Supplementary information

Strong Acid-promoted Skeletal Remodeling of the Aphid Pigment: Red Uroleuconaphin to Green Viridaphin

Chiharu Ozakai, Kei Kitamura,^{*} Mitsuyo Horikawa, To-sho Hoshiyama, Akari Imamura, Tatsuro Yoneyama, Akemi Umeyama, Masaaki Noji, Tetsuto Tsunoda, and Hiroto Kaku^{*}

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514

E-mail: kkitamura@ph.bunri-u.ac.jp, kaku@ph.bunri-u.ac.jp

Table of Contents

1.	General	\$3
2.	Optimization of transformation of uroleuconaphin $A_1(1)$ S	\$4
3.	Procedure for transformation of uroleuconaphin $A_1(1)$ to viridaphin $A_2(4)$ S	6
4.	Plausible mechanism of acid-promoted conversion of uroleuconaphin $A_1(1)$ S	\$9
5.	Isolation of viridaphin A_2 glucoside (16) and viridaphin A_1 glucoside (15) S1	.0
6.	Hydrolysis of viridaphin A ₂ glucoside (16)	.3
7.	1 H and 13 C NMR data of viridaphin A ₂ glucoside (16) and viridaphin A ₂ (4) S1	.4
8.	Procedure for conversion of uroleuconaphin $A_1(1)$ in water-containing solvent S1	.6
9.	Preparation of compound 8	.9
10.	NMR spectra	20
11.	IR spectra	\$4
12.	HRMS spectra	6
13.	CD spectra	0
14.	HPLC spectra	1
15.	UV-Vis spectra	3
16.	Single crystal X-ray diffraction data of compound 8	4
17.	Antibacterial activity assay	6
18.	Calculations	17
19.	Reference	;7

1. General

Infrared (IR) spectra were measured on a JASCO FT/IR-4200 spectrophotometer. Circular dichroism (CD) spectra were recorded on a JASCO J-725 spectropolarimeter. UV–vis spectra were measured on a JASCO V-650 spectrophotometer. Melting points (mp) were determined on a Büchi B-545 apparatus, and were uncorrected. Optical rotations were measured with a JASCO P-2300 polarimeter. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-S3000 Spiral TOF. For column chromatography, silica gel 60 N (Spherical, neutral, 63–210 μ m, Kanto Chemical Co., Inc.) or C18 reversed-phase silica gel (Cosmosil 75C₁₈ OPN, Nacalai Tesque Inc.) were used. For thin-layer chromatography (TLC) analysis, Merck precoated silica gel plates (60F₂₅₄ or RP-18 WF_{254s}) were used. ¹H NMR spectra were recorded on a Varian Unity-600 (600 MHz), or a Bruker AVANCE-III (500 MHz) spectrometer with TMS as an internal standard. ¹³C NMR spectra were recorded with a Varian Unity-600 (150 MHz), or a Bruker AVANCE-III (500 MHz) spectrometer with TMS as an internal standard. ¹³C NMR spectra were recorded with a Varian Unity-600 (150 MHz), or a Bruker AVANCE-III (25 MHz) spectrometer; chemical shifts were referenced to the residual solvent signal (acetone- d_6 : δ_C 29.8, DMSO- d_6 : δ_C 39.5, CDCl₃: δ_C 77.0).

2. Optimization of transformation of uroleuconaphin $A_1(1)$

Table S1. Screening of solvent

uroleuconaphin $A_1(1)$

viridaphin A₂ (4)

viri

		1 211				
ontry	h A	temp (°C)		yield (%)		recovery of $1 (\%)$
entry	solvent	temp. (C)	4	3	7	
1	$CHCl_3$ /toluene = 1/1	80	< 9	0	0	87
2	$CHCl_3/toluene = 1/1$	100	30	0	0	67
3	$CHCl_3/toluene = 1/1$	120	12	0	0	49
4	1,2-dichloroethane	100	trace	0	0	> 90
5	chlorobenzene	100	4	0	0	39
6	toluene	100	8	0	0	61
7	<i>t</i> -BuOH	100	7	12	12	67
8	<i>n</i> -BuOH	100	< 12	0	0	30
9	HOCH ₂ CH ₂ OH	100	12	0	0	0
10	DMF	100	0	0	0	< 9
11	DME	100	0	0	0	> 90
12	THF	80	0	0	0	> 90
13	1,2-dichloroethane/toluene = 1/1	100	< 10	0	0	80
14	<i>n</i> -BuOH/toluene = 1/1	100	10	0	0	64
15	$THF/H_2O = 1/1$	80	10	20	66	trace
16	dioxane/ $H_2O = 1/1$	100	trace	trace	58	0
17	$HOCH_2CH_2OH/H_2O = 1/1$	80	trace	trace	43	0
18	MeCN/H ₂ O = 1/1	80	2	5	77	0
19	t-BuOH/H ₂ O = 1/1	80	2	6	68	0
20	1,4-butanediol/ $H_2O = 1/1$	80	trace	trace	60	0

trace

trace

77

0

80

 $EtOH/H_2O = 1/1$

21

Table S2. Screening of acid

entry	reagent (equiv)	temp. (°C)	time (h)	yield of 4 (%)	recovery of 1 (%)
1	TsOH · H₂O (2)	100	18	30	67
2	TsOH · H₂O (5)	100	18	< 18	30
3	TFA (26)	100	54	5	95
4	CSA (16)	100	18	7	70
5	MsOH (5)	80	36	22	29
6	TfOH (2)	80	18	18	0
7	TsOH (2)	100	18	22	47
8	H ₂ SO ₄ (4)	60→80	54	< 15	0
9	6 M HCI (20)	60→80	54	0	> 95
10	A (2)	100	18	trace	< 45
11	B (2)	100	18	20	50
12	C (2)	100	18	22	55
13	D (2)	100	18	trace	< 60
14	E (2)	100	18	17	12
15	F (2)	100	18	13	42

3. Procedure for transformation of uroleuconaphin A₁(1) to viridaphin A₂(4)

To a solution of **1** (22.1 mg, 39.2 µmol) in CHCl₃/toluene (10 mL/10 mL) was added TsOH·H₂O (17.5 mg, 92.0 µmol), and the mixture was heated at 100 °C. After stirring for 18 h, the reaction mixture was quenched by adding NaHCO₃ (7.7 mg, 92 µmol) in H₂O (10 mL) at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with saturated aqueous NH₄Cl, and dried over MgSO₄. Concentration and purification by column chromatography (silica gel, hexane/EtOAc = $1/1 \rightarrow$ CHCl₃/MeOH = $20/1 \rightarrow 15/1 \rightarrow 10/1$) afforded green pigment **4** (6.3 mg, 30%) as a green powder, and starting material **1** (14.9 mg, 67%) as a red powder.

Viridaphin A₂ (4)

 $R_f 0.36$ (CHCl₃/MeOH = 7/1);

 $[\alpha]_D^{24}$ +2898 (*c* 0.019, MeOH);

IR (ATR) 3383, 2977, 2926, 2849, 1617, 1433, 1303, 1260, 1229, 1192, 1120, 1046, 1023, 990, 825, 685, 631 cm⁻¹;

¹H NMR (CDCl₃:CD₃OD = 35:1, 600 MHz) δ 1.40 (d, 3H, *J* = 6.2 Hz), 1.51 (d, 3H, *J* = 6.2 Hz), 1.69 (d, 3H, *J* = 6.7 Hz), 1.80 (d, 3H, *J* = 6.7 Hz), 2.44 (dd, 1H, *J* = 17.4 Hz, 10.4 Hz), 3.09 (dd, 1H, *J* = 17.4 Hz, 3.3 Hz), 4.21 (qdd, 1H, *J* = 6.2 Hz, 10.4 Hz, 3.3 Hz), 4.29 (d, 1H, *J* = 7.6 Hz), 4.43 (dq, 1H, *J* = 7.6 Hz, 6.2 Hz), 5.04 (q, 1H, *J* = 6.7 Hz), 5.21 (q, 1H, *J* = 6.7 Hz), 6.49 (s, 1H), 6.65 (s, 1H);

¹³C NMR (CDCl₃:CD₃OD = 35:1, 150 MHz) δ 18.2, 18.9, 20.1, 21.5, 31.0, 62.4, 65.5, 67.7, 68.2, 79.5, 103.7, 105.4, 106.4, 112.1, 117.2, 119.1, 123.5, 130.2, 131.0, 132.7, 133.9, 138.9, 139.0, 149.3, 153.1, 155.1, 161.0, 163.0, 183.2, 186.3;

¹H NMR (DMSO-*d*₆, 600 MHz) δ 1.28 (d, 3H, *J* = 6.2 Hz), 1.37 (d, 3H, *J* = 5.9 Hz), 1.49 (d, 3H, *J* = 6.5 Hz), 1.63 (d, 3H, *J* = 6.8 Hz), 2.23 (dd, 1H, *J* = 16.5 Hz, 16.8 Hz), 2.93 (d, 1H, *J* = 16.5 Hz), 4.04–4.08 (m, 1H), 4.16–4.23 (m, 2H), 4.76 (brs, 1H), 4.86 (brs, 1H), 5.92 (s, 1H), 6.37 (s, 1H), 13.57 (s, 1H), 15.07 (s, 1H);

¹³C NMR (DMSO-*d*₆, 150 MHz) δ 18.0, 18.7, 19.7, 21.6, 30.6, 61.7, 65.3, 66.6, 67.0, 78.1, 102.4, 104.3, 105.6, 110.9, 116.3, 118.2, 122.2, 129.9, 130.2, 132.2, 133.0, 138.0, 138.6, 148.5, 153.5, 154.8, 159.9, 162.7, 182.2, 184.7;

HRMS (MALDI) calcd for $C_{30}H_{25}O_9 [M+H]^+ m/z$ 529.1493, found m/z 529.1508; Mp 218 °C (dec).

Figure S1. Key 2D NMR correlations of viridaphin A₂(4) in CDCl₃+CD₃OD

4-epi viridaphin A₂(4'): green powders;

 $R_f 0.36$ (CHCl₃/MeOH = 7/1);

 $[\alpha]_D^{19}$ –1546 (*c* 0.013, MeOH);

IR (ATR) 3396, 2920, 2851, 1726, 1620, 1456, 1260, 1122, 800, 746, 502, 451, 419 cm⁻¹;

¹H NMR (CDCl₃:CD₃OD = 35:1, 500 MHz) δ 1.42 (d, 3H, *J* = 6.1 Hz), 1.58 (d, 3H, *J* = 6.8 Hz), 1.60 (d, 3H, *J* = 6.8 Hz), 1.61 (d, 3H, *J* = 6.8 Hz), 2.65 (dd, 1H, *J* = 17.4 Hz, 11.0 Hz), 3.03 (dd, 1H, *J* = 17.4 Hz, 2.9 Hz), 4.05 (ddq, 1H, *J* = 11.0 Hz, 2.9 Hz, 6.8 Hz), 4.16 (d, 1H, *J* = 2.9 Hz), 4.29–4.33 (m, 1H), 5.29 (q, 1H, *J* = 6.8 Hz), 5.32 (q, 1H, *J* = 6.8 Hz), 6.55 (s, 1H), 6.73 (s, 1H); ¹³C NMR (CDCl₃:CD₃OD = 35:1, 125 MHz) δ 17.1, 17.3, 18.7, 21.7, 32.2, 62.5, 65.3, 68.2, 68.5, 74.5, 103.9, 104.9, 106.4, 112.1, 117.2, 117.6, 123.0, 131.3, 131.4, 132.3, 134.0, 136.8, 138.0, 151.3, 155.0, 161.3, 162.7, 183.7, 186.9;

HRMS (MALDI) calcd for $C_{30}H_{24}O_9 [M]^- m/z$ 528.1415, found m/z 528.1397; Mp 186 °C (dec).

Figure S2. Key 2D NMR correlations of 4-epi viridaphin A₂ (4') in CDCl₃ + CD₃OD

On large scale procedure

To a solution of 1 (85.2 mg, 151 µmol) in CHCl₃/toluene (38 mL/38 mL) was added TsOH·H₂O (66.6 mg, 350 µmol), and the mixture was heated at 100 °C. After stirring for 18 h, the reaction mixture was quenched by adding NaHCO₃ (30.8 mg, 350 µmol) in H₂O (40 mL) at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with saturated aqueous NH₄Cl and dried over MgSO₄. Concentration and purification by column chromatography (silica gel, hexane/EtOAc = $1/1 \rightarrow$ CHCl₃/MeOH = $20/1 \rightarrow 15/1 \rightarrow 10/1$) afforded green pigment 4 (21.5 mg, 27%) as a green powder, and starting material 1 (59.0 mg, 69%). The same reaction was repeated for other two cycles using the recovered 1. A total of 16.9 mg and 9.5 mg of the green pigment 4 were collected in the second and third run, respectively. As a result, the green pigment 4 (total 47.9 mg, 60%) was obtained.

Figure S3. Plausible mechanism of acid-promoted conversion of 1

4. Plausible mechanism of acid-promoted conversion of uroleuconaphin A1 (1)

5. Isolation of viridaphin A₂ glucoside (16) and viridaphin A₁ glucoside (15)

Based on our previous reported procedure,^[1] the extraction and purification of **15** and **16** were performed as follows: the greenish aphid, *M. crassicauda* and *Acyrthosiphon pisum*, which were obtained from *Vicia sativa*. A mixture of these aphids (total 3.7 kg) was crushed with a pestle in *n*-hexane (total 9 L) and methanol (total 23 L) several times. The combined methanol solutions were evaporated to give crude extracts. The extracts were dissolved in water (total 2 L), and extracted with *n*-BuOH (×5, total 1L). The combined organic extracts were dried over MgSO₄, and concentrated in vacuo to give crude extracts (149 g). The residue was purified by silica gel chromatography (EtOAc/MeOH = 2/1) and further purified by reversed-phase silica gel chromatography (MeOH/H₂O =1/1) to afford the green pigment **15** (933 mg) and **16** (373 mg).

Viridaphin A₂ glycoside (16)

 $R_f 0.40$ (reversed phase, MeOH/H₂O = 3/1);

 $[\alpha]_{D}^{22}$ +1777 (*c* 0.017, MeOH);

IR (ATR) 3351, 2927, 1585, 1422, 1362, 1231, 1020, 844, 506, 473, 431, 403 cm⁻¹;

¹H NMR (DMSO-*d*₆, 600 MHz) δ 1.30 (d, 3H, *J* = 6.0 Hz), 1.37 (d, 3H, *J* = 6.2 Hz), 1.56 (d, 3H, *J* = 6.8 Hz), 1.64 (d, 3H, *J* = 6.6 Hz), 2.34 (dd, 1H, *J* = 17.2 Hz, 10.5 Hz), 3.05 (dd, 1H, *J* = 17.2 Hz, 2.7 Hz), 3.25 (dd, 1H, *J* = 9.2 Hz, 9.0 Hz), 3.23–3.51 (m, 3H), 3.57 (dd, 1H, *J* = 11.9 Hz, 5.5 Hz), 3.77 (brd, 1H, *J* = 11.9 Hz), 4.14–4.18 (m, 1H), 4.32 (qd, 1H, *J* = 6.2 Hz, 6.2 Hz), 4.46 (d, 1H, *J* = 6.2 Hz), 4.82 (q, 1H, *J* = 6.6 Hz), 4.89 (d, 1H, *J* = 7.3 Hz), 5.02 (q, 1H, *J* = 6.8 Hz), 5.08 (brs, 1H), 5.14 (brs, 1H), 6.27 (s, 1H), 7.04 (s, 1H), 15.46 (s, 1H);

¹³C NMR (DMSO-*d*₆, 150 MHz) δ 18.5, 18.8, 19.7, 21.6, 30.8, 60.7, 61.8, 65.7, 67.1, 67.2, 69.5, 73.4, 75.9, 77.5, 78.5, 103.2, 103.4, 105.5, 108.9, 111.6, 118.4, 118.9, 121.7, 130.0, 132.0, 133.3, 134.7, 135.7, 140.3, 148.7, 154.6, 158.8, 160.7, 178.1, 185.3;

HRMS (MALDI) calcd for C₃₆H₃₄O₁₄Na [M+Na]⁺ m/z 713.1841, found m/z 713.1846; Mp 258 °C (dec).

Figure S4. Key 2D NMR correlations of viridaphin A2 glycoside (16) in DMSO-d6

Fig. 1. Collecting aphids

Fig. 2. Crush aphids in hexane and methanol

After crush aphids

Fig. 3. Separate hexane solution and methanol solution

Fig. 4. Extract with *n*-BuOH

Right: water layer Left: *n*-BuOH layer

Fig. 5. Purification by reversed-phase silica gel chromatography (MeOH/H $_2$ O)

Right: viridaphin A_1 glucoside (15) Left: viridaphin A_2 glucoside (16)

Fig. 6. reversed phase TLC eluent: $MeOH/H_2O = 3/1$ Right: 15 Center: cospot of 15 and 16 Left: 16

Figure S5. Isolation method

6. Hydrolysis of viridaphin A2 glucoside (16)

To a solution of **16** (19.9 mg, 28.8 mmol) in MeOH (7.6 mL) was added 10-camphorsulfonic acid (18.0 mg, 77.5 mmol) at room temperature.^[1] After stirring for 3 h, the reaction mixture was concentrated under reduced pressure to remove MeOH. The products were directly purified by column chromatography (silica gel, CHCl₃/MeOH = $40/1 \rightarrow 30/1 \rightarrow 20/1$) to afford aglycon 4 (9.9 mg, 65%) as a green powder.

7. ¹H and ¹³C NMR data of viridaphin A₂ glucoside (16) and viridaphin A₂ (4)

	16 in D	MSO-d ₆	4 in CE	DCl ₃ + CD ₃ OD	4 in	DMSO-d ₆
position	δ_{c} , type	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	δ_{c} , type	$\delta_{\rm H}$, mult (<i>J</i> in Hz)	δ_{c} , type	$\delta_{\rm H}$, mult (<i>J</i> in Hz)
1	67.1, CH	4.82, q (6.6)	67.7, CH	5.04, q (6.7)	66.6, CH	4.76, br s
3	65.7, CH	4.32, qd (6.2, 6.2)	65.5, CH	4.43, dq (7.6, 6.2)	65.3, CH	4.20–4.22, m
4	78.5, CH	4.46, d (6.2)	79.5, CH	4.29, d (7.6)	78.1, CH	4.16-4.23, m
4a	140.3, C		138.9, C		138.6, C	
5	132.0, C		131.0, C		129.9, C	
5a	118.4, C		117.2, C		116.3, C	
6	133.3, C		132.7, C		132.2, C	
7	not observed ^a		163.0 ^b , C		162.7 ^{<i>c</i>} , C	
7-OH		not observed		not observed		not observed
8	108.9, C	7.04, s	106.4, C	6.65, s	105.6, C	6.37, s
9	158.8 ^a , C		153.1 ^{<i>b</i>} , C		153.5 ^{<i>c</i>} , C	
9-OH				not observed		13.57, s
9a	105.5, C		103.7, C		102.4, C	
10	178.1, C		183.2, C		182.2, C	
10a	135.7, C		139.0, C		138.0, C	
11	18.5, CH ₃	1.64, d (6.6)	18.2, CH ₃	1.80, d (6.7)	18.0, CH ₃	1.63, d (6.8)
12	19.7, CH ₃	1.37, d (6.2)	20.1, CH ₃	1.51, d (6.2)	19.7, CH ₃	1.37, d (5.9)
1'	67.2, CH	5.02, q (6.8)	68.2, CH	5.21, q (6.7)	67.0, CH	4.86, br s
3'	61.8, CH	4.14–4.18, m	62.4, CH	4.21, qdd (6.2, 10.4, 3.3)	61.7, CH	4.04–4.08, m
4'	30.8, CH ₂	3.05, dd (2.7, 17.2) 2.34, dd (10.5, 17.2)	31.0, CH ₂	3.09, dd (17.4, 3.3) 2.44, dd (17.4, 10.4)	30.6, CH ₂	2.93, d (16.5) 2.23, dd (16.5, 16.8)
4'a	130.0, C		130.2, C	,,	130.2, C	, (* , * , *)
5'	148.7, C		149.3, C		148.5, C	
5'a	118.9, C		119.1, C		118.2, C	
6'	121.7, C		123.5, C		122.2, C	
7'	160.7, C		161.0, C		159.9, C	
8'	103.4, CH	6.27, s	105.4, CH	6.49, s	104.3, CH	5.92, s
9'	185.3, C		186.3, C		184.7, C	
9'a	111.6, C		112.1, C		110.9, C	
10'	154.6, C		155.1, C		154.8, C	
10'-OH		15.46, s		not observed		15.07, s
10'a	134.7, C		133.9, C		133.0, C	
11'	18.8, CH ₃	1.56, d (6.8)	18.9, CH ₃	1.69, d (6.7)	18.7, CH ₃	1.49, d (6.5)
12'	21.6, CH ₃	1.30, d (6.0)	21.5, CH ₃	1.40, d (6.2)	21.6, CH ₃	1.28, d (6.2)
1"	103.2, CH	4.89, d (7.3)				
2"—5"	77.5, 75.9 73.4, 69.5, CH	3.23–3.51 ^{<i>d</i>} (3H) 3.25, dd (9.2, 9.0)				
6"	60.7, CH ₂	3.77, br d (11.9) 3.57, dd (5.5, 11.9)				
Other OH		5.08, br s 5.14, br s				

Table S3. $^1\mathrm{H}$ (600 MHz) and $^{13}\mathrm{C}$ (150 MHz) data of 16 and 4

a, b, c These signals are not identified. ^d These signals overlapped with H₂O in DMSO-d₆.

8. Procedure for conversion of uroleuconaphin A₁(1) in water-containing solvent

To a solution of **1** (30.6 mg, 54.3 µmol) in THF/H₂O (13 mL/13 mL) was added TsOH·H₂O (24.0 mg, 126 µmol), and the mixture was heated at 80 °C. After stirring for 18 h, the reaction mixture was quenched by adding NaHCO₃ (11.0 mg, 131 µmol) in H₂O (20 mL) at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with saturated aqueous NH₄Cl, dried over Na₂SO₄. Concentration and purification by column chromatography (silica gel, EtOAc \rightarrow CHCl₃/MeOH = 50/1 \rightarrow 30/1 \rightarrow 10/1 \rightarrow 2/1) to afford green pigment **4** (2.9 mg, 10%) and **3** (6.0 mg, 20%) as a green powder, and biaryl compound **7** (20.2 mg, 66%) as an orange powder.

 $R_f 0.39$ (CHCl₃/MeOH = 3/1);

 $[\alpha]_{D^{24}}$ –320 (*c* 0.056, MeOH);

IR (ATR) 3358, 1645, 1603, 1355, 1255, 1193, 1149, 1099, 1066, 1034, 956, 824, 588, 524, 491, 476, 458, 449, 435, 413 cm⁻¹;

¹H NMR (acetone-*d*₆, 600 MHz) δ 1.04 (d, 3H, *J* = 6.6 Hz), 1.19 (d, 3H, *J* = 6.0 Hz), 1.52 (d, 3H, *J* = 6.6 Hz), 1.63 (d, 3H, *J* = 6.6 Hz), 1.87 (ddd, 1H, *J* = 19.2 Hz, 10.2 Hz, 2.1 Hz), 2.40 (dd, 1H, *J* = 19.2 Hz, 3.6 Hz), 3.59–3.60 (m, 1H), 3.84 (brd, 1H, *J* = 7.8 Hz), 3.91–3.98 (m, 2H), 4.87 (dq, 1H, *J* = 2.1 Hz, 6.6 Hz), 5.10 (q, 1H, *J* = 6.6 Hz), 6.21 (s, 1H), 6.65 (s, 1H), 9.60 (s, 1H), 13.05 (s, 1H), 13.75 (s, 1H);

¹³C NMR (acetone-*d*₆, 150 MHz) δ 17.6, 19.8, 20.0, 21.7, 30.6, 63.1, 66.8, 67.4, 68.4, 71.4, 107.8, 109.9, 110.0, 114.1, 125.7, 126.5, 129.8, 134.0, 138.8, 143.4, 144.0, 146.4, 158.6, 160.2, 165.4, 165.9, 181.3, 184.5, 188.0, 193.0;

HRMS (MALDI) calcd for $C_{30}H_{25}O_{11}$ [M–H]⁻ m/z 561.1391, found m/z 561.1385; Mp 196 °C (dec).

Figure S6. Key 2D NMR correlations of 7 in acetone- d_6

Procedure for conversion of uroleuconaphin A₁(1) in deuterated water-containing solvent

To a solution of **1** (20.8 mg, 36.9 μ mol) in THF/D₂O (9 mL/9 mL) was added TsOH·H₂O (16.2 mg, 85.2 μ mol), and the mixture was heated at 80 °C. After stirring for 18 h, the reaction mixture was quenched by adding NaHCO₃ (7.1 mg, 85 μ mol) in H₂O (10 mL) at room temperature. The products were extracted with EtOAc (×3), and the combined organic extracts were washed with saturated aqueous NH₄Cl, dried over Na₂SO₄. Concentration and purification by column chromatography (silica gel, EtOAc \rightarrow CHCl₃/MeOH = 40/1 \rightarrow 20/1 \rightarrow 10/1 \rightarrow 2/1) to afford green pigment **4** (0.4 mg, 2%) and **3** (1.5 mg, 8%) as a green powder, biaryl compound **7** (11.2 mg, 54%) as an orange powder, and starting material **1** (5.1 mg, 25%) as a red powder.

9. Preparation of compound 8

To a solution of 7 (6.8 mg, 12 μ mol) in THF (1.0 mL) was successively added *N*,*N*-diisopropylethylamine (43 μ L, 0.24 mmol) and DMAP (3.3 mg, 24 μ mol) and MOMCl (9.2 μ L, 0.12 mmol) at 0 °C, and allowed to warm to room temperature. After stirring for 2 h at this temperature, the reaction was quenched by adding saturated aqueous NH₄Cl. The products were extracted with EtOAc (×3) and combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 5/1) to afford bis-MOM ether **8** (4.4 mg, 56%) as an orange solid. Recrystallization from EtOAc gave **8** as orange needles.

 $R_f 0.52$ (hexane/EtOAc = 1/2);

 $[\alpha]_{D^{18}}$ –240 (*c* 0.018, CHCl₃);

IR (ATR) 3493, 2975, 2930, 1677, 1630, 1606, 1379, 1337, 1279, 1217, 1152, 1061, 958, 732, 439, 418 cm⁻¹;

¹H NMR (CDCl₃, 500 MHz) δ 1.02 (d, 3H, J = 6.5 Hz), 1.25 (d, 3H, J = 6.0 Hz), 1.55 (d, 3H, J = 6.5 Hz), 1.70 (d, 3H, J = 6.5 Hz), 1.95 (dd, 1H, J = 19.0 Hz, 10.5 Hz), 2.11 (d, 1H, J = 8.0 Hz), 2.35 (dd, 1H, J = 19.0 Hz, 3.0 Hz), 3.30 (s, 3H), 3.44 (s, 3H), 3.78 (dd, 1H, J = 8.0 Hz, 2.5 Hz), 3.86–3.90 (m, 1H), 4.07 (qd, 1H, J = 6.5 Hz, 2.5 Hz), 4.98 (q, 1H, J = 6.5 Hz), 5.06 (d, 1H, J = 6.5 Hz), 5.12 (d, 1H, J = 6.5 Hz), 5.14 (d, 1H, J = 6.5 Hz), 5.19 (s, 2H), 6.36 (s, 1H), 7.03 (s, 1H), 12.93 (s, 1H), 13.39 (s, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ 15.7, 19.7, 20.7, 21.4, 30.0, 56.6, 57.3, 62.4, 65.2, 66.9, 67.0, 72.0, 95.1, 95.2, 108.1, 110.2, 112.1, 113.6, 124.5, 126.0, 128.7, 132.7, 136.8, 140.9, 142.3, 146.3, 158.0, 158.3, 162.7, 165.0, 179.5, 183.8, 186.9, 191.2;

HRMS (MALDI) calcd for C₃₄H₃₄O₁₃Na [M+Na]⁺ m/z 673.1892, found m/z 673.1895; Mp 95–97 °C.

10. NMR spectra

Figure S7. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of viridaphin A₂ glucoside (16)

Figure S8. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of viridaphin A₂ glucoside (16)

Figure S9. HSQC spectrum (DMSO-*d*₆) of viridaphin A₂ glucoside (16)

Figure S10. NOESY spectrum (DMSO-*d*₆) of viridaphin A₂ glucoside (16)

Figure S11. ¹H NMR spectrum (600 MHz, CDCl₃+CD₃OD) of viridaphin A₂(4)

Figure S12. ¹³C NMR spectrum (150 MHz, CDCl₃+CD₃OD) of viridaphin A₂ (4)

Figure S13. HSQC spectrum (CDCl₃+CD₃OD) of viridaphin A₂(4)

Figure S14. HMBC spectrum (CDCl₃+CD₃OD) of viridaphin A₂(4)

Figure S15. NOESY spectrum (CDCl₃+CD₃OD) of viridaphin A₂(4)

Figure S16. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of viridaphin A₂(4)

Figure S17. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) of viridaphin A₂(**4**)

Figure S18. HSQC spectrum (DMSO-d₆) of viridaphin A₂(4)

Figure S19. HMBC spectrum (DMSO-*d*₆) of viridaphin A₂(4)

Figure S20. NOESY spectrum (DMSO- d_6) of viridaphin A₂(4)

Figure S22. ¹³C NMR spectrum (125 MHz, CDCl₃+CD₃OD) of 4-epi viridaphin A₂(4')

Figure S24. ¹H NMR spectrum (600 MHz, acetone-*d*₆) of **7**

Figure S25. ¹³C NMR spectrum (150 MHz, acetone-*d*₆) of **7**

Figure S26. HSQC spectrum (acetone- d_6) of **7**

Figure S27. HMBC spectrum (acetone- d_6) of **7**

Figure S28. NOESY spectrum (acetone- d_6) of 7

Figure S30. ¹³C NMR spectrum (125 MHz, CDCl₃) of 8

11. IR spectra

Figure S31. IR spectrum of viridaphin A₂ glucoside (16)

Figure S32. IR spectrum of viridaphin $A_2(4)$

Figure S33. IR spectrum of 4-epi viridaphin A2(4')

Figure S34. IR spectrum of 7

12. HRMS spectra

Figure S35. HRMS (MALDI) spectrum of viridaphin A₂ glucoside (16)

Figure S36. HRMS (MALDI) spectrum of viridaphin A₂(4)

Figure S37. HRMS (MALDI) spectrum of 4-epi viridaphin A₂ (4')

Figure S38. HRMS (MALDI) spectrum of 7

Figure S40. CD spectra of viridaphin $A_1(3)$ (2×10⁻⁵ M, MeOH)

(ODS, MeCN/H₂O/TFA = 75/25/0.1, flow rate: 1.0 mL/min, detector UV: 680 nm)

(ODS, MeCN/H₂O/TFA = 80/20/0.1, flow rate: 1.0 mL/min, detector UV: 680 nm)

Figure S43. UV–Vis spectra (MeOH, 2.0×10^{-5} M)

	$\lambda_{\max} \operatorname{nm} (\log \varepsilon)$
1	276 (4.33), 498 (3.42)
3	256 (4.53), 302 (4.19), 368 (4.26), 621 (3.94), 682 (4.09), 742 (4.06)
4	257 (4.42), 303 (4.06), 369 (4.15), 622 (3.76), 684 (3.92), 749 (3.95)
4'	257 (4.18), 306 (3.79), 369 (3.89), 622 (3.54), 681 (3.72), 747 (3.76)
7	273 (4.47), 466 (3.97)

16. Single crystal X-ray diffraction data of compound 8

CCDC 2104603

Identification code	CCDC 2104603		
Moiety formula	$C_{34}H_{34}O_{13}, H_2O$		
Formula weight	668.65		
Temperature	100 K		
Wavelength	0.71073 Å		
Crystal system	orthorhombic		
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁		
Until cell dimensions	$a = 10.2753 (13) \text{ Å} \alpha = 90^{\circ}$		
	$b = 15.0618 (19) \text{ Å} \beta = 90^{\circ}$		
	$c = 19.8940 (3) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	3078.9 (7) Å ³		
Ζ	4		
Density (calculated)	1.404 g/cm ³		
Absorption coefficient	0.108 mm^{-1}		
F (000)	1368.0		
Crystal size	$0.030 \times 0.150 \times 0.500 \text{ mm}^3$		
Theta range for data collection	1.70 to 27.60°		
Index ranges	$-13 <\!\!=\!\!h <\!\!=\!\!12, -13 <\!\!=\!\!k <\!\!=\!\!19, -19 <\!\!=\!\!l <\!\!=\!\!25$		
Reflections collected	18486		
Independent reflections	5678 [R(int) = 0.0459]		
sorption correction Multi-scan			
Absorption correction	Multi-scan		

Data / restraints / parameters	7121 / 3 / 448
Goodness-of-fit on F ²	1.009
Final R indices [I>2σ (I)]	$R_1 {=}\; 0.0459, wR_2 {=}\; 0.0945$
R indices (all data)	$R_1 = 0.0639, wR_2 = 0.1030$
Absolute structure parameter	-0.3 (6)
Largest diff. peak and hole	0.229 and –0.355 e.Å $^{-3}$

17. Antibacterial activity assay

Bacillus subtilis NBRC13719, Staphylococcus aureus NBRC100910, Mycobacterium NBRC13167, Escherichia coli NBRC102203, Pseudomonas aeruginosa smegmatis NBRC106052 and Klebsiella pneumoniae NBRC3512 were purchased from National institute of Technology and Evaluation, Biological Resource Center (Chiba, Japan). Methicillin-resistant Staphylococcus aureus subsp. aureus derived from ATCC 33592 (MRSA) was purchased from Microbiologics (Minnesota, USA). Each strain was maintained in YP medium plate (0.5% peptone (Becton, Dickinson and Co., NJ, USA), 0.3% yeast extract (Becton, Dickinson and Co.), 0.1% MgSO₄·7H₂O (Nacalai Tesque, Kyoto, Japan) and 2% agar (Nacalai Tesque) at 37 °C (B. subtilis, S. aureus and E. coli) or 30 °C (M. smegmatis, P. aeruginosa and K. pneumonia). Each strain was inoculated to YP medium and incubated for 12 h and adjusted the bacterial density of a 0.5 to 1 MacFarland standard. Adjusted microbial culture was further diluted 500 times and added to 96well plate (100 µL/well). Stock solutions of samples were prepared at 10 mg/mL in DMSO and were added to dilute into each concentration in 96-well plates which contains microbial culture. After 24 h incubation, activity of compounds was determined by the turbidity of medium. For the culture and test of MRSA strain, Cation-Adjusted Mueller Hinton Broth (Becton, Dickinson and Co.) was applied instead of YP medium. All tests were carried out in triplicate. As positive controls, ampicillin (Nacalai Tesque) and oxacillin (Tokyo Chemical Industry Co. LTd, Tokyo, Japan) were applied.

18. Calculations

DFT calculations were performed with the Gaussian 16 program.^[2] Geometry optimizations were carried out at the RB3LYP level of density functional theory with the 6-311G(d) basis set for compounds 4, 4', 7, and 7'.

Table S4. Cartesian coordinates of the optimized structure for viridaphin $A_2(4)$

Atom	Х	Y	Z
С	2.9911972	-0.401161	-0.4916501
С	3.8622197	0.674506	-0.3816569
С	3.3420024	1.9197816	0.0297854
С	1.6276174	-0.2786005	-0.1741217
С	-0.80977	2.6256384	0.2337065
0	-2.1104919	3.0088877	0.1240392
С	-3.0964461	2.1084598	-0.0862088
С	-4.396363	2.6159932	-0.2952692
С	-5.2208485	0.3482473	-0.4652476
С	0.052429	3.6509191	0.4455098
Н	-0.3240003	4.6608904	0.5446249
С	-5.4440202	1.7314947	-0.4864086
Н	-6.4564089	2.0867411	-0.6501729
С	1.461252	3.4421369	0.5065069
С	1.9490314	2.0805583	0.2354124
С	1.0373128	0.9735852	0.1216519
С	-0.423796	1.2148851	0.1789151
С	-1.4785021	0.2852468	0.1475934

С	-1.3319294	-1.146965	0.3266874
С	-2.3175414	-2.0464684	0.0522942
С	-3.6855653	-1.5887817	-0.2246601
С	-3.9153973	-0.1583122	-0.2547937
С	-2.840914	0.7498034	-0.0633064
С	-2.0734225	-3.5440964	0.0895006
Н	-2.7099746	-3.9825033	0.8717268
С	-0.044646	-3.0785199	1.3119618
С	4.8817251	-2.0106317	-0.1530369
Н	4.6034733	-2.3092137	0.8662225
С	5.3170395	0.3485862	-0.7056659
Н	5.3603522	0.1490942	-1.7890241
0	-4.6179298	-2.4076897	-0.3661543
0	2.2352604	4.4012229	0.7263878
0	-4.5353825	3.9596648	-0.2891483
Н	-5.4597083	4.1949178	-0.4334947
0	-6.2731767	-0.4509285	-0.6510982
Н	-5.9482188	-1.3838536	-0.5951898
0	4.1881267	2.9428829	0.1784329
Н	3.6495349	3.7350337	0.4586635
0	5.7056706	-0.8477901	-0.0063555
0	-0.7062089	-3.8713719	0.3395114
С	6.3993712	1.3650838	-0.3777294
Н	6.2664294	2.2874471	-0.9396527
Н	6.4026397	1.6078657	0.6842895
Н	7.3626639	0.9202463	-0.636202
С	5.7001602	-3.1269144	-0.7919178
Н	5.1317277	-4.0616221	-0.8298276
Н	5.9920432	-2.8591791	-1.8115624
Н	6.610963	-3.302051	-0.2158217
С	3.589214	-1.7110121	-0.9288543
Н	2.8830433	-2.5305514	-0.8117162

Н	3.8230484	-1.6508678	-2.0003047
С	-0.6176572	-3.2445548	2.7228147
Н	-0.6833163	-4.3070169	2.9651284
Н	0.0321561	-2.7689952	3.4623741
Н	-1.6148395	-2.8099628	2.8264693
Н	0.9852706	-3.4433385	1.3018653
С	-0.0182175	-1.6204027	0.8595026
Н	0.2894083	-0.9903646	1.7017658
0	0.9392956	-1.4549251	-0.19461
С	-2.3975729	-4.2253367	-1.2428568
Н	-2.1120628	-5.2765482	-1.1702104
Н	-3.4579786	-4.1550774	-1.4718397
Н	-1.8153274	-3.7697241	-2.0469016

Table S5. Cartesian coordinates of the optimized structure for epi-viridaphin A_2 (4')

Atom	Х	Y	Z
С	-3.0432243	-0.550641	-0.1367884
С	-3.9278018	0.4493389	0.2630252
С	-3.3990035	1.6887587	0.6774398
С	-1.659464	-0.3377629	-0.1351357
С	0.6666408	2.5991281	0.0511728
Ο	1.8865243	3.0273729	-0.3648115
С	2.915408	2.158838	-0.4833939
С	4.1634967	2.7122136	-0.84646

С	5.1629441	0.5264218	-0.6318191
С	-0.1804048	3.5844945	0.443294
Н	0.161193	4.6113904	0.4670892
С	5.2734188	1.8912296	-0.9262777
Н	6.248371	2.2851242	-1.1947681
С	-1.5272689	3.3035304	0.8325469
С	-2.0038485	1.9303178	0.6034363
С	-1.096505	0.8983136	0.2140105
С	0.3451151	1.1732107	0.0820073
С	1.4212651	0.2696772	0.0307613
С	1.3639438	-1.1615901	0.3341871
С	2.4907737	-1.9165162	0.4913706
С	3.8103116	-1.4169816	0.0910501
С	3.9083179	-0.0242358	-0.2764788
С	2.7576987	0.8065951	-0.2291835
С	2.4545859	-3.3427952	1.0009392
Н	2.9353376	-3.9827718	0.2496789
С	0.1519129	-3.3751302	0.3190394
С	-4.83572	-1.6160621	-1.5068014
Н	-4.4320469	-1.2608482	-2.4641587
С	-5.3993274	0.049193	0.2277136
Н	-5.5453985	-0.6923989	1.0307872
0	4.7952179	-2.1849556	0.059549
0	-2.2707041	4.2037548	1.2786467
0	4.189607	4.0405456	-1.0892713
Н	5.0847073	4.314146	-1.3227776
0	6.2718732	-0.212497	-0.6951363
Н	6.0244304	-1.1388	-0.4498047
0	-4.2364984	2.6340204	1.11618
Н	-3.6918681	3.4421729	1.321212
0	-5.7042809	-0.5812326	-1.0296794
0	1.12996	-3.8139384	1.2471806

С	-6.4614709	1.1260234	0.3899027
Н	-6.417926	1.5879003	1.3739927
Н	-6.347727	1.9066647	-0.3620015
Н	-7.4367072	0.6537063	0.254927
С	-5.6613471	-2.8735179	-1.7506513
Н	-5.0586159	-3.657734	-2.2196228
Н	-6.0652605	-3.2610654	-0.810869
Н	-6.5016365	-2.6475644	-2.4100877
С	-3.6512646	-1.8594947	-0.5607936
Н	-2.9146387	-2.4960942	-1.0483921
Н	-4.00761	-2.403372	0.3250193
С	0.4079305	-3.8443537	-1.11284
Н	0.5384086	-4.9289792	-1.1136521
Н	-0.4406534	-3.5974921	-1.7515929
Н	1.2969792	-3.3919823	-1.556344
Н	-0.7806132	-3.8222583	0.6715963
С	3.2006322	-3.5062489	2.3264597
Н	3.0725727	-4.5336412	2.6734849
Н	4.2628067	-3.3036892	2.203118
Н	2.7846963	-2.8367404	3.0829465
С	0.0300023	-1.8501037	0.4850794
Н	-0.4018137	-1.648033	1.471851
0	-0.865883	-1.3816628	-0.525471

Table S6. Cartesian coordinates of the optimized structure for 7

Atom	Х	Y	Ζ
0	-4.6323246	-0.3616443	2.0502475
0	1.1779677	4.9971226	0.2077611
0	4.6138199	2.6568303	-1.9693353
0	-3.0400556	-0.1889658	4.0743862
С	-2.8706557	-0.2229723	-1.0518016
С	-3.9022361	-0.2525272	-0.184272
С	-3.6616227	-0.2655983	1.2785222
С	-2.0616455	-0.1108926	3.1699991
С	-2.2951925	-0.1647256	1.7750914
С	-0.7557881	0.0380018	3.6445667
С	-1.1912961	-0.0961856	0.8851542
С	0.1095861	0.0598336	1.3560581
0	4.8048013	0.1183063	-1.7900661
С	3.7091688	0.1692241	-1.0208249
С	1.336293	0.1291104	0.499596
С	1.8339649	3.893486	-0.1439116
С	2.9389576	3.8924317	-0.9150169
С	3.5999997	2.6448207	-1.2504226
С	3.0514762	1.3731431	-0.7252604
С	1.8726948	1.34533	0.0676392
Н	0.4290364	4.6998873	0.762698

Н	-3.890615	-0.2875289	3.5859891
Н	-0.6032937	0.0852932	4.7184104
Н	5.0128095	1.0452487	-2.0693507
Н	3.36664	4.8079942	-1.305492
С	-1.4575769	-0.1974369	-0.5814585
0	-0.5552168	-0.2748028	-1.4030039
С	1.2302354	2.6277185	0.3985378
0	0.2279651	2.7727922	1.090927
0	-5.4149891	-0.7033197	-2.036179
С	-5.3384059	-0.342542	-0.6596372
Н	-5.8093197	-1.1750365	-0.1302878
С	-4.5416124	0.0318525	-2.8990072
Н	-4.7192693	1.1083637	-2.7635756
С	-3.0882652	-0.2714849	-2.5386439
Н	-2.4061229	0.4254709	-3.0341056
Н	-2.8100028	-1.2678663	-2.9044435
С	-6.1504523	0.9277426	-0.3605162
Н	-7.1605604	0.8017764	-0.755666
Н	-6.2133717	1.0952163	0.7145403
Н	-5.7070725	1.813266	-0.8222532
С	-4.8989366	-0.3568943	-4.3228239
Н	-5.9368662	-0.0970845	-4.5396717
Н	-4.2546422	0.1573197	-5.0409274
Н	-4.7825854	-1.4348886	-4.4610639
С	0.302242	0.1357691	2.7606902
С	2.02044	-1.0735377	0.1937356
С	3.2203159	-1.0565277	-0.5051853
0	3.3652809	-3.4985481	-0.2576607
С	1.4363632	-2.4165189	0.6068385
Н	0.34798	-2.3681893	0.5861012
С	1.9328776	-3.5172766	-0.3310932
Н	1.664709	-4.474532	0.1228946

С	4.0015468	-2.330943	-0.7851964
Н	4.0994079	-2.4338085	-1.8749226
С	5.4017326	-2.3284953	-0.1676471
Н	5.8596826	-3.3049501	-0.3375357
Н	6.0281617	-1.55871	-0.6125824
Н	5.3418506	-2.1623041	0.9110456
С	1.3844865	-3.4629302	-1.7541445
Н	1.8704765	-4.2258036	-2.36692
Н	0.3109851	-3.6700129	-1.7479194
Н	1.5246871	-2.49084	-2.2300747
0	1.7690558	-2.7426052	1.9574277
Н	2.7048252	-2.9872532	1.9531668
0	1.5723294	0.3260636	3.182851
Н	1.6112279	0.283288	4.1457076

Table S7. Cartesian coordinates of the optimized structure for 7'.

Atom	Х	Y	Z
0	-4.6122515	-1.6997892	1.2313369
0	2.586888	-4.1780736	-2.4433297
0	5.3640296	-0.3978435	-2.3103492
0	-3.0342794	-2.9767649	2.8243767
С	-2.8208742	0.4166082	-1.0146599
С	-3.8607981	-0.1379597	-0.3609315
С	-3.6345016	-1.1415029	0.7036598

С	-2.0456621	-2.3447381	2.187347
С	-2.2671715	-1.4480364	1.115495
С	-0.7391885	-2.5868887	2.6220408
С	-1.1567905	-0.8343479	0.484023
С	0.1446317	-1.0692337	0.9179631
0	4.7436623	1.6523959	-0.9224142
С	3.6461767	0.9751285	-0.5574943
С	1.3520077	-0.3829047	0.3600189
С	2.9230413	-2.9578068	-2.0327608
С	4.0352318	-2.3116441	-2.4349397
С	4.330448	-0.9801769	-1.940472
С	3.3847499	-0.3316475	-1.0005111
С	2.2220599	-1.0024169	-0.5413355
Н	1.7454983	-4.3923149	-1.9922969
Н	-3.8826115	-2.6977687	2.4059683
Н	-0.5930743	-3.2725095	3.4513423
Н	5.2662738	1.065206	-1.5243656
Н	4.7373786	-2.7562783	-3.129836
С	-1.4136445	0.037544	-0.7054654
0	-0.5178654	0.4164785	-1.4402308
С	1.9511309	-2.3540921	-1.0570291
0	0.9907047	-3.055942	-0.7606173
0	-5.3789214	0.8449736	-1.9890058
С	-5.2955069	0.1831528	-0.7293548
Н	-5.8176202	-0.7650071	-0.8821603
С	-4.4560514	1.9247815	-2.1625197
Н	-4.574439	2.6396448	-1.3356424
С	-3.0255928	1.3884856	-2.1418775
Н	-2.3016553	2.2044139	-2.0575505
Н	-2.7955009	0.8848029	-3.0889134
С	-6.0371462	0.9603893	0.3695544
Н	-7.048816	1.1830662	0.0238988

Н	-6.1020237	0.3641742	1.2797796
Н	-5.5382746	1.9022655	0.609963
С	-4.8198677	2.6085543	-3.4688333
Н	-5.8393836	2.9966653	-3.4249874
Н	-4.1402908	3.4393984	-3.676731
Н	-4.7623052	1.8971435	-4.2966537
С	0.3269733	-1.9590203	2.0053793
С	1.6475677	0.9261552	0.8114017
С	2.7442307	1.6244544	0.3190098
0	2.0871356	3.5651506	1.6827848
С	0.7761023	1.5931432	1.8659215
Н	0.3739167	0.8412739	2.5459741
С	1.5921084	2.6256832	2.6449265
Н	0.88847	3.2122183	3.2409453
С	3.036254	3.0565025	0.7384236
Н	4.038522	3.0805236	1.1882195
С	3.0025177	4.0431797	-0.4308252
Н	3.1266502	5.0544775	-0.038362
Н	3.7984261	3.836673	-1.1427908
Н	2.0403765	3.9902715	-0.9465188
С	2.6688724	2.0510771	3.5615073
Н	3.2415127	2.8627052	4.0159847
Н	2.2053682	1.4744678	4.3669961
Н	3.3633591	1.3895367	3.0397696
0	-0.3705746	2.2222686	1.2888474
Н	-0.0464388	3.0146762	0.8384544
0	1.6067803	-2.153758	2.4170724
Н	1.626367	-2.7970294	3.1357724

19. Reference

- M. Horikawa, T. Hoshiyama, M. Matsuzawa, T. Shugyo, M, Tanaka, S. Suzuki, M. Sato, T. Ito, Y. Asakawa, H. Kaku, T. Nishii, M. Inai, S. Takahashi and T. Tsunoda, *J. Nat. Prod.*, 2011, 74, 1812–1816.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.