Electronic Supporting Information For :

Aerobic Oxidation-Functionalization of the aryl moiety in

van Koten's Pincer Complex (NCN)Ni^{II}Br:

Relevance to Carbon-HeBrteroatom Coupling Reactions

Promoted by High-Valent Nickel Species

Jean-Philippe Cloutier, Fahimeh Zamani, and Davit Zargarian*

Département de chimie, Université de Montréal, Montréal (Québec), Canada H3C 3J7

zargarian.davit@umontreal.ca

Table of contents

Figure S1-S12. ¹ H NMR data for the functionalization of (NCN)Ni(II)Br pp 2	-13
Figure S13. ¹ H NMR data of complex (NCN)Ni(II)(OSiMe ₃) p	. 14
Figure S14. ¹³ C NMR data of complex (NCN)Ni(II)(OSiMe ₃) p	. 15
Table 1. Crystallographic data and collection parameters for (NCN)Ni(II)(OSiMe ₃)	p 16
Footnotes). 17

Figure S1. Reaction of (NCN)Ni^{II}Br with MeOH in air at reflux. ¹H NMR C₆D₆, δ 7.45 (2H, d, *J*_{HH} = 7.6), δ 7.04 (1H, t, *J*_{HH} = 7.6), δ 3.64 (3H, s), δ 3.49 (4H, s), δ 2.16 (12H, s).

standard integrated to 1.00 (C₆D₆,). NC(OMe)N major product.

Figure S3. Reaction of (NCN)Ni^{II}Br with refluxing EtOH in air. ¹H NMR C₆D₆, δ 7.48 (2H, d, *J*_{HH} = 7.6), δ 7.06 (1H, t, *J*_{HH} = 7.6), δ 3.94 (2H, q, *J*_{HH} = 7.0), δ 3.50 (4H, s), δ 2.17 (12H, s) δ 1.33 (3H, t, *J*_{HH} = 7.0).

Figure S4. ¹H NMR spectrum of reaction of (NCN)Ni^{II}Br with EtOH in air with internal standard in C₆D₆ (integrated to 1.00). NC(OEt)N major product and NC(OH)N minor product.

.

Figure S5. Reaction of (NCN)Ni^{II}Br with *i*-PrOH in air at reflux. ¹H NMR C₆D₆, δ 7.57 (2H, d, *J*_{HH} = 7.6), δ 7.09 (1H, t, *J*_{HH} = 7.6), δ 4.42 (1H, sept, *J*_{HH} = 6.1), δ 3.53 (4H, s), δ 2.17 (12H, s), δ 1.9 (6H, d, *J*_{HH} = 6.1).

C₆D₆ (integrated to 1.00). NC(O-i-Pr)N major product and NC(OH)N minor product.

Figure S7. Reaction of (NCN)Ni¹¹Br with NH₄OH in air. ¹H NMR C₆D₆, δ 6.91 (2H, d, *J*_{HH} = 7.4), δ 6.56 (1H, t, *J*_{HH} = 7.4), δ 3.41 (4H, s), δ 3.53 (4H, s), δ 2.18 (12H, s).

Figure S8. ¹H NMR spectrum of reaction of (NCN)Ni^{II}Br with aqueous NH₄OH in air with internal standard in C₆D₆ (integrated to 1.00). NC(NH₂)N minor product, NC(OH)N and proligand major products.

Figure S9. ¹H NMR spectrum of reaction of (NCN)Ni^{II}Br with MeOH under O₂ with internal standard in C₆D₆ (integrated to 1.00). NC(OMe)N major product and NC(OH)N minor product.

Figure S10. ¹H NMR spectrum of reaction of (NCN)Ni^{II}Br with MeOH under O₂ with internal standard in C₆D₆ (integrated to 1.00). NC(OMe)N major product and NC(OH)N minor product.

standard in C₆D₆ (integrated to 1.00). NC(OMe)N major product and NC(OH)N minor product.

Figure S12. ¹H NMR spectrum of reaction of (NCN)Ni^{II}Br with MeOH under O₂ with NEt₃ with internal standard in C₆D₆ (integrated to 1.00). NC(OMe)N major product and NC(OH)N minor product.

Figure S14. ¹³C NMR C₆D₆, δ 152.63 (1C, s, C₁), δ 147.20 (2C, s, C₂), δ 123.70 (1C, s C₄), δ 118.28 (2C, s, C₃), δ 73.34 (2C, s, C₅), δ 50.07 (4C, s, C₆), δ 5.75 (3C, s, C₇)

XRD data.

The crystallographic data for all structures were collected a Bruker Venture Metaljet (Ga radiation) via the Bruker APEX III ¹ software packages. Cell refinement and data reduction were performed using SAINT.² An empirical absorption correction, based on multiple measurements of equivalent reflections, was applied using the program SADABS or TWINABS.³ Space group was confirmed by the XPREP⁴ APEX routine. The structure solved in OLEX⁵ using the SHELX⁶ suite and refined by full-matrix least squares with SHEXL.⁷ Non-hydrogen atoms were refined with S2 anisotropic displacement parameters, whereas hydrogen atoms were set in calculated positions and refined via the riding model, with thermal parameters being 1.5 times that of the carbon bearing the H in question. All Thermal ellipsoid plots were drawn using OLEX.

Empirical formula	C15H28N2NiOSi	Crystal size/mm ³	0.24 × 0.2 × 0.12
Formula weight	33919	20 range for data collection/°	7 536 to 134 264
T (K)	100	Index ranges	$-15 \le h \le 16$.
Rad. wavelength (Å)	GaKα (λ = 1.34139)		-19 ≤ k ≤ 19,
Crystal system	monoclinic		-16 ≤ l ≤ 16
space group	Сс	Reflections collected	21692
a (Å)	12.3810(7)	Independent reflections	3926 [R _{int} = 0.0459,
b (Å)	13.9962(8)		R _{sigma} = 0.0326]
<i>c</i> (Å)	11.9361(7)	Data/restraints/parameters	3926/2/191
α (deg)	90	Goodness-of-fit on F ²	1.063
β (deg)	121.2275(19)	Final R indexes [I>=2σ (I)]	R ₁ = 0.0343, wR ₂ = 0.0865
γ (deg)	90	Final R indexes [all data]	R ₁ = 0.0348, wR ₂ = 0.0875
Z	4	Largest diff. peak/hole / e Å ⁻³	0.47/-0.30
<i>V</i> (Å ³)	1768.69(18)		
ρ _{calcd} (g cm ⁻³)	1.274		
μ (mm ⁻¹)	6.394		
θ range (deg)	3.768 - 67.132		
wR2 ^b [I > 2 σ (I)]	0.1633		
			· ·

Table S1. Crystal Data Collection and Refinement Parameters for	Complex (NCN)Ni(OSiMe ₃)
---	--------------------------------------

 $a R_1 = \Sigma(||F_0| - |F_c||) / \Sigma |F_0|$

 ${}^{b}wR_{2}=\{\Sigma[w(F_{0}{}^{2}-F_{c}{}^{2})^{2}]/\Sigma[w(F_{0}{}^{2})^{2}]\}^{\frac{1}{2}}$

Footnotes

¹ Bruker (2012). APEX2 / Bruker (2016) APEX3, Bruker AXS Inc., Madison, WI, USA.

² Bruker (2012). "SAINT Integration Software for Single Crystal Data", Bruker AXS Inc., Madison, WI, USA.

³ (a) Sheldrick, G. M. (1996). SADABS/TWINABS. University of Göttingen, Germany. (b) Bruker (2001). SADABS/TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.

⁴ Bruker (2012). Data Preparation and Reciprocal Space Exploration Program, Bruker AXS Inc., Madison, WI, USA.

⁵ A: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann. "OLEX2: a complete structure solution, refinement and analysis program". J. Appl. Cryst.2009, 42, 339-341.

⁶ Sheldrick, G. M., "SHELXT - Integrated space-group and crystal structure determination", Acta Cryst., 2015, A71, 3-8.

⁷ Sheldrick, G. M., Crystal structure refinement with SHELXL, Acta Cryst., 2015, C71, 3-8