Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Design, synthesis and evaluation of structurally diverse ortho-acylphenol-

diindolylmethane hybrids as anticancer agents

Zhi-Gang Yin, Xiong-Wei Liu, Hui-Juan Wang*, Min Zhang, Xiong-Li Liu*, Ying Zhou

* Corresponding Author. Hui-Juan Wang and Xiong-Li Liu

E-mail address: hjwang1@gzu.edu.cn (H.-J. Wang) and xlliu1@gzu.edu.cn (X.-L. Liu)

Supporting Information

1. General experimental information	S2
2. Table S1: optimization of reaction conditions for synthesis of compound 3	S2
3. X-Ray crystal data for compound 3c and 3h	S3
4. The copies of ¹ H NMR, ¹³ C NMR spectra for compounds 3	S5

1. General experimental information

The ¹H NMR spectra were recorded on Bruker Avance DMX 400 MHz NMR spectrometers in DMSO- d_6 or CDCl₃ using TMS as an internal standard. The ¹³C NMR spectra were recorded on Bruker Avance DMX 100 MHz NMR spectrometers in DMSO- d_6 or CDCl₃ using TMS as an internal standard. Chemical shifts were reported as δ values (ppm). High-resolution mass spectra (HRMS-ESI) were obtained on a MicroTM Q-TOF Mass Spectrometer. Melting points were uncorrected and recorded on an Electrothermal 9100 digital melting point apparatus.

All cell lines were purchased from the Chinese Academy of Sciences, Kunming Cell Bank. All of which were cultured in RPMI-1640 or DMEM medium (Gibco, USA) supplemented with 10% foetal bovine serum, 1% glutamine, 100 U/mL penicillin and 100 μ g/mL streptomycin in a humidified atmosphere with 5% CO₂ at 37°C. The synthetic compounds were placed at -20°C after dissolved in DMSO. Cisplatin purchased from Aladdin Company and bis-indole methane purchased from Macleans Reagent Company.

2. Table S1: optimization of reaction conditions for synthesis of compound 3^a

	O O O Ia ta	cat., solvent H temperature, 12 h 2a		
Entry	Catalyst	Solvent	Temp. (°C)	Yield (%)
1	-	Toluene	70	57
2	AcOH (0.2 eq)	Toluene	70	61
3	CF ₃ CO ₂ H (0.2 eq)	Toluene	70	60
4	TsOH (0.2 eq)	Toluene	70	75
5	PhSO ₃ H (0.2 eq)	Toluene	70	81
6	MsOH (0.2 eq)	Toluene	70	74
7	PhSO ₃ H (0.2 eq)	EtOH	70	79
8	PhSO ₃ H (0.2 eq)	CH ₃ CN	70	80
9	PhSO ₃ H (0.2 eq)	Toluene	60	56
10	PhSO ₃ H (0.2 eq)	Toluene	80	87
11	PhSO ₃ H (0.5 eq)	Toluene	80	84

^{*a*} A mixture of chromone-3-carboxylic acid 1a (0.3 mmol), indole 2a (1.5 mmol) and Cat. in 0.3 mL of solvent was stirred under specified reaction conditions for 12 h.

3. X-Ray crystal data for compound 3c and 3h

T٤	ıble	S2	Crystal	data	and	structure	refinement	for 3	sc
			•/						

Identification code	3c
Empirical formula	$C_{25}H_{18}F_2N_2O_2$
Formula weight	416.41
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å, b/Å, c/Å	11.269(3), 8.445(2), 20.524(4)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 96.54(2), 90.
Volume/Å ³	1940.5(8)
Z	4
$\rho_{calc}g/cm^3$	1.425
µ/mm ⁻¹	0.104
F(000)	864.0
Radiation	Μο Κα (λ = 0.71073)
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
2Θ range for data collection/°	3.996 to 49.988
Index ranges	$-12 \le h \le 13, -9 \le k \le 10, -24 \le l \le 19$
Reflections collected	8553
Independent reflections	3412 [$R_{int} = 0.0529, R_{sigma} = 0.0604$]
Data/restraints/parameters	3412/7/281
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0604, wR_2 = 0.1554$
Final R indexes [all data]	$R_1 = 0.0902, wR_2 = 0.1842$
Largest diff. peak/hole / e Å ⁻³	0.29/-0.21

Crystal Data for $C_{25}H_{18}F_2N_2O_2$ (M=416.41 g/mol): monoclinic, space group $P_{2_1/c}$ (no. 14), a = 11.269(3) Å, b = 8.445(2) Å, c = 20.524(4) Å, $\beta = 96.54(2)^\circ$, V = 1940.5(8) Å³, Z = 4, T = 293(2) K, μ (Mo K α) = 0.104 mm⁻¹, *Dcalc* = 1.425 g/cm³, 8553 reflections measured (3.996° $\leq 2\Theta \leq 49.988^\circ$), 3412 unique ($R_{int} = 0.0529$, $R_{sigma} = 0.0604$) which were used in all calculations. The final R_1 was 0.0604 (I > 2 σ (I)) and wR_2 was 0.1842 (all data).

Table S3 Crystal data and stru	ucture refinement for 3h
Identification code	3h
Empirical formula	$C_{25}H_{18}Br_2N_2O_2$
Formula weight	538.23
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å, b/Å, c/Å	16.854(2), 22.397(2), 5.6423(5)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90.
Volume/Å ³	2129.8(4)
Ζ	4
$\rho_{calc}g/cm^3$	1.679
µ/mm ⁻¹	3.832
F(000)	1072.0
Radiation	Mo Ka ($\lambda = 0.71073$)
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
2Θ range for data collection/°	4.368 to 49.984
Index ranges	$-19 \le h \le 20, -26 \le k \le 25, -6 \le l \le 5$
Reflections collected	12574
Independent reflections	$3466 [R_{int} = 0.0504, R_{sigma} = 0.0547]$
Data/restraints/parameters	3466/1/281
Goodness-of-fit on F ²	1.016
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0412, wR_2 = 0.0708$
Final R indexes [all data]	$R_1 = 0.0711, wR_2 = 0.0802$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.36
Flack/Hooft parameter	0.012(9)/0.047(8)

Crystal Data for $C_{25}H_{18}Br_2N_2O_2$ (M=538.23 g/mol): orthorhombic, space group Pna2₁ (no. 33), a = 16.854(2) Å, b = 22.397(2) Å, c = 5.6423(5) Å, V = 2129.8(4) Å³, Z = 4, T = 293(2) K, μ (Mo K α) = 3.832 mm⁻¹, *Dcalc* = 1.679 g/cm³, 12574 reflections measured (4.368° $\leq 2\Theta \leq$ 49.984°), 3466 unique ($R_{int} = 0.0504$, $R_{sigma} = 0.0547$) which were used in all calculations. The final R_1 was 0.0412 (I > 2 σ (I)) and wR_2 was 0.0802 (all data).

4. The copies of ¹H NMR, ¹³C NMR spectra for compounds 3 ¹H and ¹³C NMR of 3a

¹H and ¹³C NMR of 3b

¹H and ¹³C NMR of 3c

110 100 f1 (ppm)

90 80 70 60 50 40 30 20 10

120

190

180

170 160

10 200

150

¹H and ¹³C NMR of 3d

¹H and ¹³C NMR of 3g

¹H and ¹³C NMR of 3h

¹H and ¹³C NMR of 3j

¹H and ¹³C NMR of 3k

¹H and ¹³C NMR of 3m

¹H and ¹³C NMR of 3n

¹H and ¹³C NMR of 30

¹H and ¹³C NMR of 3p

¹H and ¹³C NMR of 3q

¹H and ¹³C NMR of 3s

¹H and ¹³C NMR of 3t

¹H and ¹³C NMR of 3v

¹H and ¹³C NMR of 3w

