Precisely controlled synthesis of Co/N species contained porous carbon for oxygen reduction reaction via anion-exchanging and CO₂ activation

Yasuhiro Shu, * ^a Yugo Fujimoto, ^a Koji Miyake,*^a Yoshiaki Uchida, ^a Shunsuke Tanaka^b and Norikazu Nishiyama^a

a. Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. E-mail: yasuhiro.shu@cheng.es.osaka-u.ac.jp, kojimiyake@cheng.es.osaka-u.ac.jp
b. Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564-8680, Japan

Fig. S1 XRD patterns of Co/N/C-4 and Co/N/C.

Catalysts	BET surface area $[m^2 g^{-1}]$	
Co/N/C-act 1h	517	
Co/N/C-act	710	
Co/N/C-act 3h	837	

 Table S1 BET surface areas of the prepared samples.

Fig. S2 (a) LSV curves of Co/N/C-act in O₂-saturated 0.1 M KOH solution at different rotating speeds. (b) The electron transfer number calculated from corresponding K–L plots at different potentials.

Fig. S3 Relative current density versus Time for Pt/C 20 wt% and Co/N/C-act at 0.65 V vs RHE in O_2 -saturated 0.1 M KOH at a scan rate of 5 mV s⁻¹ and 1600 rpm

Fig. S4 Co 2p spectra of Co/N/C-act 3h.

Fig. S5 Tafel plots of Co/N/C-act.

Catalysts	Onset Potential	Half-wave Potential	Limiting Current Density	Reference
	[V vs. RHE]	[V vs. RHE]	$[mA cm^2]$	
Co/N/C-act	0.92	0.80	-5.3	This work
Co-N-rGO	0.88	0.81	-4.2	[1]
Co/NG	0.89	0.82	-1.3	[2]
Co-N-graphene	0.87	0.80	-	[3]
Co-NGA ₆₀₀	0.86	-	-4.5	[4]

Table S2 Summary of ORR activities in 0.1 M KOH for catalysts in this work and representativeCo/N co-doped catalysts in references.

- L. F. Zhai, S. Y. Kong, H. Zhang, W. Tian, M. Sun, H. Sun, S. Wang, Chem. Eng. Sci. 2019, 45.
- [2] H. Ghanbarlou, S. Rowshanzamir, M. J. Parnian, F. Mehri, Int. J. Hydrogen Energy 2016, 41, 14665.
- [3] J. H. Yang, Y. Gao, W. Zhang, P. Tang, J. Tan, A. H. Lu, D. Ma, J. Phys. Chem. C 2013, 117, 3785.
- [4] R. Liu, Y. Jin, P. Xu, X. Xing, Y. Yang, D. Wu, J. Colloid Interface Sci. 2016, 464, 83.