline{\mathrm{CH}}_{2}{ }^{\prime} \mathrm{CH}^{\prime} \mathrm{N}\right), 29.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=1.5 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 44.17(\mathrm{~d}$, $\left.{ }^{3} J(\mathrm{C}, \mathrm{P})=3.9 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right), 44.86\left(\mathrm{~s} ; \underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{O}\right), 63.58\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=6.9 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right), 65.14\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=\right.$ $7.0 \mathrm{~Hz} ; \mathrm{CH}_{2}{ }^{\prime} \mathrm{CH}^{\prime} \mathrm{N}$), $66.85\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=9.4 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{O}\right), 118.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=10.0 \mathrm{~Hz} ; o-\mathrm{CH}^{\prime}(\mathrm{Ph})\right), 121.35$ ($\left.\mathrm{s} ; p-\mathrm{CH}^{\prime}(\mathrm{Ph})\right), 122.98\left(\mathrm{~d},{ }^{5} \mathrm{~J}(\mathrm{C}, \mathrm{P})=2.9 \mathrm{~Hz} ; p-\mathrm{CH}(\mathrm{Ph})\right), 123.29(\mathrm{~s} ; \mathrm{CHCHC}(\mathrm{Ar})), 123.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=6.1 \mathrm{~Hz} ; o-\right.$
 $129.23\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{C}, \mathrm{P})=1.5 \mathrm{~Hz} ; m-\mathrm{CH}(\mathrm{Ph})\right), 140.50(\mathrm{~s} ; \mathrm{CHCHC}(\mathrm{Ar})), 142.48\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.0 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 143.40$ ($\mathrm{s} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \underline{\mathrm{C}}^{\prime}(\mathrm{Ar})$), $144.68\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=23.5 \mathrm{~Hz} ; \mathrm{C}^{\prime}(\mathrm{Ph})\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=$ 129.80 (s) ppm. $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ (854.39): calcd. C 75.86 , H 6.60, N 6.55; found C $76.16, \mathrm{H} 6.72, \mathrm{~N} 6.34$.

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (left part of the picture) and ${ }^{1} \mathrm{H}$ (right part of the picture) NMR Signals Assignment for L2b.
(11S,12S)-11-[((2R,5S)-3-Phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octyloxy)methyl]-12-
((tosyloxy)methyl)-9,10-dihydro-9,10-ethanoanthracene (L3a): White solid, yield 1.10 g (88% \%). ${ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=1.35-1.39\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 1.57-1.61\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 1.57-$ $1.62\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.74-1.81\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.83-1.89\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.97-2.03\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.48$ ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})$), $3.07-3.12\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right)$, $3.12-3.15\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 3.17-3.21(\mathrm{~m}, 2 \mathrm{H}$; CHCHCH2 $2_{2} \mathrm{OP}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.23 (br.t, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H}) \sim{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H}) \sim 10.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right)$, 3.58-3.64 (m, 1 H ; $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.60-3.63\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 3.72-3.75\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{CHCHCH}_{2} \mathrm{OTs}$), 3.88-3.92 (m, 1H; CH2CHN$), 4.23\left(\mathrm{~d},{ }^{3}{ }^{3}(\mathrm{H}, \mathrm{H})=2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 4.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $\left.2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 6.87\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; p-\mathrm{CH}(\mathrm{Ph})\right), 6.94-6.97(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})), 6.96-6.97$ (m, 1H; CHCHC(Ar)), 6.97-7.00 (m, 2H; o-CH(Ph)), 7.06-7.08 (td, ${ }^{3} J(H, H)=7.1 \mathrm{~Hz},{ }^{4} J(H, H)=1.9 \mathrm{~Hz}, 1 \mathrm{H}$; CㅍCHC(Ar)), 7.10-7.12 (td, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})\right), 7.11-7.14\left(\mathrm{td},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2\right.$ $\left.\mathrm{Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=1.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})\right), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})\right) 7.22-7.24(\mathrm{~m}, 1 \mathrm{H}$; CHCHC(Ar)), 7.24-7.27 (m, 2H; m-CH(Ph)), 7.26-7.27 (m, 1H; CHCHC(Ar)), $7.33\left(d,{ }^{3} J(H, H)=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$; $\left.\mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})\right), 7.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{SCCH}(\mathrm{Ts})\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right): \delta=$
 (d, $\left.{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=2.6 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 44.88\left(\mathrm{~s} ; \underline{\mathrm{CHCHCH}}{ }_{2} \mathrm{OTs}\right), 45.28\left(\mathrm{~s} ; \underline{\mathrm{CHCHCH}}_{2} \mathrm{OP}\right), 48.64\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=38.4\right.$

EXPERIMENTAL SECTION

$\mathrm{Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}$), $54.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.2 \mathrm{~Hz} ; \underline{\mathrm{C}}_{2} \mathrm{CHN}\right), 63.30\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=8.7 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{HN}\right), 64.40\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=\right.$ $3.8 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 71.77 ($\mathrm{s} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}$), 114.76 ($\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=12.0 \mathrm{~Hz} ; o-\mathrm{CH}(\mathrm{Ph})$), 118.96 ($\mathrm{s} ; p-$ $\mathrm{CH}(\mathrm{Ph})), 123.40$ ($\mathrm{s} ; \mathrm{CH} \underline{\mathrm{C}} \mathrm{HC}(\mathrm{Ar})$), 123.52 ($\mathrm{s} ; \mathrm{CH} \underline{\mathrm{C}} \mathrm{HC}(\mathrm{Ar}))$) 125.45 ($\mathrm{s} ; \mathrm{CH} \underline{\mathrm{C}} \mathrm{HC}(\mathrm{Ar})$), 125.57 (s; $\mathrm{CH} \underline{\mathrm{C}} \mathrm{HC}(\mathrm{Ar})$),
 $\mathrm{SCCH}(\mathrm{Ts})), 129.12$ ($\mathrm{s} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})), 129.83$ ($\mathrm{s} ; \mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})$), 132.89 ($\mathrm{s} ; \mathrm{CH}_{3} \underline{\mathrm{CCH}}(\mathrm{Ts})$), 139.54 ($\mathrm{s} ; \mathrm{CHCH}(\mathrm{Ar})$), 140.34 (s; CHCHC(Ar)), 142.44 (s; CHCHC(Ar)), 143.12 (s; CHCHC(Ar)), 144.69 (s; SCCH(Ts)), 145.49 (d, $\left.{ }^{2} J(C, P)=15.6 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right) \delta=122.29$ (s) ppm. $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PS}$ (624.22): calcd. C 69.21, H 5.97, N 4.48; found C 69.33, H 6.01, N 4.42 .
(11S,12S)-11-[((2S,5R)-3-Phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octyloxy)methyl]-12-
((tosyloxy)methyl)-9,10-dihydro-9,10-ethanoanthracene (L3b): White solid, yield $1.07 \mathrm{~g}(86 \%) .{ }^{1} \mathrm{H}$ NMR (600.1 MHz, $\left.\mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): ~ \delta=1.36-1.39\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 1.53-1.58\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.67-1.71(\mathrm{~m}, 1 \mathrm{H}$; $\mathrm{CHCHCH}_{2} \mathrm{OTs}$), 1.71-1.77 (m, 1H; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.78-1.84 (m, 1H; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.94-1.99 (m,1H; CH2), $2.48(\mathrm{~s}$, $\left.3 \mathrm{H} ; \mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})\right)$, 2.93-2.97 (m, 1H; CHCHCH2$\left.\underline{2}_{2} \mathrm{OP}\right)$, 3.09-3.14 (m, 1H; $\underline{\mathrm{H}}_{2} \mathrm{CHN}$), 3.11-3.15 (m, 1H; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.24-3.27 (dd, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H})=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 3.32-3.35(\mathrm{~m}, 1 \mathrm{H}$; $\left.\mathrm{CHCHCH}_{2} \mathrm{OP}\right), 3.50-3.55\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.56-3.58\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 3.80-3.85\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right.$), 3.87$3.89\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 4.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right)$, $4.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 6.76\left(\mathrm{br} . \mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H}) \sim 7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})\right), 6.87-6.96(\mathrm{~m}, 3 \mathrm{H}$; $\mathrm{CH}(\mathrm{Ar}))$, 6.88-6.90 (m, $1 \mathrm{H} ; p-\mathrm{CH}(\mathrm{Ph})), 7.02-7.03(\mathrm{~m}, 2 \mathrm{H} ; o-\mathrm{CH}(\mathrm{Ph})), 7.02-7.07(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.17-7.20$ (m, 2H; $\mathrm{CH}(\mathrm{Ar})), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph}))$, 7.35-7.37 (m, 2H; $\mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})$), 7.78-7.80(m, 2H; $\mathrm{SCCH}(\mathrm{Ts}))$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=21.62\left(\mathrm{~s} ; \mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})\right), 26.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=3.9\right.$ $\mathrm{Hz} ; \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $32.21\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 42.54\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 43.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=2.1 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 44.90(\mathrm{~s}$; $\mathrm{C}_{\mathrm{HCHCH}}^{2} \mathrm{OTs}$), $45.35\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 48.65\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=38.3 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{C H}_{2} \mathrm{~N}\right.$), $54.76\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.4 \mathrm{~Hz}\right.$; $\left.\underline{C H}_{2} \mathrm{CHN}\right), 63.29\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=8.8 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{HN}\right), 64.21\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=4.7 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 71.94(\mathrm{~s}$; $\mathrm{CHCHCH}_{2} \mathrm{OTs}$), $114.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=12.3 \mathrm{~Hz} ; o-\mathrm{CH}(\mathrm{Ph})\right), 118.95\left(\mathrm{~d},{ }^{5} \mathrm{~J}(\mathrm{C}, \mathrm{P})=0.8 \mathrm{~Hz} ; p-\mathrm{CH}(\mathrm{Ph})\right), 123.23(\mathrm{~s}$; $\mathrm{CH}(\mathrm{Ar})), 123.37$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 125.49$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 125.62$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.74 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 125.79$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.92 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 126.15$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 127.98$ ($\mathrm{s} ; \mathrm{SCCH}(\mathrm{Ts})), 129.15$ ($\mathrm{s} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})), 129.88$ ($\mathrm{s} ; \mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})$), 132.96 ($\mathrm{s} ; \mathrm{CH}_{3} \underline{\mathrm{CCH}}(\mathrm{Ts})$), 139.51 ($\left.\mathrm{s} ; \mathrm{C}(\mathrm{Ar})\right), 140.10$ ($\left.\mathrm{s} ; \mathrm{C}(\mathrm{Ar})\right), 142.42$ (s; C(Ar)), 143.28 (s; C(Ar)), 144.76 (s; $\mathrm{SCCH}(\mathrm{Ts})), 145.60\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=15.8 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right) \delta=121.22$ (s) ppm. $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PS}$ (624.22): calcd. C 69.21, H 5.97, N 4.48; found C 69.41, H 6.05, N 4.61 .
(11S,12S)-11-[((2R,5S)-3-Phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octyloxy)methyl]-12-((((E)-ferrocenylidene)amino)methyl)-9,10-dihydro-9,10-ethanoanthracene (L4): Orange solid, yield 1.06 g (80 \%). ${ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=1.47-1.51\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right), 1.52-1.57\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.64-$

EXPERIMENTAL SECTION

1.67 (m, 1H; CHCHCH2 2 OP), 1.72-1.79 (m, 1H; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.80-1.86 (m, 1H; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.92-1.98 (m, 1 H ; CH_{2}), 2.83-2.86 (dd, $\left.{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=11.6 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=9.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right), 2.90-2.95\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right)$, $3.08-3.11\left(\mathrm{ddd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{P})=3.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 3.18-3.21(\mathrm{~m}, 1 \mathrm{H}$; $\mathrm{CHCHCH}_{2} \mathrm{~N}$), 3.21-3.26 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.46-3.49 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 3.57-3.60 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.61-3.66 (m, 1H; CH2 $\mathrm{CH}_{2} \mathrm{~N}$), 3.82-3.86 (m, 1H; CH2CHN), $4.11\left(\mathrm{~d},{ }^{3}(\mathrm{H}, \mathrm{H})=2.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right), 4.16$ $\left(\mathrm{s}, 5 \mathrm{H} ; \mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{Fc})\right), 4.33-4.34(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Fc})), 4.35-4.36(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Fc})), 4.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CHCHCH}_{2} \mathrm{OP}\right), 4.57-4.58(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Fc}))$, 4.58-4.59(m,1H;CH(Fc)),6.84(t, ${ }^{3}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; p-$ $\mathrm{CH}(\mathrm{Ph})), 7.01-7.03(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})), 7.07-7.09(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.10-7.12(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})$), 7.18-7.22 (m, $2 H ; C H(A r)), 7.22-7.24(m, 2 H ; m-C H(P h)), 7.23-7.26(m, 1 H ; C H(A r)), 7.29-7.31(m, 1 H ; C H(A r)), 7.99(s$, $1 \mathrm{H} ; \mathrm{FcCH})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right): \delta=26.22\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=3.9 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 32.10(\mathrm{~s} ;$ CH_{2}), 43.76 ($\mathrm{s} ; \mathrm{CHCHCH}_{2} \mathrm{~N}$), $45.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=2.8 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right.$), $45.51\left(\mathrm{~s} ; \underline{\mathrm{CHCHCH}} \mathrm{H}_{2} \mathrm{OP}\right), 46.38(\mathrm{~s} ;$ $\underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{~N}$), $48.67\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=38.7 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\right), 54.72\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.2 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 63.28\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=\right.$ $8.8 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CHN}$), $64.42\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=5.1 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 65.65\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{~N}\right), 68.25(\mathrm{~s} ; \mathrm{CH}(\mathrm{Fc})), 68.53$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Fc})), 69.01\left(\mathrm{~s} ; \mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{Fc})\right), 70.31(\mathrm{~s} ; \mathrm{CH}(\mathrm{Fc})), 80.71(\mathrm{~s} ; \mathrm{C}(\mathrm{Fc})), 114.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=11.7 \mathrm{~Hz} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})\right.$), 118.78 ($s ; p-\mathrm{CH}(\mathrm{Ph})), 123.11(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 123.68(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 125.11(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 125.12(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 125.34$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.76 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.87 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.90 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 129.06 ($\mathrm{s} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})$), 140.87 (s ; $C(A r)), 140.89(s ; C(A r)), 143.71(s ; C(A r)), 143.88(s ; C(A r)), 145.71\left(d,{ }^{2} J(C, P)=15.8 \mathrm{~Hz} ; C(P h)\right), 161.39(s ;$ FcCH) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$) $\delta=120.86$ (s) ppm. $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{FeN}_{3} \mathrm{OP}$ (665.23): calcd. C 72.18, H 6.06, N 6.31; found C 72.31, H 6.11, N 6.41.
(11S,12S)-11-[((2R,5S)-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octyloxy)methyl]-12-
((phenylthio)methyl)-9,10-dihydro-9,10-ethanoanthracene (L5a): White solid, yield $1.02 \mathrm{~g}(91 \%) .{ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=1.41-1.44\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 1.57-1.62\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.70-1.74(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 1.75-1.81 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.83-1.89 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.96-2.02 (m, 1H; CH2), 2.48$2.52\left(\mathrm{dd}^{2}{ }^{2} J(\mathrm{H}, \mathrm{H})=13.0 \mathrm{~Hz},{ }^{3}{ }^{3}(\mathrm{H}, \mathrm{H})=9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 2.61-2.64\left(\mathrm{dd},{ }^{2}{ }^{\mathrm{J}}(\mathrm{H}, \mathrm{H})=13.0 \mathrm{~Hz}^{3}{ }^{3}{ }^{3}(\mathrm{H}, \mathrm{H})=6.2\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 2.94-2.99\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 3.14-3.17\left(\mathrm{ddd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}\right.$, $\left.{ }^{3} J(\mathrm{H}, \mathrm{P})=3.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}\right), 3.21-3.26\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.34-3.37(m,1H;CHCHCH$\left.\underline{H}_{2} \mathrm{OP}\right), 3.61-3.64(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.63-3.68 (m, 1H; CH2CH2 2), 3.86-3.90 (m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), $4.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CHCHCH}_{2} \mathrm{~S}\right), 4.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right)$, 6.86-6.89 (m, $1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})$), 7.03-7.05 (m, 2 H ; $\mathrm{CH}(\mathrm{Ar})), 7.10-7.18(\mathrm{~m}, 5 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.20-7.31(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta=26.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=3.8 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 32.14\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 38.66\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 42.36\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right)$, 45.76 ($\mathrm{s} ; \underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{OP}$), $47.51\left(\mathrm{~s} ; \underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{~S}\right), 47.52\left(\mathrm{~d},{ }^{3}(\mathrm{C}, \mathrm{P})=3.7 \mathrm{~Hz} ; \mathrm{CHCHCH} 2 \mathrm{OP}\right), 48.64\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=\right.$ $38.5 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}$), $54.70\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.2 \mathrm{~Hz} ; \underline{\mathrm{CH}}_{2} \mathrm{CHN}\right.$), $63.23\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=8.8 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right.$), $64.53(\mathrm{~d}$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})=4.6 \mathrm{~Hz} ; \mathrm{CHCHCH} \mathrm{H}_{2} \mathrm{OP}\right), 114.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=11.8 \mathrm{~Hz} ; o-\mathrm{CH}(\mathrm{Ph})\right), 118.87(\mathrm{~s} ; p-\mathrm{CH}(\mathrm{Ph})), 123.32(\mathrm{~s} ;$

EXPERIMENTAL SECTION

$\mathrm{CH}(\mathrm{Ar})), 123.59$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar}))$, 125.35 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 125.42$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.57 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 125.73$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.78 ($\mathrm{s} ; p-\mathrm{CH}(\mathrm{Ph})$), 125.83 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 126.09 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 128.82 ($\mathrm{s} ; m-\mathrm{CH}(\mathrm{Ph})$), 129.08 ($\mathrm{s} ; m-\mathrm{CH}(\mathrm{Ph})$ and o-CH(Ph)), 136.28 ($s ; C(P h)), 140.42(s ; C(A r)), 140.64(s ; C(A r)), 143.28(s ; C(A r)), 143.37(s ; C(A r))$, $145.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=15.5 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right) \delta=121.27$ (s) ppm. $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OPS}$ (562.22): calcd. C 74.71, H 6.27, N 4.98; found C 74.82, H 6.24, N 4.93.
(11S,12S)-11-[((2R,5S)-3-phenyl-1,3-diaza-2-phosphabicyclo[3.3.0]octyloxy)methyl]-12-
((phenylthio)methyl)-9,10-dihydro-9,10-ethanoanthracene (L5b): White solid, yield $1.09 \mathrm{~g}(97 \%) .{ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$): $\delta=1.50-1.54\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right.$ and CH_{2}), 1.67-1.73 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.69-1.73 (m, $1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 1.74-1.80 (m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.89-1.95 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}$), 2.45-2.49 (dd, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H})=13.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 2.78-2.81\left(\mathrm{dd},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{CHCHCH}_{2} \mathrm{~S}$), 2.85-2.89 (m, $1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 3.07-3.11 (m; 1H; $\mathrm{CH}_{2} \mathrm{CHN}$), 3.07-3.12 (m, 1H; CH2 $\mathrm{CH}_{2} \mathrm{~N}$), 3.41-3.45 (m, 1H; CHCHCH2 $\underline{2}_{2} \mathrm{OP}$), 3.49-3.53 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.53-3.55 (m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.78-3.82 (m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), $4.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 4.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 6.76$ (d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})\right), 6.85\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})\right), 6.88\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{CH}(\mathrm{Ar})), 6.99\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})\right), 7.04-7.05(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.07-7.11(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.13-$ 7.19 (m, 2H; CH(Ar)), 7.17-7.18 (m, 1H; CH(Ar)), 7.20-7.22 (m, 1H; CH(Ar)), 7.23-7.26 (m, 2H; CH(Ar)), 7.27-7.29 (m, 2H; CH(Ar)), 7.31-7.33 (m, 2H; CH(Ar)) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}$): $\delta=$ $26.18\left(\mathrm{~d},{ }^{3}{ }^{3}(\mathrm{C}, \mathrm{P})=3.9 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 32.19\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 38.63\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 42.65\left(\mathrm{~s} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 45.86(\mathrm{~s} ;$ $\underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{OP}$), $47.34\left(\mathrm{~s} ; \underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{~S}\right), 47.77\left(\mathrm{~d},{ }^{3} /(\mathrm{C}, \mathrm{P})=2.1 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 48.61\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=38.2 \mathrm{~Hz}\right.$; $\left.\mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\right), 54.76\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.4 \mathrm{~Hz} ; \underline{\mathrm{CH}}_{2} \mathrm{CHN}\right), 63.27\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=8.8 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{HN}\right), 64.49\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=4.7\right.$ $\left.\mathrm{Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 114.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{P})=12.3 \mathrm{~Hz} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})\right), 118.85(\mathrm{~s} ; \mathrm{p}-\mathrm{CH}(\mathrm{Ph})), 123.07(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 123.49$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.48 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.57 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.64 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.70 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.74 (s ; CH(Ar)), 126.06 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 128.86 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 128.91 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 129.10 (br.s; m-CH(Ph)), 136.52 (s ; $C(P h)), 140.35(\mathrm{~s} ; \mathrm{C}(\mathrm{Ar})), 140.39(\mathrm{~s} ; \mathrm{C}(\mathrm{Ar})), 143.19(\mathrm{~s} ; \mathrm{C}(\mathrm{Ar})), 143.51(\mathrm{~s} ; \mathrm{C}(\mathrm{Ar})), 145.68\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=15.8 \mathrm{~Hz} ;\right.$ $\mathrm{C}(\mathrm{Ph})) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right) \delta=120.64$ (s) ppm. $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OPS}$ (562.22): calcd. C 74.71, H 6.27, N 4.98; found C 74.94, H 6.34, N 5.10.

EXPERIMENTAL SECTION

Preparation of [Pd(allyl)(L1a)]BF ${ }_{4}$ complex. A solution of L1a ($135 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (3 mL) was added dropwise over 30 min to a stirred solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(37 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\operatorname{THF}(2 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for a further 1 h at $20^{\circ} \mathrm{C} . \mathrm{AgBF}_{4}(39 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to the resulting solution, and the reaction mixture was stirred for 1.5 h at $20^{\circ} \mathrm{C}$. The precipitate of AgCl formed was separated by centrifugation, solvent was removed in vacuum (40 Torr) and the crude product was dried in air and in vacuum ($10^{-3} \mathrm{Torr}$). The product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and reprecipitated from petroleum ether (10 mL). The precipitate of the product was separated by centrifugation and dried in air and in vacuum ($10^{-3} \mathrm{Torr}$).
$[\operatorname{Pd}($ allyl $)($ L1a $)] \mathrm{BF}_{4}$: White solid, yield $0.17 \mathrm{~g}(91 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=1.83-$ 1.87 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}$), 1.90-1.94 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.01-2.06 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.29-2.32 ($\mathrm{m}, 2 \mathrm{H}$; $\mathrm{CHCHCH}_{2} \mathrm{O}$), 2.30-2.35 (m, 2H; CH2), 2.90-2.97 (m, 2H; CHCHCH2O), 3.18-3.25 (br.m, 2H; CH $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.41 (t, ${ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})={ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=9.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.45-3.51 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.92-3.96 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 4.19 (s, 2H; $\mathrm{CHCHCH}_{2} \mathrm{O}$), 4.43-4.48 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 4.49-4.54 (m, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 5.00-5.07 ($\mathrm{p},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})$ $=10.5 \mathrm{~Hz}, \mathrm{CH}(\mathrm{allyl})), 6.94\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H} ; p-\mathrm{CH}(\mathrm{Ph})\right), 6.96-6.97(\mathrm{~m}, 4 \mathrm{H} ; o-\mathrm{CH}(\mathrm{Ph})), 7.10\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=\right.$ $7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})), 7.16\left(\mathrm{t},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right), 7.22\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 4 \mathrm{H} ; m-\right.$ $\mathrm{CH}(\mathrm{Ph})), 7.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right), 7.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CHCHC}(\mathrm{Ar})\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=27.18\left(\mathrm{vt}, \mathrm{J}(\mathrm{C}, \mathrm{P})=2.3 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 31.33\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 44.84(\mathrm{~s} ;$ $\mathrm{CHCHCH}_{2} \mathrm{O}$), 45.81 ($\mathrm{s} ; \underline{\mathrm{C}} \mathrm{HCHCH}_{2} \mathrm{O}$), 49.11 ($\mathrm{vt}, \mathrm{J}(\mathrm{C}, \mathrm{P})=10.5 \mathrm{~Hz} ; \mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}$), 53.96 ($\mathrm{s} ; \underline{\mathrm{C}}_{2} \mathrm{CHN}$), 62.59 (s ; $\mathrm{CH}_{2} \underline{\mathrm{CHN}}$), 66.92-67.69 (br.m, $\mathrm{CH}_{2}\left(\right.$ allyl)), 70.88 (vt, J(C,P) $=6.6 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{O}$), 115.99 (br.s; o-CH(Ph)), 121.72 ($\mathrm{s} ; p-\mathrm{CH}(\mathrm{Ph}))$, 123.42 ($\mathrm{t},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=8.6 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{allyl})$), 123.61 ($\left.\mathrm{s} ; \mathrm{CH} \underline{C H C}(\mathrm{Ar})\right)$) 124.96 ($\mathrm{s} ;$ $\left.\mathrm{CH}^{\prime} \underline{\underline{C}} \mathrm{H}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right), 125.97$ ($\left.\mathrm{s} ; \underline{\mathrm{C}} \mathrm{HCHC}(\mathrm{Ar})\right), 126.46$ ($\left.\mathrm{s} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \mathrm{C}^{\prime}(\mathrm{Ar})\right), 129.30(\mathrm{~s} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})), 140.13$ ($\mathrm{s} ;$ CHCHC(Ar)), $\left.142.57\left(\mathrm{~s} ; \mathrm{CH}^{\prime} \mathrm{CH}^{\prime} \underline{\mathrm{C}^{\prime}}(\mathrm{Ar})\right), 142.86-142.93(\mathrm{~m} ; \mathrm{C}(\mathrm{Ph})) \mathrm{ppm} .{ }^{31} \mathrm{P}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ ${ }^{\circ} \mathrm{C}$): $\delta=117.80$ (s) ppm. $\mathrm{C}_{43} \mathrm{H}_{49} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}$ (908.24): calcd. C 56.81, H 5.43, N 6.16 ; found $\mathrm{C} 57.06, \mathrm{H}$ 5.50, N 6.28 .

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR Signals Assignment for $[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4}$.

EXPERIMENTAL SECTION

Preparation of $[\mathbf{P d}(\mathbf{a l l y l})(\mathbf{L 5 a})]_{2}\left(\mathbf{B F}_{4}\right)_{2}$. A solution of $\mathbf{L 5 a}(112.5 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF (2 mL) was added dropwise over 30 min to a stirred solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(37 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{THF}(1 \mathrm{~mL})$ at 20 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for a further 1 h at $20^{\circ} \mathrm{C}$. $\mathrm{AgBF}_{4}(39 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to the resulting solution, and the reaction mixture was stirred for 1.5 h at $20^{\circ} \mathrm{C}$. The precipitate of $[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$ and AgCl was separated by centrifugation and washed with THF ($2 \times 10 \mathrm{~mL}$). The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ than the precipitate of AgCl was separated by centrifugation. Solvent was removed in vacuum (40 Torr) and the product was dried in air and in vacuum ($10^{-3} \mathrm{Torr}$). The product was washed with boiling THF ($2 \times 15 \mathrm{~mL}$) then dried in air and in vacuum ($10^{-3} \mathrm{Torr}$).
$\operatorname{Pd}(\mathrm{allyl})(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$: White solid, yield $45 \mathrm{mg}(28 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}\right): \delta=1.45-$ $1.80(\mathrm{~m}, 7 \mathrm{H}), 1.83-2.27(\mathrm{~m}, 7 \mathrm{H}), 2.37-3.66(\mathrm{~m}, 17 \mathrm{H}), 3.71-4.73(\mathrm{~m}, 11 \mathrm{H}), 5.18-5.97(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{allyl}))$, 6.35-7.93 (m, 36H; CH(Ar)), ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(150.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}\right): \delta=27.12-27.43\left(\mathrm{~m} ; \mathrm{CH}_{2} \mathrm{CH}{ }_{2} \mathrm{~N}\right)$, $32.55\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 32.79\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 41.06\left(\mathrm{~s} ; \underline{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{~S}\right), 41.70\left(\mathrm{~s} ; \underline{\mathrm{C}}_{\mathrm{HCH}}^{2} \mathrm{~S}\right), 41.96\left(\mathrm{~s} ; \underline{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{~S}\right), 42.59\left(\mathrm{~s} ; \underline{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{~S}\right)$, 45.60 (br.s; CHCH ${ }_{2}$ S), 46.53 ($\mathrm{s} ; \mathrm{CH}$), 46.97 ($\mathrm{s} ; \mathrm{CH}$), 47.09 ($\mathrm{s} ; \mathrm{CH}$), 47.20 ($\mathrm{s} ; \mathrm{CH}$), 47.36 ($\mathrm{s} ; \mathrm{CH}$), 47.44 ($\mathrm{s} ; \mathrm{CH}$), 47.47 (s; CH), 47.51 (br.s; $\mathrm{CHCH}_{2} \mathrm{~S}$), 47.85 ($\mathrm{s} ; \mathrm{CH}$), 48.09 ($\mathrm{s} ; \mathrm{CH}$), 48.29 (br.s; $\mathrm{CHCH}_{2} \mathrm{~S}$), 49.26-49.96 (m; $\mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}$), 54.31 ($\mathrm{s} ; \underline{\mathrm{CH}}_{2} \mathrm{CHN}$), 54.45 ($\mathrm{s} ; \underline{\mathrm{CH}}_{2} \mathrm{CHN}$), 54.61 ($\mathrm{s} ; \underline{\mathrm{CH}}_{2} \mathrm{CHN}$), 54.75 ($\mathrm{s} ; \underline{\mathrm{CH}}_{2} \mathrm{CHN}$), 63.13 (br.s; $\left.\mathrm{CH}_{2}(\text { allyl })^{c}\right)$, $63.25\left(\right.$ br.s; $\left.\mathrm{CH}_{2}(\text { allyl })^{c}\right)$, $63.29\left(\mathrm{~s} ; \mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{HN}\right.$), $63.35\left(\mathrm{~s} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right.$), 64.71 (br.s; $\mathrm{CH}_{2}(\text { allyl })^{c}$), 64.97 (br.s; $\mathrm{CH}_{2}(\text { allyl) })^{\mathrm{c}}$), $67.94\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=12.6 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{OP}\right), 68.19\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=12.8 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{OP}\right), 68.64\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})\right.$ $\left.=14.3 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{OP}\right), 85.06\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=39.0 \mathrm{~Hz} ; \mathrm{CH}_{2}(\text { allyl })^{\mathrm{t}}\right), 85.42\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=39.8 \mathrm{~Hz} ; \mathrm{CH}_{2}(\text { allyl) })^{\mathrm{t}}\right), 85.51(\mathrm{~d}$, $\left.{ }^{2} J(C, P)=36.1 \mathrm{~Hz} ; \mathrm{CH}_{2}\left(\mathrm{allyl}^{\prime}\right)^{\mathrm{t}}\right)$, $85.75\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=36.3 \mathrm{~Hz} ; \mathrm{CH}_{2}(\mathrm{allyl})^{\mathrm{t}}\right)$, 115.11-115.19(m;CH(Ar)),115.39115.47 (m; CH(Ar)), 121.70 ($s ; C H(A r)), 121.85$ ($; ~ C H(A r)), 121.95$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 122.08 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 123.85 (d, ${ }^{2} J(C, P)=8.0 \mathrm{~Hz} ; \mathrm{CH}\left(\right.$ allyl)), $123.96\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=9.2 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{allyl})\right), 124.22(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 124.33(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar}))$, 124.38 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 124.49 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 124.83 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 124.87 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 124.93-125.00 (m; CH(allyl)), 125.28 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.55 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 126.46$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 126.56$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 126.69$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 126.78 (s ; $\mathrm{CH}(\mathrm{Ar})), 126.90(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 127.11$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 127.33$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 127.42 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 129.80 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 129.93 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 129.99 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 130.11 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 130.47 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 130.59 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 130.78 (s ; $\mathrm{CH}(\mathrm{Ar})), 130.82(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 130.88(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 130.95(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})$), 131.06 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 131.09$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 131.56 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), $140.11-143.10(\mathrm{~m} ; \mathrm{C}(\mathrm{Ar})) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 3{ }^{\circ} \mathrm{C}\right) \delta=117.29(\mathrm{~s}$ (9\%)), 117.65 (s (23\%)), 117.71 (s (23\%)), 118.10 (s (44\%)) ppm. $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}_{2} \mathrm{~S}_{2}$ (1592.33): calcd. C 57.27, H 5.06, N 3.51; found C 57.40, H 5.02, N 3.57 .

General Procedure for the Preparation of Cationic Palladium Complexes of the General Formula $\left[\operatorname{Pd}(\right.$ allyl $\left.)(\mathrm{L})_{2}\right] \mathrm{BF}_{4}$: A solution of the relevant ligand L3a, L4, L5b (0.4 mmol) in THF (3 mL) was added dropwise over 30 min to a stirred solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(37 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{THF}(2 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. The

EXPERIMENTAL SECTION

reaction mixture was stirred for a further 1 h at $20^{\circ} \mathrm{C} . \mathrm{AgBF}_{4}(39 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to the resulting solution, and the reaction mixture was stirred for 1.5 h at $20^{\circ} \mathrm{C}$. The precipitate of AgCl formed was separated by centrifugation, solvent was removed in vacuum (40 Torr) and the crude product was dried in air and in vacuum ($10^{-3} \mathrm{Torr}$). The product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and reprecipitated from hexane $(10 \mathrm{~mL})$. The precipitate of the product was separated by centrifugation and dried in air and in vacuum (10^{-3} Torr).
$\left.\operatorname{Pd}(\mathrm{allyl})(\mathrm{L3a})_{2}\right] \mathrm{BF}_{4}$: White solid, yield $0.21 \mathrm{~g}(71 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=1.42-$ 1.55 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2}$), 1.47-1.51 (m, 2H; CHCHCH $\mathrm{H}_{2} \mathrm{OP}$), 1.58-1.64 (m, 2H; CHCHCH2OTs), 1.99-2.13 (m, 2H; CH_{2}), 2.00-2.12 (m, $4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.38-2.61 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 2.45 and 2.46 (s, 3 H and $\mathrm{s}, 3 \mathrm{H}$; $\left.\mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})\right)$, 3.08-3.13 (m, 1H; $\mathrm{CH}_{2}{ }^{\prime}\left(\mathrm{allyl}_{\text {antil }}\right)$), 3.16-3.23 (br.m, $1 \mathrm{H} ; \mathrm{CH}_{2}\left(\mathrm{allyl}_{\text {anti }}\right)$), 3.16-3.29 (br.m, 2 H ; $\left.\mathrm{CHCHCH}_{2} \mathrm{OP}\right), 3.27$ and $3.30\left(\mathrm{t},{ }^{2} J(\mathrm{H}, \mathrm{H})={ }^{3} J(\mathrm{H}, \mathrm{H})=9.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$ and $\mathrm{t},{ }^{2} J(\mathrm{H}, \mathrm{H})={ }^{3} J(\mathrm{H}, \mathrm{H})=9.2 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{CHCHCH}_{2} \mathrm{OTs}$), 3.33-3.38 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 3.39-3.45 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.46-3.53 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), $3.54-3.56$ and $3.59-3.61\left(\mathrm{dd},{ }^{2} J(\mathrm{H}, \mathrm{H})=9.6 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ and dd, ${ }^{2} J(\mathrm{H}, \mathrm{H})=9.6 \mathrm{~Hz},{ }^{3} J(\mathrm{H}, \mathrm{H})=5.7$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}$), 3.64-3.67 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.87-3.94 and 3.94-3.99 ($\mathrm{m}, 1 \mathrm{H}$ and $\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 4.11 and $4.12\left(\mathrm{~d},{ }^{3} J(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$ and d, $\left.{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}\right), 4.19\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.7 \mathrm{~Hz}\right.$, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 4.54 (br.s, $2 \mathrm{H} ; \mathrm{CH}_{2}\left(\right.$ ally $\left._{\text {syn }}\right)$), $\mathrm{CH}_{2}{ }^{\prime}\left(\right.$ allyl $\left._{\text {syn }}\right)$), 5.53-5.64 (br.m, $1 \mathrm{H} ; \mathrm{CH}(\mathrm{allyl}), 6.74$ and 6.76 (d, ${ }^{3} J(\mathrm{H}, \mathrm{H})=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ and d, ${ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})$), 6.85 and $6.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$ and d, $\left.{ }^{3} J(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})\right), 6.92-6.95(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 6.93-6.96(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{p}-\mathrm{CH}(\mathrm{Ph})), 7.02-7.08(\mathrm{~m}, 6 \mathrm{H} ;$ $\mathrm{CH}(\mathrm{Ar})), 7.10-7.19(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.23-7.28(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})), 7.31$ and $7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$ and $\left.\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})\right)$, 7.64-7.67 (m, 4H; SCCH(Ts)) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150.9 MHz , $\mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}$): $\delta=21.57$ ($\mathrm{s} ; \mathrm{CH}_{3} \mathrm{CCH}(\mathrm{Ts})$), 27.25-27.29 and 27.45-27.39 (m and $\mathrm{m} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 31.09 and 31.20 (s and $\mathrm{s} ; \mathrm{CH}_{2}$), 42.23 and 42.26 (s and $\mathrm{s} ; \mathrm{CHCHCH}_{2} \mathrm{OTs}$), 43.04 (br.s; $\mathrm{CHCHCH}_{2} \mathrm{OP}$), 44.78 and 44.83
 53.54 and 53.68 (s and $\mathrm{s} ; \mathrm{CH}_{2} \mathrm{CHN}$), 62.44 and 62.68 (s and $\mathrm{s} ; \mathrm{CH}_{2} \underline{\mathrm{CHN}}$), 66.90-67.04 ($\mathrm{m} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 71.82 and 72.03 (s and $s ; \mathrm{CHCH}_{2} \mathrm{OTs}$), $72.34\left(\mathrm{vt}, \mathrm{J}(\mathrm{C}, \mathrm{P})=20.6 \mathrm{~Hz} ; \mathrm{CH}_{2}\right.$ (allyl)), $72.70(\mathrm{vt}, \mathrm{J}(\mathrm{C}, \mathrm{P})=20.9 \mathrm{~Hz}$; $\mathrm{CH}_{2}{ }^{\prime}(\mathrm{allyl})$), 114.94 ($\mathrm{s} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})$), 121.00 and 121.03 (s and $\mathrm{s} ; \mathrm{p}-\mathrm{CH}(\mathrm{Ph})$), 123.49 and 123.53 (s and s ;
 and 125.27 (s and $\mathrm{s} ; \mathrm{CH} \underline{\mathrm{CHC}}(\mathrm{Ar})$), 125.79 and 125.80 (s and $\mathrm{s} ; \underline{\mathrm{CHCHC}}(\mathrm{Ar})$), 125.87 and 125.90 (s and s ;
 and 127.71 (s and $s ; \operatorname{SCCH}(\mathrm{Ts})$), 129.58 and 129.63 (s and $s ; m-\mathrm{CH}(\mathrm{Ph})$), 129.96 ($\mathrm{s} ; \mathrm{CH}_{3} \mathrm{COH}(\mathrm{Ts})$), 132.51 (s ; $\mathrm{CH}_{3} \underline{\mathrm{CCH}}(\mathrm{Ts})$), 139.04 ($\mathrm{s} ; \mathrm{CHCHC}(\mathrm{Ar})$), 139.66 and 139.79 (s and $\mathrm{s} ; \mathrm{CHCHC}(\mathrm{Ar})$), 142.21 and 142.24 (s and s ; CHCHC(Ar)), 142.35 and 142.37 (s and s; CHCHC(Ar)), 142.21-142.37 (m; C(Ph)), 145.10 (s; SCCH(Ts))

EXPERIMENTAL SECTION

ppm. $\left.{ }^{31} \mathrm{P}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right) \delta=116.23$ (s) ppm. $\mathrm{C}_{75} \mathrm{H}_{79} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{PdS}_{2}$ (1482.39): calcd. C 60.71, H 5.37, N 3.78; found C 61.00, H 5.47, N 3.62.
$\left.\operatorname{Pd}(\mathrm{ally})(\mathrm{L4})_{2}\right] \mathrm{BF}_{4}$: Orange solid, yield $0.16 \mathrm{~g}(50 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right): \delta=1.42-$ 2.18 (br.m, 12H), 2.56-3.28 (br.m, 10H), 3.43-3.93 (br.m, 10H), 4.05-4.75 (br.m, 24H), 5.52-5.66 (br.m, 1 H ; $\mathrm{CH}(\mathrm{allyl})$), 6.76-7.31 (br.m, 26H; CH(Ar)), 8.01 (br.s, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(150.9 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}$): $\delta=27.86$ and 28.00 (s and s; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 31.73 (s; CH_{2}), 44.40 (br.s; CH), 45.75 (br.s; CH), 46.55 (s; CH), 47.39 ($\mathrm{s} ; \mathrm{CH}$), 49.34-49.80 (br.m; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 54.28 (br.s; $\underline{\mathrm{C}}_{2} \mathrm{CHN}$), 63.08 and 63.29 (s and s; $\mathrm{CH}_{2} \underline{\mathrm{CHN}}$), 65.47-66.21 (br.m; $\mathrm{CH}_{2} \mathrm{OP}, \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}$), 68.22 (br.s; $\mathrm{CH}(\mathrm{Fc})$), 69.01 (br.s; $\mathrm{CH}(\mathrm{Fc})$), 69.85 (br.s; $\mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{Fc})$), $71.26-72.42$ (br.m; $\mathrm{CH}(\mathrm{Fc}), \mathrm{CH}_{2}(\mathrm{allyl})$), 80.52 (br.s; $\mathrm{C}(\mathrm{Fc})$), 115.70 ($\mathrm{s} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})$), 121.83 ($\mathrm{s} ; \mathrm{p}-$ $\mathrm{CH}(\mathrm{Ph})$), 123.83-123.97 (m; CH(allyl), 123.89 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 124.17 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.79 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 125.95 (s ; CH(Ar)), 126.09 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})), 126.46$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 126.74 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 126.99 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 130.30 ($\mathrm{s} ; \mathrm{m}-$ $\mathrm{CH}(\mathrm{Ph})), 140.74$ and 140.78 (s and $\mathrm{s} ; \mathrm{C}(\mathrm{Ar})$), 141.24 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ar})$), 143.18 ($\mathrm{m} ; \mathrm{C}(\mathrm{Ph})$), $143.53(\mathrm{~s} ; \mathrm{C}(\mathrm{Ar})$), 144.45 (s; C(Ar)), 162.81 (br.s; $\mathrm{CH}_{2} \mathrm{~N}=\underline{\mathrm{C}} \mathrm{H}$) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($242.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}$) $\delta=115.90$ (br.s) ppm. $\mathrm{C}_{83} \mathrm{H}_{85} \mathrm{BF}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}$ (1564.40): calcd. C 63.68, H 5.47, N 5.37; found C 64.02, H 5.58, N 5.58.
$\left.\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5b})_{2}\right] \mathrm{BF}_{4}$: White solid, yield $0.22 \mathrm{~g}(81 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}\right): \delta=1.40-$ $1.45\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 1.67-1.74\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.94-2.00\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}\right), 2.01-2.08(\mathrm{~m}, 2 \mathrm{H} ;$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.09-2.15 (m, 2H; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 2.09-2.17 (m, $2 \mathrm{H} ; \mathrm{CH}_{2}$), 2.35 and 2.37 (br.t, ${ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H}) \sim^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.5$ $\mathrm{Hz}, 1 \mathrm{H}$ and br.t, $\left.{ }^{2} J(\mathrm{H}, \mathrm{H}) \sim{ }^{3} J(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 2.73-2.77$ and 2.78-2.81(dd, ${ }^{2} J(\mathrm{H}, \mathrm{H})=12.9 \mathrm{~Hz}$, ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.1 \mathrm{~Hz}, 1 \mathrm{H}$ and dd, ${ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{H})=12.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}$), 2.83-2.87 (br.m, 1 H ; CH_{2} (allyl $\left.{ }_{\text {anti }}\right)$), 2.93-3.01 ($\mathrm{m}, 2 \mathrm{H}$; CHCHCH2 2 OP), 3.00-3.05 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}{ }^{\prime}\left(\right.$ allyl $\left._{\text {anti }}\right)$), 3.06-3.15 (br.m; 2 H ; $\mathrm{CH}_{2} \mathrm{CHN}$), 3.42-3.47 and 3.48-3.53 ($\mathrm{m}, 1 \mathrm{H}$ and $\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.61-3.66 and 3.72-3.78 ($\mathrm{m}, 1 \mathrm{H}$ and br.m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 3.71-3.77 (br.m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CHN}$), 3.84-3.88 (m, $2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 3.93-4.01 (m, 2 H ; $\mathrm{CH}_{2} \mathrm{CHN}$), 4.09-4.16 (br.m, $1 \mathrm{H} ; \mathrm{CH}_{2}{ }^{\prime}\left(\mathrm{allyl}_{\text {syn }}\right)$), 4.22 and $4.27\left(\mathrm{~s}, 1 \mathrm{H}\right.$ and $\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=1.2 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.\mathrm{CHCHCH}_{2} \mathrm{OP}\right), 4.22\left(\mathrm{~s}, 2 \mathrm{H} ; \mathrm{CHCHCH}_{2} \mathrm{~S}\right), 4.23-4.28\left(\mathrm{br} . \mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\left(\mathrm{allyl}_{\text {synn }}\right)\right.$), $5.35-5.42\left(\mathrm{tt},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=13.9 \mathrm{~Hz}\right.$, ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{allyl})$), 6.69 and 6.79 (br.d, ${ }^{3}{ }^{3}(\mathrm{H}, \mathrm{H}) \sim 7.3 \mathrm{~Hz}, 1 \mathrm{H}$ and br.d, ${ }^{3} J(\mathrm{H}, \mathrm{H}) \sim 7.2 \mathrm{~Hz}, 1 \mathrm{H} ;$ $\mathrm{CH}(\mathrm{Ar})), 6.82$ and $6.85\left(\mathrm{td},{ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$ and td, ${ }^{3} J(\mathrm{H}, \mathrm{H})=7.5 \mathrm{~Hz},{ }^{4} J(\mathrm{H}, \mathrm{H})=0.9 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 6.95$ and 6.99-7.00 ($\mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.1 \mathrm{~Hz}, 2 \mathrm{H}$ and $\mathrm{m}, 2 \mathrm{H}$; o-CH(Ph)), 6.99-7.03 (m, $2 \mathrm{H} ; \mathrm{p}-$ $\mathrm{CH}(\mathrm{Ph})), 7.04-7.05(\mathrm{~m}, 4 \mathrm{H} ; o-\mathrm{CH}(\mathrm{Ph})), 7.10-7.21(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{CH}(\mathrm{Ar})), 7.11-7.13(\mathrm{~m}, 2 \mathrm{H} ; p-\mathrm{CH}(\mathrm{Ph})), 7.16-7.19$ ($\mathrm{m}, 4 \mathrm{H} ; m-\mathrm{CH}(\mathrm{Ph})$), 7.38-7.41 and 7.39-7.42 (m, 2H and m, 2H; $m-\mathrm{CH}(\mathrm{Ph}))$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150.9 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}\right): \delta=27.83$ and $27.96\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=4.9 \mathrm{~Hz}\right.$ and d, $\left.{ }^{3} /(\mathrm{C}, \mathrm{P})=5.7 \mathrm{~Hz} ; \underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 31.91$ and 32.08 (s and $\mathrm{s} ; \mathrm{CH}_{2}$), 39.35 and 39.39 (s and $\mathrm{s} ; \mathrm{CHCHCH}_{2} \mathrm{~S}$), 42.66 and 42.69 (s and $\mathrm{s} ; \mathrm{CHCHCH} \mathrm{CH}_{2}$), 46.27 (s ; $\mathrm{C}_{\mathrm{CHCHCH}}^{2} 2 \mathrm{OP}$), 47.55-47.60 (m; CHCHCH 2 OP), 48.59 and 48.69 (s and $\mathrm{s} ; \mathrm{CHCHCH}_{2} \mathrm{~S}$), 49.51 and 49.86 (d,

EXPERIMENTAL SECTION

${ }^{2} J(\mathrm{C}, \mathrm{P})=22.1 \mathrm{~Hz}$ and $\mathrm{d}^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=23.2 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 54.64 and 54.80 (s and $\mathrm{s} ; \mathrm{CH}_{2} \mathrm{CHN}$), 63.04 and 63.17 (s and s; $\mathrm{CH}_{2} \underline{\mathrm{CHN}}$), 67.17 and $67.37\left(\mathrm{~d},{ }^{2} J(\mathrm{C}, \mathrm{P})=11.9 \mathrm{~Hz}\right.$ and $\mathrm{d},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=12.2 \mathrm{~Hz} ; \mathrm{CHCHCH}_{2} \mathrm{OP}$), 71.59$71.87\left(\mathrm{dd},{ }^{2} J(\mathrm{C}, \mathrm{P})_{\text {trans }}=32.1 \mathrm{~Hz},{ }^{2} J(\mathrm{C}, \mathrm{P})_{\text {cis }}=10.4 \mathrm{~Hz} ; \mathrm{CH}_{2}(\right.$ allyl) $), 72.04-72.33\left(\mathrm{dd},{ }^{2} J(\mathrm{C}, \mathrm{P})_{\text {trans }}=32.7 \mathrm{~Hz}\right.$, $\left.{ }^{2} J(\mathrm{C}, \mathrm{P})_{\mathrm{cis}}=10.7 \mathrm{~Hz} ; \mathrm{CH}_{2}(\mathrm{allyl})\right), 115.89$ and $116.02\left(\mathrm{~d},{ }^{3} J(\mathrm{C}, \mathrm{P})=7.4 \mathrm{~Hz}\right.$ and d, $\left.{ }^{3} J(\mathrm{C}, \mathrm{P})=7.1 \mathrm{~Hz} ; o-\mathrm{CH}(\mathrm{Ph})\right)$, 122.03 and 122.12 (s and $\mathrm{s} ; \mathrm{p}-\mathrm{CH}(\mathrm{Ph})$), 123.78 and 123.81 (s and $\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 123.92 and 123.98 (s and s ; $\mathrm{CH}(\mathrm{Ar})), 124.55\left(\mathrm{t},{ }^{2} \mathrm{~J}(\mathrm{C}, \mathrm{P})=8.4 \mathrm{~Hz} ; \mathrm{CH}(\right.$ allyl)), $126.20(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ar})), 126.23$ and 126.24 (s and $\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 126.33 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 126.65 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 126.70 and 126.72 (s and $\mathrm{s} ; p-\mathrm{CH}(\mathrm{Ph})$), 126.76 and 126.81 (s and s ; $\mathrm{CH}(\mathrm{Ar})$), 127.01 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ar})$), 129.34 and 129.38 (s and $\mathrm{s} ; \mathrm{o}-\mathrm{CH}(\mathrm{Ph})$), 129.54 and 129.56 (s and $\mathrm{s} ; \mathrm{m}$ $\mathrm{CH}(\mathrm{Ph})$), 130.39 and 130.43 (s and $\mathrm{s} ; \mathrm{m}-\mathrm{CH}(\mathrm{Ph})$), 136.29 and 136.31 (s and $\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), 139.96 and 140.03 (s and $\mathrm{s} ; \mathrm{C}(\mathrm{Ar})$), 140.80 and 140.83 (s and $\mathrm{s} ; \mathrm{C}(\mathrm{Ar})$), 143.14-143.31 (m; C(Ph)), 143.22 and 143.24 (s and s ; $C(A r)$), 143.91 and 143.94 (s and s; C(Ar)) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}\right) \delta=115.70$ and $115.98\left(\mathrm{AB},{ }^{2} J(\mathrm{P}, \mathrm{P})=92.0 \mathrm{~Hz}\right) \mathrm{ppm} . \mathrm{C}_{73} \mathrm{H}_{75} \mathrm{BF}_{4} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{PdS}_{2}$ (1358.39): calcd. C 64.48, H 5.56, N 4.12; found C 64.60, H 5.61, N 4.06.

Table S1. $\left.{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right]\right\} \mathrm{NMR}$ chemical shifts of novel diamidophosphites and $\mathrm{Pd}(\mathrm{II})$ complexes.

Compound	$\delta_{\text {P }}$
L1a	121.26 (s)
L1b	120.58 (s)
L2a	125.44 (s)
L2b	129.80 (s)
L3a	122.29 (s)
L3b	121.22 (s)
L4	120.86 (s)
L5a	121.27 (s)
L5b	120.64 (s)
[Pd(allyl)(L1a)] BF_{4}	117.80 (s)
$\mathrm{Pd}(\text { allyl) }(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$	$\begin{aligned} & 117.29(\mathrm{~s}(9 \%)), 117.65 \text { (s (23\%)), } \\ & 117.71 \text { (s (23\%)), } 118.10(\mathrm{~s}(44 \%)) \end{aligned}$
$\left.\mathrm{Pd}(\mathrm{allyl})(\mathrm{L3a})_{2}\right] \mathrm{BF}_{4}$	116.23 (s)
$\left.\mathrm{Pd}(\mathrm{allyl})(\mathrm{L4})_{2}\right]^{\text {BF }}{ }_{4}$	115.90 (br.s)
$\mathrm{Pd}\left(\right.$ allyl) $\left.(\mathbf{L 5 b})_{2}\right] \mathrm{BF}_{4}$	115.70, $115.98\left(\mathrm{AB},{ }^{2} \mathrm{~J}(\mathrm{P}, \mathrm{P})=92.0 \mathrm{~Hz}\right)$

EXPERIMENTAL SECTION

Palladium-Catalyzed Asymmetric Allylic Alkylation of (E)-1,3-Diphenylallyl Acetate with Dimethyl Malonate: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand $(0.005 \mathrm{mmol}$ or 0.01 mmol) in the appropriate solvent (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in the appropriate solvent (1.5 mL). (E)-1,3-diphenylallyl acetate (9) $(0.05 \mathrm{~mL}, 0.25 \mathrm{mmol})$ was added and the solution stirred for 15 min . Dimethyl malonate ($0.05 \mathrm{ml}, 0.44$ $\mathrm{mmol})$, BSA $(0.11 \mathrm{~mL}, 0.44 \mathrm{mmol})$ and KOAc $(0.002 \mathrm{~g})$ were added. The reaction mixture was stirred for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing dimethyl (E)-2-(1,3-diphenylallyl)malonate (10a). ${ }^{[27]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Amination of (E)-1,3-Diphenylallyl Acetate with Pyrrolidine and Phthalimide: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in the appropriate solvent (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in the appropriate solvent (1.5 mL). (E)-1,3diphenylallyl acetate (9) ($0.05 \mathrm{~mL}, 0.25 \mathrm{mmol}$) was added and the solution stirred for 15 min , then freshly distilled pyrrolidine ($0.06 \mathrm{~mL}, 0.75 \mathrm{mmol}$) or phthalimide ($0.045 \mathrm{~g}, 0.3 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.083 \mathrm{~g}$, $0.6 \mathrm{mmol})$ were added. The reaction mixture was stirred for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing $(E)-1-(1,3 \text {-diphenylallyl)pyrrolidine (} \mathbf{1 0 b})^{[28]}$ or (E)-2-(1,3-diphenylallyl)isoindoline-1,3-dione (10c). ${ }^{[23,29]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate with Ethyl 2-Oxocyclohexane-1-Carboxylate: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic
 was added and the solution stirred for 15 min . β-Ketoether $12(0.06 \mathrm{~mL}, 0.375 \mathrm{mmol})$, BSA (0.125 mL , $0.5 \mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{OAc})_{2}(0.005 \mathrm{~g})$ were added. The reaction mixture was stirred for 24 h , diluted with toluene (2 mL) and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing ethyl 1-cinnamyl-2-oxocyclohexane-1-carboxylate (13). ${ }^{[24 a, b]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

EXPERIMENTAL SECTION

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate with Ethyl 2-Acetamido-
3-Oxobutanoate: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in toluene (1.5 mL). Cinnamyl acetate (11) ($0.04 \mathrm{~mL}, 0.25 \mathrm{mmol}$) was added and the solution stirred for 15 min . α-Acetamido- β-Ketoether 14 ($0.07 \mathrm{~g}, 0.375 \mathrm{mmol}$), BSA (0.125 mL , $0.5 \mathrm{mmol})$ and KOAc (0.003 g) were added. The reaction mixture was stirred for 24 h , diluted with toluene (2 mL) and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing ethyl (E)-2-acetamido-2-acetyl-5-phenylpent-4-enoate (15). ${ }^{[25 a]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate with 2-Acetyl-3,4-Dihydronaphthalen-1 $\mathbf{(2 H}$)-one: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in toluene (1.5 mL). Cinnamyl acetate ($\mathbf{1 1 \text {) (} 0 . 0 4 \mathrm { mL } , 0 . 2 5 \mathrm { mmol } \text {) }) ~ (0)}$ was added and the solution stirred for 15 min . 1,3-Diketone 16 ($0.047 \mathrm{~g}, 0.25 \mathrm{mmol}$), BSA ($0.125 \mathrm{~mL}, 0.5$ $\mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{OAc})_{2}(0.005 \mathrm{~g})$ were added. The reaction mixture was stirred for 24 h , diluted with toluene (2 mL) and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10^{-3} Torr) affording a residue containing 2 -acetyl-2-cinnamyl-3,4-dihydronaphthalen-1(2H)-one (17). ${ }^{[30]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Amination of 2-(Diethoxyphosphoryl)-1-Phenylallyl
Acetate with Aniline: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 mL). 2-(Diethoxyphosphoryl)-1-phenylallyl acetate (18) (0.08 $\mathrm{g}, 0.25 \mathrm{mmol}$) was added and the solution stirred for 15 min , then freshly distilled aniline ($0.05 \mathrm{~mL}, 0.5$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.069 \mathrm{~g}, 0.5 \mathrm{mmol})$ were added. The reaction mixture was stirred for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing mixture of diethyl (3-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (19), (E)-diethyl (1-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (20) and (E)-2-(diethoxyphosphoryl)-3-phenylallyl acetate (21). ${ }^{[21]}$ Conversion of 18 and the ratio of $\mathbf{1 9 / 2 0} / \mathbf{2 1}$ were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy in CHCl_{3}. In order to evaluate ee,
the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

CRYSTAL DATA FOR NEW LIGANDS

Table S2. Crystal data for L1a and L1b (single-crystals).

	L1a	L1b
CCDC number	2055283	2055284
empirical formula	$\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$
formula weight	674.73	674.73
T, K	293(2)	293(2)
wavelength, \AA	1.54086	1.54086
crystal system	orthorhombic	orthorhombic
space group	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{1} 2_{1} 2_{1}$
$a, ~ \AA ̊$	9.4156(4)	9.0658(2)
b, Å	17.1568(7)	17.9593(6)
c, Å	22.3751(7)	22.1974(8)
volume, \AA^{3}	3614.5(2)	3614.08(19)
Z	4	4
$\mathrm{D}_{\mathrm{x}}, \mathrm{g} \mathrm{cm}^{-3}$	1.240	1.240
μ, mm^{-1}	1.404	1.404
crystal size, mm ${ }^{3}$	$0.22 \times 0.15 \times 0.13$	$0.12 \times 0.11 \times 0.10$
$\theta_{\text {min }}-\theta_{\text {max }}{ }^{\circ}$	3.95-70.95	3.98-68.37
$h k l$ range	$-11 \leq h \leq 5,-21 \leq k \leq 19,-26 \leq 1 \leq 27$	$-7 \leq h \leq 10,-21 \leq k \leq 20,-26 \leq 1 \leq 26$
reflections collected	20930	25176
independent reflections	$6402\left[R_{\text {int }}=0.143\right]$	$6534\left[R_{\text {int }}=0.044\right]$
goodness-of-fit	0.614	1.107
data/restraints/parameters	6402 / 0 / 434	6534 / 0 / 434
Final R indices [/>2 $/(/)$]	$R_{1}=0.0433, w R_{2}=0.0656$	$R_{1}=0.0445, w R_{2}=0.1197$
Absolute structure parameter	-0.01(3)	-0.002(8)
Largest diff. peak/hole, e. \AA^{-3}	0.191/-0.234	0.316 / -0.235

CRYSTAL DATA FOR NEW LIGANDS

Table S3. Crystal data for L4 and L5a (powders).

	L5a	L4
CCDC number	2056573	2056574
empirical formula	$\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OPS}$	$\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{FeN} \mathrm{N}_{3} \mathrm{OP}$
T, K	293(2)	293(2)
formula weight	562.68	665.57
particle morphology, color	needle, colorless	prism, brown
wavelength, \AA	0.354345(4)	0.354345(4)
crystal system	monoclinic	orthorhombic
space group	$P 2_{1}$	$P 2_{1} 2_{1} 2_{1}$
$a, ~ \AA ̊$	16.6231(12)	22.3219(13)
b, Å	11.4030(10)	18.9753(12)
c, Å	10.4537(9)	8.0785(8)
$\beta,{ }^{\circ}$	95.968(12)	90
volume, \AA^{3}	1496.6(2)	3421.8(5)
Z	2	4
$M_{20}{ }^{\text {a }}$	94	110
$\mathrm{F}_{30}{ }^{\text {b }}$	$152(0.003,43)$	233 (0.002, 34)
$\mathrm{D}_{\mathrm{x}}, \mathrm{g} \mathrm{cm}^{-3}$	1.249	1.292
$2 \theta_{\text {min }}-2 \theta_{\text {max }}$, increment, ${ }^{\circ}$	1.300-20.000, 0.002	1.300-20.000, 0.002
no. params/restraints	191/135	211/175
$\mathrm{R}_{\mathrm{p}} / \mathrm{R}_{\mathrm{wp}} / \mathrm{R}_{\text {exp }}{ }^{\text {c }}$	0.0313/0.0409/0.0166	0.0327/0.0461/0.0165
goodness-of-fit	2.455	2.798

[^0]
CRYSTAL DATA FOR NEW LIGANDS

Figure S1. The final Rietveld plot for $\mathbf{L 4}$, showing the experimental and difference diffraction profiles as black (top) and red (bottom) curves, respectively. The vertical blue bars correspond to the calculated positions of the Bragg peaks.

Figure S2. The final Rietveld plot for L5a, showing the experimental and difference diffraction profiles as black (top) and red (bottom) curves, respectively. The vertical blue bars correspond to the calculated positions of the Bragg peaks.

CRYSTAL DATA FOR NEW LIGANDS

Figure S3. A portion of the crystal packing in L1a viewed down the axis a.

Figure S4. A portion of the crystal packing in L1b viewed down the axis a.

Figure S5. A portion of the crystal packing in $\mathbf{L 4}$ viewed along the axis c.

Figure S6. A portion of the crystal packing in LEa viewed along the axis c.

CALCULATED STRUCTURES OF PALLADIUM(II) COMPLEXES

Figure S7. Calculated structure of $[\mathrm{Pd}($ allyl $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4}$.

Figure S8. Calculated structure of $[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$.

CATALYTIC RESULTS

Table S4. Pd-catalyzed allylic alkylation of 9 with dimethyl malonate. ${ }^{[a]}$

Ph Entry		(eam			
	Compound	L/Pd	Solvent	Conversion [\%]	Ee [\%] ${ }^{\text {[b,c] }}$
1	L1a	1	THF	100	98 (S)
2	L1a	2	THF	100	96 (S)
3	L1a	1	$\mathrm{CH}_{2} \mathrm{Cl} 2$	100	$98(S)$
4	L1a	2	$\mathrm{CH}_{2} \mathrm{Cl} 2$	100	98 (S)
5	[Pd(allyl)(L1a)]BF ${ }_{4}$	1	THF	100	98 (S)
6	$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L1a})] \mathrm{BF}_{4}$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	97 (S)
7	L1b	1	THF	97	89 (R)
8	L1b	2	THF	58	92 (R)
9	L1b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	95 (R)
10	L1b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	92 (R)
11	L2a	1	THF	100	78 (S)
12	L2a	2	THF	100	78 (S)
13	L2a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	85 (S)
14	L2a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	85 (S)
15	L2b	1	THF	100	19 (R)
16	L2b	2	THF	100	20 (R)
17	L2b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$8(R)$
18	L2b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$8(R)$
19	L3a	1	THF	91	86 (S)
20	L3a	2	THF	93	87 (S)
21	L3a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	92 (S)
22	L3a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	94 (S)
23	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L3a})_{2}\right] \mathrm{BF}_{4}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	93 (S)
24	L3b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	85 (R)
25	L3b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	92 (R)
26	L4	1	THF	100	88 (S)
27	L4	2	THF	100	90 (S)
28	L4	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	91 (S)
29	L4	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	93 (S)
30	[Pd(allyl)(L4) ${ }_{2}$] BF_{4}	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	90 (S)

CATALYTIC RESULTS

31	L5a	1	THF	93	$87(S)$
32	L5a	2	THF	91	$87(S)$
33	L5a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$83(S)$
34	L5a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$92(S)$
35	$[\mathrm{Pd}(\text { allyl })(\mathbf{L 5 a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$91(S)$
36	L5b	1	THF	100	$91(R)$
37	L5b	2	THF	100	$90(R)$
38	L5b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$93(R)$
39	L5b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$94(R)$
40	$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathbf{L 5 b})_{2}\right] \mathrm{BF}_{4}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	100	$94(R)$

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrate 9 and enantiomeric excess of 10a were determined by HPLC (Kromasil 5-CelluCoat, $\left.\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PrOH}=99 / 1,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=19.4 \mathrm{~min}, t(S)=20.8 \mathrm{~min}\right)$. [c] The absolute configurations were assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[9,34]}$

Table S5. Pd-catalyzed allylic amination of 9 with pyrrolidine and phthalimide. ${ }^{[a]}$

Entry	Compound	L/Pd	Solvent	Product	Conversion [\%]	$E e[\%]^{[b, c]}$
1	L1a	1	THF	10b	100	96 (R)
2	L1a	2	THF	10b	100	$94(R)$
3	L1a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	45 (R)
4	L1a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	67 (R)
5	L1a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	100	$98(R)$
6	[Pd(allyl)(L1a) BF_{4}	1	THF	10b	100	$97(R)$
7	[Pd(allyl)(L1a)] BF_{4}	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	59 (R)
8	[Pd(allyl)(L1a) BF_{4}	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	100	$98(R)$
9	L1b	1	THF	10b	99	$94(S)$
10	L1b	2	THF	10b	97	93 (S)
11	L1b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	93 (S)
12	L1b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	87 (S)
13	L1b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	100	$97(S)$
14	L2a	1	THF	10b	100	46 (R)
15	L2a	2	THF	10b	100	50 (R)
16	L2a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	55 (R)

CATALYTIC RESULTS

17	L2a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	29 (R)
18	L2a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	18	63 (R)
19	L2b	1	THF	10b	100	48 (S)
20	L2b	2	THF	10b	100	34 (S)
21	L2b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	42 (S)
22	L2b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	29 (S)
23	L2b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	17	18 (S)
24	L3a	1	THF	10b	88	$90(R)$
25	L3a	2	THF	10b	100	$93(R)$
26	L3a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	$79(R)$
27	L3a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	$83(R)$
28	L3a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	0	-
29	L3a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	94	$95(R)$
30	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L3a})_{2}\right] \mathrm{BF}_{4}$	2	THF	10b	100	75 (R)
31	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L} 3 \mathrm{a})_{2}\right] \mathrm{BF}_{4}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	18	$95(R)$
32	L3b	1	THF	10b	36	91 (S)
33	L3b	2	THF	10b	100	91 (S)
34	L3b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	0	-
35	L3b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	32	$94(S)$
36	L4	1	THF	10b	100	$91(R)$
37	L4	2	THF	10b	100	$92(R)$
38	L4	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	76 (R)
39	L4	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	$68(R)$
40	L4	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	0	-
41	L4	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	93	$95(R)$
42	[Pd(allyl) (L4) ${ }_{2}$] BF_{4}	2	THF	10b	81	$90(R)$
43	[Pd(allyl) $\left.(\mathrm{L4})_{2}\right] \mathrm{BF}_{4}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	17	$95(R)$
44	L5a	1	THF	10b	83	91 (R)
45	L5a	2	THF	10b	99	$92(R)$
46	L5a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	$82(R)$
47	L5a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	$83(R)$
48	L5a	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	0	-
49	L5a	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	58	$94(R)$
50	$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$	1	THF	10b	100	$88(R)$
51	$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	0	-

CATALYTIC RESULTS

52	L5b	1	THF	10b	100	$93(S)$
53	L5b	2	THF	10b	100	92 (S)
54	L5b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	83 (S)
55	L5b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10b	100	$78(S)$
56	L5b	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	0	-
57	L5b	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	100	95 (S)
58	[Pd(allyl)(L5b) $\left.{ }_{2}\right] \mathrm{BF}_{4}$	2	THF	10b	100	75 (S)
59	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5b})_{2}\right] \mathrm{BF}_{4}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10c	42	95 (S)

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{ally}) \mathrm{Cl}]_{2}$ at room temperature for 24 h . [b] The conversion of substrate $\mathbf{9}$ and enantiomeric excess of $\mathbf{1 0 b}$ were determined by HPLC (Daicel Chiralcel OD-H, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PPrOH} / \mathrm{Et}_{2} \mathrm{NH}$ $=200 / 1 / 0.1,0.4 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=13.7 \mathrm{~min}, t(S)=15.5 \mathrm{~min}) ; 10 \mathrm{c}-\left(\right.$ Daicel Chiralcel OD-H, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{iPrOH}=9 / 1$, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(S)=7.3 \mathrm{~min}, t(R)=8.4 \mathrm{~min})$. [c] The absolute configurations was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[9,28,34 a, 35]}$

Table S6. Pd-catalyzed allylic alkylation of 11 with $12 .{ }^{\text {[a] }}$

Entry	Compound	L/Pd	Conversion [\%]	$E e[\%]^{[b, c]}$
1	L1a	1	100	59 (S)
2	L1a	2	83	62 (S)
3	$\left[\mathrm{Pd}(\right.$ allyl) $(\mathrm{L1a})] \mathrm{BF}_{4}$	1	59	57 (S)
4	L1b	1	100	$84(R)$
5	L1b	2	100	$81(R)$
6	L2a	1	100	65 (R)
7	L2a	2	100	64 (R)
8	L2b	1	97	36 (S)
9	L2b	2	96	$38(S)$
10	L3a	1	31	85 (S)
11	L3a	2	100	88 (S)
12	[Pd(allyl)(L3a) ${ }_{2}$] BF_{4}	2	100	74 (S)
13	L3b	1	39	80 (R)
14	L3b	2	100	$88(R)$
15	L4	1	27	85 (S)
16	L4	2	100	87 (S)
17	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L4})_{2}\right] \mathrm{BF}_{4}$	2	100	$80(S)$

CATALYTIC RESULTS

18	L5a	1	15	$69(S)$
19	L5a	2	99	$86(S)$
20	$[\mathrm{Pd}(\text { allyl })(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$	1	22	$77(S)$
21	L5b	1	10	$89(R)$
22	L5b	2	81	$90(R)$
23	$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathbf{L 5 b})_{2}\right] \mathrm{BF}_{4}$	2	82	$66(R)$

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ in toluene at room temperature for 24 h (BSA, $\left.\mathrm{Zn}(\mathrm{OAc})_{2}\right)$. $[\mathrm{b}]$ The conversion of substrate 11 and enantiomeric excess of $\mathbf{1 3}$ were determined by HPLC (Kromasil 5 -CelluCoat, $\left.\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{iPrOH}=95 / 5,0.4 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=14.3 \mathrm{~min}, t(S)=16.7 \mathrm{~min}\right)$. [c] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[24]}$

Table S7. Pd-catalyzed allylic alkylation of $\mathbf{1 1}$ with $14 .{ }^{[\text {[a] }}$

Entry	Compound	L/Pd	Conversion [\%]	$E e[\%]^{[\mathrm{l}, \mathrm{c}]}$
1	L1a	1	100	76 (R)
2	L1a	2	100	72 (R)
3	[Pd(allyl)(L1a)] BF_{4}	1	100	76 (R)
4	L1b	1	100	73 (S)
5	L1b	2	100	67 (S)
6	L2a	1	100	27 (S)
7	L2a	2	100	27 (S)
8	L2b	1	100	22 (R)
9	L2b	2	100	$22(R)$
10	L3a	1	100	$64(R)$
11	L3a	2	100	$61(R)$
12	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L3a})_{2}\right] \mathrm{BF}_{4}$	2	100	60 (R)
13	L3b	1	100	72 (S)
14	L3b	2	100	69 (S)
15	L4	1	100	62 (R)
16	L4	2	100	$54(R)$
17	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L4})_{2}\right] \mathrm{BF}_{4}$	2	100	$68(R)$
18	L5a	1	95	51 (R)
19	L5a	2	100	60 (R)

CATALYTIC RESULTS

20	$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$	1	100	$58(R)$
21	L5b	1	100	$64(S)$
22	$\mathbf{L 5 b}$	2	100	$55(S)$
23	$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathbf{L 5 b})_{2}\right] \mathrm{BF}_{4}$	2	100	$66(S)$

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ in toluene at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrate 11 and enantiomeric excess of 15 were determined by HPLC (Daicel Chiralcel OD-H, $\left.\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PrOH}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(S)=9.8 \mathrm{~min}, t(R)=10.7 \mathrm{~min}\right)$. [c] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[36]}$

Table S8. Pd-catalyzed allylic alkylation of $\mathbf{1 1}$ with $16 .{ }^{[\text {a] }}$

Entry	Compound	L/Pd	Conversion [\%]	Ee [\%] ${ }^{[b, c]}$
1	L1a	1	100	$5(S)$
2	L1a	2	100	$6(S)$
3	$\left[\right.$ Pd(allyl)(L1a) BF_{4}	1	100	$7(S)$
4	L1b	1	46	$42(R)$

5	L1b	$\mathbf{2}$	100	$13(R)$
6	L2a	1	100	$11(S)$
7	L2a	2	100	$12(S)$
8	L2b	1	100	$24(R)$
9	L2b	2	100	$22(R)$
10	L3a	1	70	$66(S)$
11	L3a	2	100	$61(S)$
12	L3b	1	34	$3(R)$
13	L3b	2	100	$27(R)$
14	L4	1	87	$46(S)$
15	L4	2	100	$30(S)$
16	L5a	1	66	$49(S)$
17	L5a	2	100	$45(S)$
18	L5b	1	60	$40(R)$
19	L5b	2	100	$32(R)$

CATALYTIC RESULTS

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ in toluene at room temperature for 24 h (BSA, $\left.\mathrm{Zn}(\mathrm{OAc})_{2}\right)$. [b] The conversion of substrate 11 and enantiomeric excess of 17 were determined by HPLC (Kromasil 5-CelluCoat, $\left.\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{P} \mathrm{PrOH}=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(S)=11.2 \mathrm{~min}, t(R)=13.3 \mathrm{~min}\right)$. [c] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[37]}$

Table S9. Pd-catalyzed allylic amination of 18 with aniline. ${ }^{[a]}$

Entry	Compound	L/Pd	Conversion [\%]	19/20/21 ${ }^{\text {[b] }}$	$E e[\%]^{[c, d]}$
1	L1a	1	100	15/85/0	22 (R)
2	[Pd(allyl)(L1a)] BF_{4}	1	100	17/83/0	18 (R)
3	L1b	1	100	11/89/0	2 (S)
4	L2a	1	100	5/95/0	n. d.
5	L2b	1	100	0/100/0	-
6	L3a	1	100	8/92/0	25 (R)
7	L3a	2	100	57/43/0	71 (R)
8	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L3a})_{2}\right] \mathrm{BF}_{4}$	2	100	51/49/0	66 (R)
9	L3b	1	100	6/94/0	n. d.
10	L3b	2	100	65/35/0	38 (S)
11	L4	1	95	18/65/17	10 (R)
12	L4	2	100	70/30/0	64 (R)
13	[Pd(allyl)(L4) ${ }_{2}$] BF_{4}	2	100	32/34/34	63 (R)
14	L5a	1	100	6/94/0	$28(R)$
15	L5a		100	62/38/0	66 (R)
16	$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$		100	28/72/0	47 (R)
17	L5b		100	6/94/0	6 (S)
18	L5b		100	50/50/0	3 (S)
19	$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5b})_{2}\right] \mathrm{BF}_{4}$		100	45/40/15	2 (S)

[a] All reactions were carried out with 1 mol\% of $\left[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}_{2}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for $24 \mathrm{~h}\left(\mathrm{~K}_{2} \mathrm{CO}_{3}\right)$. [b] The conversion of substrate 18 and the ratio of 19/20/21 were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy. [c] The enantiomeric excess of 19 were determined by HPLC (Daicel Chiralcel OD-H, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{iPrOH}=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}, t(S)=5.9 \mathrm{~min}, t(R)=6.9 \mathrm{~min})$. [d] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[21]}$

HPLC TRACES FOR THE PD-CATALYZED ALLYLIC SUBSTITUTION

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of 9 with dimethyl malonate (entry 1 in Table 1) and for a racemic mixture of 10a (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic amination of 9 with pyrrolidine (entry 6 in Table 2) and for a racemic mixture of $\mathbf{1 0 b}$ (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic amination of 9 with phthalimide (entry 5 in Table 2) and for a racemic mixture of $\mathbf{1 0 c}$ (in the frame).

* cinnamyl acetate 11

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of cinnamyl acetate $\mathbf{1 1}$ with ethyl 2-oxocyclohexane-1-carboxylate $\mathbf{1 2}$ (entry 22 in Table 3) and for a racemic mixture of $\mathbf{1 3}$ (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of cinnamyl acetate 11 with ethyl 2-acetamido-3-oxobutanoate 14 (entry 1 in Table 4) and for a racemic mixture of 15 (in the frame).

* cinnamyl acetate 11

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of cinnamyl acetate 11 with 2-acetyl-1-tetralone 16 (entry 10 in Table 5) and for a racemic mixture of $\mathbf{1 7}$ (in the frame).

HPLC TRACES FOR THE PD-CATALYZED ALLYLIC SUBSTITUTION

* product 20

Chiral HPLC trace for the Pd-catalyzed allylic amination of 18 with aniline (entry 7 in Table 6) and for a racemic mixture of 19 (in the frame).

2, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

2, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

2, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

2, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

2, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC.

2, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

3, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

3, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

3, $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ DEPT $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right.$).

4, ${ }^{1} \mathrm{H}$ (499.9 MHz, CDCl_{3}, ambient temperature).

4, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (125.7 MHz, CDCl_{3}, ambient temperature).

4, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT (125.7 MHz, CDCl_{3}, ambient temperature).

4, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \cos \gamma$.

4, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

$5,{ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

5, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

5, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}$).

5, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

$5,{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

5, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

$6,{ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

6, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

6, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

6, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

6, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC.

6, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

$\begin{array}{lllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 1\end{array}$
8, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(202.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ambient temperature).

8, ${ }^{1} \mathrm{H}$ (499.9 MHz, CDCl_{3}, ambient temperature).

NMR AND MASS SPECTRA

8, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (125.7 MHz, CDCl_{3}, ambient temperature).

8, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT (125.7 MHz, CDCl_{3}, ambient temperature).

8, ${ }^{1} \mathrm{H}^{1} \mathrm{H} \cos \mathrm{Y}$.

8, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC.

$\begin{array}{llllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
L1a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L1a, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L1a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L1a, $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L1a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L1a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

L1a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

L1a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

$\begin{array}{lllllllllllllllllllllllllllllllllllll}250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50\end{array}$
L1b, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L1b, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L1b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L1b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L1b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L1b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

L1b, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC.

L1b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

L2a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L2a, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L2a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L2a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L2a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L2a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

$\begin{array}{llllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
L2b, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L2b, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L2b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L2b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L2b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L2b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

L2b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

L2b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

$\begin{array}{llllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
L3a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

			$\underset{\sim}{T}$		+										$\begin{aligned} & \text { Tr } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$						
\top	1	1		1	+	1	1	T	1	1			1	1	1	1	+	1	1	1	\square
9.0	8.5	8.0		7.5	7.0	6.5	6.0	5.5	5.0	4.5		0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

L3a, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L3a, $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L3a, $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L3a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L3a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

L3a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

L3a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

$\begin{array}{lllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
L3b, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L3b, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L3b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L3b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L3b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L3b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

L3b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

L3b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

$\begin{array}{lllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
L4, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L4, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L4,,$\left.^{13} \mathrm{C}^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L4, $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L4, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L4, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ NOESY.

L4, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC.

L4, ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMBC.

$\begin{array}{lllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
L5a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L5a, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L5a, $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L5a, $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L5a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L5a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

L5a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

L5a, ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ HMBC.

$\begin{array}{lllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
L5b, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L5b, ${ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L5b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

L5b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

L5b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

L5b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

L5b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC.

L5b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC.

$[\mathrm{Pd}($ allyl $)(\mathrm{L1a})] \mathrm{BF}_{4},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$[\operatorname{Pd}($ allyl $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

[Pd(allyl)(L1a)]BF H $_{4}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$[\operatorname{Pd}($ allyl $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$\left[\operatorname{Pd}(\right.$ allyl) $(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}$.

$[\mathrm{Pd}($ allyl $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

[Pd(allyl)(L1a)]BF 4 $_{4}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC (fragment of the spectrum).

$[\mathrm{Pd}($ allyl) $)(\mathrm{L1a})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC (fragment of the spectrum).

[Pd(allyl)(L1a)]BF 4 $^{1}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC}$ (fragment of the spectrum).

$\left[\mathrm{Pd}(\right.$ allyl)(L1a) $] \mathrm{BF}_{4}$, DOSY.

$\begin{array}{llllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90\end{array}$
$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L} 3 \mathrm{a})_{2}\right] \mathrm{BF}_{4},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L} 3 \mathrm{a})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L} 3 \mathrm{a})_{2}\right] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right)$.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L} 3 \mathrm{a})_{2}\right] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L} 3 \mathrm{a})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L} 3 \mathrm{a})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HSQC}$.

$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L3a})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC}$.

$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L} 4)_{2}\right] \mathrm{BF}_{4},{ }^{31}\left\{\left\{^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)\right.$.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)\left(\mathrm{LL}_{2}\right)_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L4})_{2}\right] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30{ }^{\circ} \mathrm{C}\right)$.

[Pd(allyl)(L5b) $)_{2} \mathrm{BF}_{4},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathbf{L 5 b})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

NMR AND MASS SPECTRA

$\left[\mathrm{Pd}(\right.$ allyl) $\left.)(\mathrm{L5b})_{2}\right] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$\left[\mathrm{Pd}\left(\right.\right.$ allyl) $\left.(\mathrm{L5b})_{2}\right] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT $\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$\left[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L} 5 \mathrm{~b})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L} 5 \mathrm{~b})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY.

$\left[\mathrm{Pd}\left(\right.\right.$ allyl) $\left.(\mathbf{L 5 b})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HSQC.

$\left[\mathrm{Pd}(\right.$ allyl $\left.)(\mathrm{L} 5 \mathrm{~b})_{2}\right] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC}$.

$[\mathrm{Pd}(\text { allyl })(\mathrm{L} 5 \mathrm{a})]_{2}\left(\mathrm{BF}_{4}\right)_{2},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

[^1]
NMR AND MASS SPECTRA

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right) 2_{2}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

$[\operatorname{Pd}(\text { allyl })(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right) 2_{2}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}$).

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right) 2_{2}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}$.

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ TOCSY.

$\left[\mathrm{Pd}(\text { allyl) }(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ NOESY.

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HSQC}$.

$\left[\mathrm{Pd}(\text { allyl) }(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC}\right.$.

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LSa})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$, DOSY.

Products of the complexation of $\mathbf{L 4}$ with $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ in the presence of AgBF_{4} (the molar ratio of $\mathrm{L} / \mathrm{Pd}=1$) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

Products of the complexation of $\mathbf{L 5 b}$ with $\left[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}_{2}\right.$ in the presence of AgBF_{4} (the molar ratio of $\mathrm{L} / \mathrm{Pd}=1$) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(242.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

Pd-catalyzed allylic amination of 18 with aniline (entry 7 in Table 6). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(202.3 \mathrm{MHz}, \mathrm{CHCl}_{3}\right.$, ambient temp.).

Display Report

Analysis Info		Acquisition Date	18.03.2020 16:00:39	
Analysis Name	D:\Data\Kolotyrkinal2020KKostenkol0318025.d			
Method	tune_50-1600.m	Operator	BDAL@DE	
Sample Name	IZSGN RSU1	Instrument / Ser\# micrOTOF	10248	
Comment	C43H49N4O2P2Pd mH 822.2453 calibrant added CH3CN			

Display Report				
Analysis Info		Acquisition Date	18.03.2020	17:22
Analysis Name	D:\Data\Kolotyrkina\2020\Kostenkol0318027.d			
Method	tune_50-1600.m	Operator	BDAL@DE	
Sample Name	/ZSGN RSU3	Instrument / Ser\#	micrOTOF	10248
Comment	C38H40N2OPPdS m 709.1641 calibrant added CH3CN			

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L} 5 \mathrm{a})]_{2}\left(\mathrm{BF}_{4}\right)_{2}$, ESI-TOF MS.

REFERENCES

1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. F. Robb, J. R. Cheeseman, et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT; 2013.
2. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648-5652.
3. Stoe \& Cie, X-area, Darmstadt, Germany, 2013
4. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. C, 2015, C71, 3-8.
5. K. Brandenburg, DIAMOND, Release 2.1d. Crystal Impact GbR: Bonn, Germany, 2000.
6. S. G. Zhukov, V. V. Chernyshev, E. V. Babaev, E. J. Sonneveld, H. Z. Schenk, Application of simulated annealing approach for structure solution of molecular crystals from X-ray laboratory powder data, Kristallogr., 2001, 216, 5-9.
7. V. B. Zlokazov, V. V. Chernyshev, MRIA - a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra, J. Appl. Crystallogr., 1992, 25, 447-451.
8. K. N. Gavrilov, I. S. Mikhel, I. V. Chuchelkin, S. V. Zheglov, V. K. Gavrilov, K. P. Birin, V. A. Tafeenko, V.
V. Chernyshev, N. S. Goulioukina, I. P. Beletskaya, (S)-2-[(N-arylamino)methyl]pyrrolidines-Based Phosphoramidite P, N-Ligand Library for Asymmetric Metal-Catalyzed Allylic Substitution and Conjugate 1,4-Addition, ChemistrySelect, 2016, 1, 4173-4186.
9. K. N. Gavrilov, S. V. Zheglov, V. K. Gavrilov, M. G. Maksimova, V. A. Tafeenko, V. V. Chernyshev, K. P. Birin, I. S. Mikhel, Palladium catalyzed asymmetric reactions assisted by P^{*}, P^{*}-bidentate bisdiamidophosphites based on 1,4-diols, Tetrahedron, 2017, 73, 461-471.
10. K. N. Gavrilov, S. V. Zheglov, I. V. Chuchelkin, M. G. Maksimova, I. D. Firsin, A. N. Fitch, V. V. Chernyshev, A. V. Maximychev, A. M. Perepukhov, Tartaric acid-derived chiral phosphite-type P,N-ligands: behavioural features in Pd-catalyzed asymmetric transformations, Tetrahedron: Asymmetry, 2017, 28, 1633-1643.
11. K. N. Gavrilov, I. S. Mikhel, S. V. Zheglov, V. K. Gavrilov, I. V. Chuchelkin, I. D. Firsin, K. P. Birin, I. S. Pytskii, K. A. Paseshnichenko, V. A. Tafeenko, V. V. Chernyshev, A. A. Shiryaev, Oxalamide-based bisdiamidophosphites: synthesis, coordination, and application in asymmetric metallocatalysis, Org. Chem. Front., 2019, 6, 1637-1648.
12. J. Lasri, A. S. Elsherbiny, N. E. Eltayeb, M. Haukka, M. E. El-Hefnawy, Synthesis and characterization of ferrocene-based Schiff base and ferrocenecarboxaldehyde oxime and their adsorptive removal of methyl blue from aqueous solution, J. Organomet. Chem., 2018, 866, 21-26.
13. E. P. Sánchez-Rodríguez, F. Hochberger-Roa, R. Corona-Sánchez, J. E. Barquera-Lozada, R. A. Toscano, M. Urrutigoïty, M. Gouygou, M. C. Ortega-Alfaro, J. G. López-Cortés, Chiral bidentate [N, S]-ferrocene ligands based on a thiazoline framework. Synthesis and use in palladium-catalyzed asymmetric allylic alkylation, Dalton Trans., 2017, 46, 1510-1519.
14. K. N. Gavrilov, I. V. Chuchelkin, V. S. Zimarev, S. V. Zheglov, V. K. Gavrilov, I. D. Firsin, A. V. Maximychev, A. M. Perepukhov, V. V. Chernyshev, N. S. Goulioukina, Diastereomeric $P *$, N,S-tridentate diamidophosphites with a ferrocene moiety in asymmetric palladium catalysis, J. Organomet. Chem., 2020, 913, 121199.
15. C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, Mercury: visualization and analysis of crystal structures, J. Appl. Cryst., 2006, 39, 453-457.
16. L. Thunberg, S. Allenmark, Tetrahedron: Asymmetry, 2003, 14, 1317-1322.
17. V. N. Tsarev, S. E. Lyubimov, A. A. Shiryaev, S. V. Zheglov, O. G. Bondarev, V. A. Davankov, A. A. Kabro, S. K. Moiseev, V. N. Kalinin, K. N. Gavrilov, P-Chiral Monodentate Diamidophosphites - New and

REFERENCES

Efficient Ligands for Palladium-Catalysed Asymmetric Allylic Substitution, Eur. J. Org. Chem., 2004, 22142222.
18. H. Aoyama, M. Tokunaga, J. Kiyosu, T. Iwasawa, Y. Obora, Y. Tsuji, Kinetic Resolution of Axially Chiral 2,2'-Dihydroxy-1,1'-biaryls by Palladium-Catalyzed Alcoholysis, J. Am. Chem. Soc., 2005, 127, 1047410475.
19. P. R. Auburn, P. B. Mackenzie, B. Bosnich, Asymmetric synthesis. Asymmetric catalytic allylation using palladium chiral phosphine complexes, J. Am. Chem. Soc., 1985, 107, 2033-2046.
20. H. J. Seo, E.-J. Park, M. J. Kim, S. Y. Kang, S. H. Lee, H. J. Kim, K. N. Lee, M. E. Jung, M. W. Lee, M.-S. Kim, E.-J. Son, W.-K. Park, J. Kim, J. Lee, Design and Synthesis of Novel Arylpiperazine Derivatives Containing the Imidazole Core Targeting 5-HT2A Receptor and 5-HT Transporter, J. Med. Chem., 2011, 54, 6305-6318.
21. X. Wang, X. Wang, Z. Han, Z. Wang, K. Ding, Palladium-catalyzed asymmetric allylic amination: enantioselective synthesis of chiral α-methylene substituted β-aminophosphonates, Org. Chem. Front., 2017, 4, 271-276.
22. a) F. Galsbol, P. Steenbol, B. S. Sorensen, The Preparation, Separation, and Characterization of the lel3- and ob3-Isomers of Tris(trans-1,2-cyclohexanediamine)rhodium(III) Complexes, Acta Chem. Scand., 1972, 26, 3605-3611; b) J. F. Larrow, E. N. Jacobsen, (R, R)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2cyclohexanediamino manganese (III) chloride, a highly enantioselective epoxidation catalyst, Org. Synth., 1998, 75, 1.
23. C. C. Lynch, K. Balaraman, C. Wolf, Catalytic Asymmetric Allylic Amination with Isatins, Sulfonamides, Imides, Amines, and N-Heterocycles, Org. Lett., 2020, 22, 3180-3184.
24. a) T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamada, P-Chirogenic Diaminophosphine Oxide: A New Class of Chiral Phosphorus Ligands for Asymmetric Catalysis, J. Am. Chem. Soc., 2004, 126, 3690-3691; b) T. Nemoto, T. Masuda, T. Matsumoto, Y. Hamada, J. Org. Chem., 2005, 70, Development of a new class of chiral phosphorus ligands: P-chirogenic diaminophosphine oxides. A unique source of enantioselection in Pd-catalyzed asymmetric construction of quaternary carbons, 7172-7178; c) A. A. Zagidullin, E. S. Oshchepkova, I. V. Chuchelkin, S. A. Kondrashova, V. A. Miluykov, Sh. K. Latypov, K. N. Gavrilov, E. Hey-Hawkins, P-Chiral 1,7-diphosphanorbornenes: from asymmetric phospha-Diels-Alder reactions towards applications in asymmetric catalysis, Dalton Trans., 2019, 48, 4677-4684.
25. a) T. Nemoto, T. Harada, T. Matsumoto, Y. Hamada, Pd-catalyzed enantioselective synthesis of quaternary α-amino acid derivatives using a phenylalanine-derived P-chirogenic diaminophosphine oxide, Tetrahedron Lett., 2007, 48, 6304-6307; b) K. N. Gavrilov, I. V. Chuchelkin, S. V. Zheglov, I. D. Firsin, V. S. Zimarev, V. K. Gavrilov, A. V. Maximychev, A. M. Perepukhov, N. S. Goulioukina, First P^{*}, Sbidentate diamidophosphite ligand in Pd-catalyzed asymmetric reactions, Mendeleev Commun., 2020, 30, 31-33.
26. N. Jain, A. V. Bedekar, Lipase catalyzed desymmetrization of roof shape cis-11,12-bis(hydroxymethyl)-9,10-dihydro-9,10-ethanoanthracene, RSC Adv., 2015, 5, 62678-62685.
27. a) S. Breeden, M. Wills, ESPHOS and SEMI-ESPHOS: A New Family of Mono- and Bidentate Diazaphospholidine Ligands for Asymmetric Catalysis, J. Org. Chem., 1999, 64, 9735-9738; b) L.-Y. Mei, Z.-L. Yuan, M. Shi, Chiral Imidazoline-Phosphine Ligands for Palladium-Catalyzed Asymmetric Allylic Substitutions, Organometallics, 2011, 30, 6466-6475.

REFERENCES

28. a) D. Smyth, H. Tye, C. Eldred, N. W. Alcock, M. Wills, Synthesis and applications to asymmetric catalysis of a series of mono- and bis(diazaphospholidine) ligands, J. Chem. Soc., Perkin Trans. 1, 2001, 2840-2849; b) J. Chen, F. Lang, D. Li, L. Cun, J. Zhu, J. Deng, J. Liao, Palladium-catalyzed asymmetric allylic nucleophilic substitution reactions using chiral tert-butanesulfinylphosphine ligands, Tetrahedron: Asymmetry, 2009, 20, 1953-1956.
29. Y. Wang, M. J. P. Vaismaa, A. M. Hamalainen, J. E. Tois, R. Franzen, Utilization of IndPHOX-ligands in palladium-catalysed asymmetric allylic aminations, Tetrahedron: Asymmetry, 2011, 22, 524-529.
30. a) R. Kuwano, K. Uchida, Y. Ito, Asymmetric Allylation of Unsymmetrical 1,3-Diketones Using a BINAP-Palladium Catalyst, Org. Lett., 2003, 5, 2177-2179; b) B. M. Trost, E. J. Donckele, D. A. Thaisrivongs, M. Osipov, J. T. Masters, A New Class of Non-C ${ }_{2}$-Symmetric Ligands for Oxidative and Redox-Neutral Palladium-Catalyzed Asymmetric Allylic Alkylations of 1,3-Diketones, J. Am. Chem. Soc., 2015, 137, 2776-2784.
31. P. M. de Wolff, A simplified criterion for the reliability of a powder pattern indexing, J. Appl. Crystallogr., 1968, 1, 108-113.
32. G. S. Smith, R. L. Snyder, F_{N} : A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing, J. Appl. Crystallogr., 1979, 12, 60-65.
33. R. A. Young, D. B. Wiles, Profile shape functions in Rietveld refinements, J. Appl. Crystallogr., 1982, 15, 430-438.
34. a) E. B. Benetskiy, C. Bolm, Synthesis of phosphorylated sulfoximines and sulfinamides and their application as ligands in asymmetric metal catalysis, Tetrahedron:Asymmetry, 2011, 22, 373-378; b) K. E. Thiesen, K. Maitra, M. M. Olmstead, S. Attar, Synthesis and Characterization of New, Chiral P-N Ligands and Their Use in Asymmetric Allylic Alkylation, Organometallics, 2010, 29, 6334-6342; c) M. Ramillien, N. Vanthuyne, M. Jean, D. Gherase, M. Giorgi, J.-V. Naubron, P. Piras, C. Roussel, Enantiomers of dimethyl [(2E)-1,3-diphenylprop-2-en-1-yl]propanedioate resulting from allylic alkylation reaction: elution order on major high-performance liquid chromatography chiral columns, J. Chromatogr. A, 2012, 1269, 82-93.
35. M. Majdecki, J. Jurczak, T. Bauer, Palladium-Catalyzed Enantioselective Allylic Substitution in the Presence of Monodentate Furanoside Phosphoramidites, ChemCatChem, 2015, 7, 799-807.
36. M. Ogasawara, H. L. Ngo, T. Sakamoto, T. Takahashi, W. Lin, Applications of 4,4'-(Me3 Si) $)_{2}$-BINAP in Transition-Metal-Catalyzed Asymmetric Carbon-Carbon Bond-Forming Reactions, Org. Lett., 2005, 7, 2881-2884.
37. B. M. Trost, E. J. Donckele, D. A. Thaisrivongs, M. Osipov, J. T. Masters, A New Class of Non- $C_{2}-$ Symmetric Ligands for Oxidative and Redox-Neutral Palladium-Catalyzed Asymmetric Allylic Alkylations of 1,3-Diketones, J. Am. Chem. Soc., 2015, 137, 2776-2784.

[^0]: ${ }^{a} \mathrm{M}_{20}$ is defined according to ${ }^{[31]} .{ }^{b} \mathrm{~F}_{30}$ is defined according to ${ }^{[32]} .{ }^{c} R_{p}, R_{w p}$ and $R_{\text {exp }}$ are defined according to ${ }^{[33]}$.

[^1]: $[\mathrm{Pd}(\text { allyl })(\mathrm{L5a})]_{2}\left(\mathrm{BF}_{4}\right)_{2},{ }^{1} \mathrm{H}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right)$.

