Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## Supplementary information for

## Design and thermophysical characterization of Betaine hydrochloride-*based* Deep Eutectic Solvents as a new platform for CO<sub>2</sub> capturing

Anil Kumar Jangir<sup>a</sup>, Bhawna<sup>b</sup>, Gunjan Verma<sup>c, d</sup>, Siddharth Pandey<sup>b</sup>, Ketan Kuperkar<sup>\* a</sup>

<sup>a</sup>Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat-395 007, Gujarat – INDIA. <sup>b</sup>Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, INDIA

pepariment of Chemistry, Indian Institute of Technology Denn, India Knas, New Denni 10010, IND

<sup>c</sup>Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, INDIA <sup>d</sup>Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, INDIA.

Corresponding author e-mail: <a href="https://www.ketankuperkar@gmail.com">ketankuperkar@gmail.com</a>

| HBA: HBD <sub>1</sub> :HBD <sub>2</sub> | Ratio   | $T_f$ (°C)      | Remarks                |
|-----------------------------------------|---------|-----------------|------------------------|
|                                         | 1:1     | Do not form DES | -                      |
| BHC: U                                  | 1:2     | Do not form DES | -                      |
|                                         | 1:3     | 80              | -                      |
|                                         | 1:4     | 35              | -                      |
|                                         | 1:5     | 50              | -                      |
|                                         | 1:6     | 60              | -                      |
|                                         | 1:4:0.5 | 32              | Become solid after 24h |
|                                         | 1:4:1.0 | 30              | Become solid after 24h |
| BHC: U: EG                              | 1:4:1.5 | 28              | Become solid after 24h |
|                                         | 1:4:2.0 | 26              | Clear and stable       |
|                                         | 1:4:2.5 | 18              | Clear and stable       |
| BHC: U: DEG                             | 1:4:0.5 | 31              | Become solid after 24h |
|                                         | 1:4:1.0 | 26              | Become solid after 24h |
|                                         | 1:4:1.5 | 22              | Become solid after 24h |
|                                         | 1:4:2.0 | 18              | Become solid after 24h |
|                                         | 1:4:2.5 | 15              | Clear and stable       |
|                                         | 1:4:0.5 | 28              | Become solid after 24h |
|                                         | 1:4:1.0 | 24              | Become solid after 24h |
| BHC: U: TEG                             | 1:4:1.5 | 19              | Become solid after 24h |
|                                         | 1:4:2.0 | 16              | Become solid after 24h |
|                                         | 1:4:2.5 | 10              | Clear and stable       |
|                                         | 1:4:0.5 | 25              | Become solid after 24h |
|                                         | 1:4:1.0 | 22              | Become solid after 24h |
| BHC: U: GLY                             | 1:4:1.5 | 15              | Become solid after 24h |
|                                         | 1:4:2.0 | 10              | Clear and stable       |
|                                         | 1:4:2.5 | > 0             | Clear and stable       |

**Table S1:** Influence of varying molar ratio of HBA and HBDs on the freezing point  $(T_f)$  of DES.



**Fig. S1:** FT-IR spectra of prepared DESs. Blue, Red, Purple, and Black lines represent:  $DES_1$ ,  $DES_2$ ,  $DES_3$ , and  $DES_4$  respectively.





**Fig. S2:** Spectroscopic data of <sup>1</sup>H (*black color spectrum*) and <sup>13</sup>C-NMR (*blue color spectrum*) of the prepared DESs.



Fig. S3: The Experimental 2D-NOESY spectra of the prepared DESs.

**Table S2:** The experimental and evaluated thermophysical properties such as density ( $\rho$ ) thermal expansion coefficient ( $\alpha_P$ ), speed of sound (u), isentropic compressibility ( $\kappa_s$ ), viscosity ( $\eta$ ), electrical conductivity ( $\kappa$ ), the prepared DESs at the temperature, T (K) = (303.15 - 333.15) and pressure, p=101 kPa.<sup>*a*</sup>

| T (K)  | ρ(g.cm <sup>-3</sup> ) |                  |                  |                  | $\alpha_P 	imes 10^{-4}$ (K <sup>-1</sup> ) |                                              |                  |                  |  |
|--------|------------------------|------------------|------------------|------------------|---------------------------------------------|----------------------------------------------|------------------|------------------|--|
|        | DES <sub>1</sub>       | DES <sub>2</sub> | DES <sub>3</sub> | DES <sub>4</sub> | DES <sub>1</sub>                            | DES <sub>2</sub>                             | DES <sub>3</sub> | DES <sub>4</sub> |  |
| 303.15 | 1.2038                 | 1.2100           | 1.2184           | 1.2640           | 4.97                                        | 5.03                                         | 5.09             | 6.28             |  |
| 308.15 | 1.2005                 | 1.2064           | 1.2153           | 1.2601           | 4.99                                        | 5.05                                         | 5.10             | 6.30             |  |
| 313.15 | 1.1979                 | 1.2031           | 1.2121           | 1.2561           | 5.00                                        | 5.06                                         | 5.11             | 6.32             |  |
| 318.15 | 1.1942                 | 1.2001           | 1.2090           | 1.2522           | 5.01                                        | 5.07                                         | 5.12             | 6.34             |  |
| 323.15 | 1.1913                 | 1.1972           | 1.2059           | 1.2481           | 5.02                                        | 5.08                                         | 5.14             | 6.36             |  |
| 328.15 | 1.1887                 | 1.1942           | 1.2027           | 1.2444           | 5.04                                        | 5.10                                         | 5.15             | 6.38             |  |
| 333.15 | 1.1854                 | 1.1912           | 1.1997           | 1.2411           | 5.05                                        | 5.11                                         | 5.16             | 6.40             |  |
|        | u (m.s <sup>-1</sup> ) |                  |                  |                  |                                             | <sup>k</sup> s ( <b>TP</b> a <sup>-1</sup> ) |                  |                  |  |
| 303.15 | 1874.29                | 1855.13          | 1849.14          | 1954.89          | 236.4                                       | 240.1                                        | 240.0            | 207.0            |  |
| 308.15 | 1864.85                | 1844.23          | 1838.45          | 1945.65          | 239.5                                       | 243.7                                        | 243.4            | 209.6            |  |
| 313.15 | 1855.53                | 1834.63          | 1827.56          | 1936.45          | 242.4                                       | 246.9                                        | 247.0            | 212.3            |  |
| 318.15 | 1846.20                | 1824.58          | 1817.45          | 1925.26          | 245.6                                       | 250.2                                        | 250.4            | 215.4            |  |
| 323.15 | 1836.86                | 1814.63          | 1807.46          | 1914.23          | 248.7                                       | 253.6                                        | 253.8            | 218.6            |  |
| 328.15 | 1827.65                | 1804.87          | 1796.14          | 1903.56          | 251.8                                       | 257.0                                        | 257.7            | 221.7            |  |
| 333.15 | 1818.17                | 1794.25          | 1785.45          | 1894.23          | 255.1                                       | 260.7                                        | 261.4            | 224.5            |  |
|        | η (mPa.s)              |                  |                  |                  | к (mS. cm <sup>-1</sup> )                   |                                              |                  |                  |  |
| 303.15 | 149.46                 | 489.02           | 812.19           | 1017.02          | 3.17                                        | 0.97                                         | 0.51             | 0.22             |  |
| 308.15 | 96.66                  | 312.37           | 539.82           | 715.48           | 3.74                                        | 1.21                                         | 0.65             | 0.31             |  |
| 313.15 | 70.10                  | 212.55           | 342.41           | 448.82           | 4.31                                        | 1.51                                         | 0.87             | 0.44             |  |
| 318.15 | 54.27                  | 140.21           | 218.59           | 282.30           | 5.01                                        | 1.88                                         | 1.12             | 0.62             |  |
| 323.15 | 41.56                  | 100.66           | 142.43           | 189.68           | 5.76                                        | 2.27                                         | 1.48             | 0.88             |  |
| 328.15 | 32.55                  | 74.99            | 101.46           | 121.10           | 6.62                                        | 2.68                                         | 1.88             | 1.31             |  |
| 333.15 | 27.45                  | 55.06            | 73.04            | 85.41            | 7.48                                        | 3.32                                         | 2.39             | 1.88             |  |

<sup>*a*</sup>Relative uncertainties (*u*) expressed in terms of temperature as *u*(*T*) for  $\rho$  and  $u = \pm 0.01$  K; *u*(*T*) for  $\eta$  and  ${}^{n}{}_{D} = \pm 0.02$  K; for  $u(\rho) = \pm 1.1$  kg. m<sup>-3</sup>; for  $u(u) = \pm 0.5$  m. s<sup>-1</sup>; for  $u({}^{\kappa}{}_{s}) \pm 0.5$   $TPa^{-1}$ ; for  $u(\eta) = \pm 1.0$  %; for  $u(\kappa) = \pm 1.0$  %; for  $u({}^{n}{}_{D}) = \pm 0.0004$  and for  $u(p) = \pm 1.0$  kPa.

| T (K)            | n <sub>D</sub> | V <sub>m</sub>                     | R <sub>m</sub>                     | f <sub>m</sub>                     | $n_D$            | V <sub>m</sub>                     | R <sub>m</sub>                     | f <sub>m</sub>                     |  |
|------------------|----------------|------------------------------------|------------------------------------|------------------------------------|------------------|------------------------------------|------------------------------------|------------------------------------|--|
|                  |                | cm <sup>3</sup> .mol <sup>-1</sup> | cm <sup>3</sup> .mol <sup>-1</sup> | cm <sup>3</sup> .mol <sup>-1</sup> |                  | cm <sup>3</sup> .mol <sup>-1</sup> | cm <sup>3</sup> .mol <sup>-1</sup> | cm <sup>3</sup> .mol <sup>-1</sup> |  |
| DES <sub>1</sub> |                |                                    |                                    |                                    | DES <sub>2</sub> |                                    |                                    |                                    |  |
| 303.15           | 1.4882         | 456.07                             | 131.45                             | 324.63                             | 1.4844           | 544.76                             | 155.96                             | 388.80                             |  |
| 308.15           | 1.4862         | 457.31                             | 131.34                             | 325.97                             | 1.4822           | 546.36                             | 155.82                             | 390.55                             |  |
| 313.15           | 1.4836         | 458.34                             | 131.04                             | 327.30                             | 1.4801           | 547.90                             | 155.67                             | 392.22                             |  |
| 318.15           | 1.4812         | 459.73                             | 130.88                             | 328.85                             | 1.4781           | 549.24                             | 155.50                             | 393.74                             |  |
| 323.15           | 1.4785         | 460.84                             | 130.57                             | 330.28                             | 1.4758           | 550.57                             | 155.23                             | 395.34                             |  |
| 328.15           | 1.4761         | 461.85                             | 130.29                             | 331.56                             | 1.4735           | 551.94                             | 154.98                             | 396.97                             |  |
| 333.15           | 1.4736         | 463.14                             | 130.06                             | 333.07                             | 1.4718           | 553.34                             | 154.89                             | 398.45                             |  |
|                  |                | DES <sub>3</sub> DES <sub>4</sub>  |                                    |                                    |                  |                                    |                                    |                                    |  |
| 303.15           | 1.4827         | 631.40                             | 180.23                             | 451.17                             | 1.5018           | 493.75                             | 145.66                             | 348.09                             |  |
| 308.15           | 1.4804         | 633.02                             | 179.95                             | 453.06                             | 1.4994           | 495.25                             | 145.51                             | 349.74                             |  |
| 313.15           | 1.4781         | 634.64                             | 179.68                             | 454.96                             | 1.4971           | 496.85                             | 145.41                             | 351.44                             |  |
| 318.15           | 1.4758         | 636.27                             | 179.40                             | 456.88                             | 1.4947           | 498.37                             | 145.26                             | 353.11                             |  |
| 323.15           | 1.4734         | 637.91                             | 179.08                             | 458.83                             | 1.4922           | 500.01                             | 145.11                             | 354.90                             |  |
| 328.15           | 1.4712         | 639.61                             | 178.84                             | 460.77                             | 1.4898           | 501.49                             | 144.94                             | 356.55                             |  |
| 333.15           | 1.4693         | 641.21                             | 178.67                             | 462.54                             | 1.4873           | 502.83                             | 144.69                             | 358.14                             |  |

**Table S3.** Experimental values of refractive index  $\binom{n_D}{}$ , Molar volume  $\binom{V_m}{}$ , Molar refractions  $\binom{R_m}{}$  and Free volume  $(f_m)$  for synthesized DES at Temp.(T = 303.15-333.15 K) and pressure, p=101 kPa.<sup>*a*</sup>

<sup>*a*</sup>Relative uncertainties (*u*) expressed in terms of temperature as  $u(T)^{n_D} = \pm 0.02$  K; for  $u(^{n_D}) = \pm 0.0004$  and for  $u(p) = \pm 1.0$  kPa.