Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Pd-Nanoparticles@Layered Double Hydroxide/ Reduced Graphene Oxide (Pd NPs@LDH/rGO) Nanocomposite Catalyst for Highly Efficient Green Reduction of Aromatic Nitro Compounds

Dewan Azharul Islam and Himadri Acharya*

Centre for Soft Matters, Department of Chemistry, Assam University, Silchar-788011, India. E-mail: himadriau@yahoo.co.in, himadri.acharya@aus.ac.in; Fax: +91 3842 270802; Tel: +91 3842 270848

Fig. S1 Powder XRD pattern of exfoliated GO.

Fig. S2 PXRD patterns of (a) ZnAl-(CO₃²⁻) LDH ($d_{003} = 0.74$ nm), (b) ZnAl-(Cl⁻) LDH ($d_{003} = 0.78$ nm) and (a) ZnAl-(PdCl₄²⁻) LDH ($d_{003} = 1.06$ nm) supports successful intercalation of PdCl₄²⁻ in the inter-gallery of LDH.

Fig. S3 PXRD patterns of (a) ZnAl-LDH (Avg. crystallite size= 34.8 nm), (b) ZnAl-LDH/GO (5%) (Avg. crystallite size= 27.7 nm), (c) ZnAl-LDH/GO (10%) (Avg. crystallite size= 18.2 nm) and (c) ZnAl-LDH/GO (20%) (Avg. crystallite size = 23.1 nm).

Fig. S4 Wide angle PXRD patterns of (a) ZnAl-(CO_3^{2-}) LDH, (b) ZnAl-(CO_3^{2-}) LDH/GO, (c) Pd-NPs deposited ZnAl-LDH and (d) Pd-NPs deposited ZnAl-LDH/GO.

Fig. S5 PXRD patterns of reduced graphene oxide (rGO)

Fig. S6 Representative TEM images of (a,b) Pd-NPs deposited on ZnAl-LDH/rGO with different magnifications (c) Pd-NPs deposited ZnAl-LDH.

Fig. S7 FTIR spectra of GO, $ZnAl-(CO_3^{2-})$ LDH and $ZnAl-(CO_3^{2-})$ LDH/GO.

Fig. S8 UV-vis absorption spectrum of exfoliated GO.

Fig. S9 UV-vis absorption spectra of ZnAl-(CO₃²⁻) LDH, ZnAl-(PdCl₄²⁻) LDH and Pd-NPs deposited ZnAl-LDH.

Fig. S10 UV-vis absorption spectra of GO/ZnA1-(CO₃²⁻) LDH, ZnA1-(PdCl₄²⁻) LDH/GO and Pd-NPs deposited ZnA1-LDH/GO.

Fig. S11 UV-vis absorption spectra of (a) 4-nitrophenol and (b) 4-nitrophenolate.

Fig. S12 UV-vis absorption spectra during reduction of 4-nitrophenol by (a) NaBH₄ and (b) $ZnAl-(CO_3^{2-})$ LDH catalyst.

Fig. S13 UV-vis absorption spectra during reduction of 4-nitrophenol by NaBH₄ in presence of (a) ZnAl-(Pd-NPs) LDH, (b) ZnAl-(Pd-NPs) LDH/GO(5%), (c) ZnAl-(Pd-NPs) LDH/GO(10%)/, (d) ZnAl-(Pd-NPs) LDH/GO(20%), (e) Pd-NPs/GO and (f) ZnAl-(CO₃²⁻) LDH as a catalyst.

Fig. S14 UV-vis absorption spectra during reduction of (a) 4-nitroaniline, (b) 4-nitrophenol, (c) 4-nitrobenzyl alcohol, (d) 4-nitroacetophenone and (e) 4-nitrobenzaldehyde by NaBH₄ in presence ZnAl-(Pd-NPs) LDH/GO as a catalyst.

Fig. S15 A plot of conversion (%) vs recycle number for the reduction of 4-nitroaniline over the same Pd NPs@LDH/rGO catalyst for six successive reuse cycles.

Fig. S16 The postcatalytic PXRD pattern of reused Pd NPs@LDH/rGO catalyst after eight successive cycles.

Compound	Cell parameter,	Cell parameter,
	c (nm)	a (nm)
ZnAl(CO ₃ ²⁻) LDH	2.22	0.30
ZnAl-(Cl ⁻) LDHs	2.34	0.30
ZnAl-(PdCl ₄ ²⁻) LDH	3.18	0.36
ZnAl(CO ₃ ²⁻) LDH/GO	2.21	0.30
Pd@LDH	2.20	0.30
Pd@LDH/GO	2.21	0.30

Table-S1. Cell parameters of the synthesized compounds determined from powder X-ray diffraction.