## Supporting Information

## Cu-Catalyzed [2+2+1] Cascade Annulation of Vinyl Iodonium Salts with Element Sulfur/Selenium for the Modular Synthesis of Thiophenes and

## Selenophens

Yaxing Wu, ${ }^{\mathrm{a}}$ Chao $\mathrm{Wu},{ }^{\mathrm{a}}$ Fei Wang, ${ }^{\mathrm{a}}$ and Chao Chen ${ }^{\mathrm{a}, \mathrm{b},{ }^{*}{ }^{*}}$
a. Key Laboratory of Bioorganic Phosphorus Chemistry \& Chemical Biology (Ministry of Education),Department of Chemistry, Tsinghua University, Beijing 100084, China. Tel: +86-10-62773684. * E-mail:chenchao01@mails.tsinghua.edu.cn.
b. School of Biotechnology and Health Sciences, Wuyi University \& International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529020, China.c. State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
Table of the contents:
General Comments. ..... 2
Preparation of Starting Materials. ..... 2
General Synthesis of Thiophenes and Selenophens. ..... 3
Procedure for the Preparation of Compound 4 and 5 ..... 4
Characterization of Products ..... 6
X-Ray Crystal Structures ..... 16
References. ..... 30
1H, 13C and 19 F NMR Spectra ..... 31

## General Comments

All the reactions were carried out in pre-dried Schlenk tubes with a Teflon-lined septum under $\mathrm{N}_{2}$ atmosphere. All of the solvents were fresh distilled. Column chromatography was performed on silica gel (particle size 10-40 $\mu \mathrm{m}$, Ocean Chemical Factory of Qingdao, China). 1 H NMR and 13C NMR spectra were recorded on a JEOL AL-400MHz spectrometer at ambient temperature with $\mathrm{CDCl}_{3}$ as the solvent. Chemical shifts $(\delta)$ are reported in parts per million ( ppm ), referenced to the residual proton resonance of $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$, to the carbon resonance of $\mathrm{CDCl}_{3}(77.16 \mathrm{ppm})$. Coupling constants (J) were given in Hertz (Hz). The term m, dq, q, t, d, s referred to multiplet, doublet quartet, quartet, triplet, doublet, singlet. Mass spectra were obtained using Bruker Esquire ion trap mass spectrometer in positive mode. The reaction progress was monitored by GC-MS and TLC. Unless otherwise noted, commercially available reagents were used as received.

## Preparation of Starting Materials ${ }^{1-4}$

## Synthesis of ( $\boldsymbol{E}$ )-2-(aryl)ethenylboronic acid



Terminal aromatic alkyne ( 3 mmol ) was added to a solution of catechol borane ( 1 M in THF, 4.5 mL ) and the mixture was stirred under nitrogen atmosphere at $75^{\circ} \mathrm{C}$ for 16 h . The solution was cooled to room temperature and water ( 15 mL ) was added. The precipitate was isolated by filtration and washed with water. The pure product was obtained by further purification through chromatography on silica.

## Synthesis of 2-methyl-(diacetoxyiodo)benzene



The $\mathrm{NaIO}_{4}(30 \mathrm{mmol})$, 2-methyliodobenzene ( 10 mmol ) and acetic acid ( 50 mL ) were dissolved in a 250 mL round-bottom flask. Then $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 h . After completion, water ( 50 mL ) was added. The solid was separated by filtration. The filtrate was extracted with DCM ( $3 \times 10$ mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under reduced pressure. The combined crude products were purified by recrystallization from diethyl ether.

## Synthesis of aryl-vinyl iodonium triflate salts



The boronic acid ( $2.0 \mathrm{mmol}, 1$ eq.) was suspended in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under nitrogen gas. The reaction was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1.2 eq.) was added dropwise and stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. Iodoarene diacetate ( $2.4 \mathrm{mmol}, 1.2$ eq.) was then added as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under nitrogen gas. The reaction mixture was stirred for an hour. Then Sodium trifluomethanesulfonate ( $6.0 \mathrm{mmol}, 3$ eq.) added as a solution in water ( 10 mL ). The reaction mixture was vigorously stirred for 15 minutes. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$ and the combined organic phases dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, then concentrated in vacuo. The crude residue was then recrystallized or stirred with $\mathrm{Et}_{2} \mathrm{O}$ to obtain the desired compound as a white powder.

## General Synthesis of Thiophenes and Selenophens



Under a $\mathrm{N}_{2}$ atmosphere, aryl-vinyl iodonium triflate salt $\mathbf{1}(0.2 \mathrm{mmol})$, $\mathrm{S}_{8}(0.08 \mathrm{mmol}, 20.5 \mathrm{mg}), t$-BuOK ( 0.6 $\mathrm{mmol}, 67.4 \mathrm{mg}), \operatorname{KOTf}(0.4 \mathrm{mmol}, 75.2 \mathrm{mg}), \operatorname{CuTc}(0.02 \mathrm{mmol}, 3.8 \mathrm{mg})$ and dry DCE $(2 \mathrm{~mL})$ were added to a flame-dried Schlenk tube. The resulting mixture was stirred at $120^{\circ} \mathrm{C}$ for 24 hours, and water $(5 \mathrm{~mL})$ was added. The solution was extracted with ethyl acetate and organic layers were combined, dried over sodium sulfate. After evaporation of solvent, the residue was purified by column chromatography to give the corresponding products 2.


Under a $\mathrm{N}_{2}$ atmosphere, aryl-vinyl iodonium triflate salt $\mathbf{1}(0.2 \mathrm{mmol})$, $\mathrm{Se}(0.6 \mathrm{mmol}, 47.4 \mathrm{mg}), t$ - $\mathrm{BuOK}(0.6$ $\mathrm{mmol}, 67.4 \mathrm{mg}), \operatorname{KOTf}(0.4 \mathrm{mmol}, 75.2 \mathrm{mg}), \operatorname{CuTc}(0.02 \mathrm{mmol}, 3.8 \mathrm{mg})$ and dry DCE $(2 \mathrm{~mL})$ were added to a flame-dried Schlenk tube. The resulting mixture was stirred at $130^{\circ} \mathrm{C}$ for 24 hours, and water $(5 \mathrm{~mL})$ was added. The solution was extracted with ethyl acetate and organic layers were combined, dried over sodium sulfate. After evaporation of solvent, the residue was purified by column chromatography to give the corresponding products 3.

## Procedure for the Preparation of Compound 4 and 5

## Procedure 1 for preparation of 4 from 2a



Under a $\mathrm{N}_{2}$ atmosphere, 2,4-diphenyl thiophene 2a ( 0.2 mmol ), diphenyliodonium salt ( $0.24 \mathrm{mmol}, 103.2 \mathrm{mg}$ ), CuOTf ( $0.02 \mathrm{mmol}, 4.3 \mathrm{mg}$ ) and dry DCE $(2 \mathrm{~mL})$ were added to a flame-dried Schlenk tube. The resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for 8 hours, and water $(5 \mathrm{~mL})$ was added. The solution was extracted with ethyl acetate and organic layers were combined, dried over sodium sulfate. After evaporation of solvent, the residue was purified by column chromatography to give the corresponding products 4 .

## Procedure 2 for preparation of 5 from 20



Under a $\mathrm{N}_{2}$ atmosphere, 2,4-bis(4-bromophenyl)thiophene 20 ( 0.2 mmol ), [4-(diphenylamino)phenyl]boronic acid ( $0.5 \mathrm{mmol}, 144.5 \mathrm{mg}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 82.9 \mathrm{mg}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.01 \mathrm{mmol}, 11.6 \mathrm{mg})$ and dry THF $(2 \mathrm{~mL})$ were added to a flame-dried Schlenk tube. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 hours, and water ( 10 mL ) was added. The solution was extracted with ethyl acetate and organic layers were combined, dried over sodium sulfate. After evaporation of solvent, the residue was purified by column chromatography to give the corresponding products 5 .

UV-vis absorption (Abs) and PL spectra of 5 in diluted solution $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ at room temperature ${ }^{5}$



## Characterization of Products

## 2,4-Diphenylthiophene (2a)



Prepared according to the general procedure as described above in $82 \%$ yield $(38.7 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.68-7.56$ (m, 5H), 7.44-7.37 (m, 5H), 7.33-7.28 (m, 2H). 13C NMR (101 MHz, Chloroform-d) $\delta 145.30,143.37,136.08,134.54$, $129.30,129.20,127.97,127.50,126.56,126.12,122.53,119.92$. GC-MS: 236.

## 2,4-Di-p-tolylthiophene (2b)



Prepared according to the general procedure as described above in $70 \%$ yield $(37.0 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.52$ (t, J = 8.5 Hz, $5 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 145.14,143.12,137.62$, 137.06, 133.26, 131.73, 129.67, 129.58, 126.28, 125.85, 121.94, 118.70, 21.25. GC-MS: 264.

## 2,4-Di-m-tolylthiophene (2c)



Prepared according to the general procedure as described above in $67 \%$ yield $(35.4 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.58(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.41$ (s, 3H). 13C NMR (101 MHz, Chloroform-d) $\delta 145.18,143.28,138.68,138.51,135.97,134.40,128.93,128.83$, $128.57,128.12,127.21,126.67,123.55,123.11,122.42,119.57,21.64,21.57$. GC-MS: 264.

## 2,4-Di-o-tolylthiophene (2d)



Prepared according to the general procedure as described above in $62 \%$ yield $(32.7 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.45$ (dd, J=7.5 Hz, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, 1H), $2.47(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 142.72,142.38,136.87,136.18,135.81$, $134.16,130.96,130.29,130.19,129.82,128.49,127.86,127.50,126.13,125.91,122.86,21.35,20.97$. GC-MS: 264.

## 2,4-Di-(3, 5-dimethylphenyl)-thiophene (2e)



Prepared according to the general procedure as described above in $58 \%$ yield $(33.9 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 100:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.34$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $7.29(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 12 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 145.19$, $143.31,138.55,138.38,135.98,134.36,129.46,128.98,124.34,123.84,122.39,119.32,21.49$. GC-MS: 292.

## 2,4-Di-(4-(tert-butylphenyl)-thiophene (2f)



Prepared according to the general procedure as described above in $66 \%$ yield $(45.9 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 100:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.62-7.53(\mathrm{~m}, 5 \mathrm{H})$, 7.47-7.39 (m, 4H), $7.32(\mathrm{~s}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 18 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 150.87,150.32,145.00$, 143.06, 133.32, 131.76, 126.13, 125.93, 125.82, 125.71, 122.08, 118.95, 34.66, 31.38. GC-MS: 348.

## 2,4-Di-(2-methoxyphenyl)-thiophene (2g)



Prepared according to the general procedure as described above in $79 \%$ yield $(46.8 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a yellow solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.70$ $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H})$, 3.89 (s, 3H). 13C NMR (101 MHz, Chloroform-d) $\delta 156.68,155.88,138.50,138.01,129.84,128.74,128.47$, $128.33,127.16,125.62,125.58,123.75,121.06,120.93,111.78,111.51,55.81,55.72$. GC-MS: 296.

## 2,4-Di-(4-trifluoromethoxyphenyl)-thiophene (2h)



Prepared according to the general procedure as described above in $84 \%$ yield $(46.8 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a yellow solid. 1 H NMR ( 400 MHz , Chloroform-d) $\delta 7.62$ (dd, J = 11.9, $8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 148.84(\mathrm{q}, \mathrm{J}=8.8$ $\mathrm{Hz}), 148.58(\mathrm{q}, \mathrm{J}=8.6 \mathrm{~Hz}), 143.93,141.97$, 134.50, 132.99, 127.71, 127.28, 122.78, 121.58, 121.46, 120.77, $120.57(\mathrm{q}, \mathrm{J}=257 \mathrm{~Hz})$. 19F NMR ( 565 MHz , Chloroform-d) $\delta$ - 50.97 (s, 3F), -60.20 (s, 3F). GC-MS: 404.

## 2,4-Di-(2-fluorophenyl)-thiophene (2i)



Prepared according to the general procedure as described above in $63 \%$ yield ( 34.3 mg ). It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.80(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{td}, \mathrm{J}=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz , Chloroform- d$) \delta 159.93(\mathrm{~d}, \mathrm{~J}=247 \mathrm{~Hz}), 159.23(\mathrm{~d}, \mathrm{~J}=249 \mathrm{~Hz}), 136.28$, $129.50(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}), 129.00(\mathrm{~d}$, $\mathrm{J}=8.0 \mathrm{~Hz}), 128.85-128.77(\mathrm{~m}), 126.80(\mathrm{q}, \mathrm{J}=3.4 \mathrm{~Hz}), 124.54(\mathrm{dd}, \mathrm{J}=11.2 \mathrm{~Hz}, 3.4 \mathrm{~Hz}), 124.01(\mathrm{~m}), 123.67(\mathrm{~d}$,
$\mathrm{J}=13.2 \mathrm{~Hz}), 122.12(\mathrm{~J}=13.2 \mathrm{~Hz}), 116.49(\mathrm{~d}, \mathrm{~J}=23.5 \mathrm{~Hz}), 116.39(\mathrm{~d}, \mathrm{~J}=22.8 \mathrm{~Hz}) .19 \mathrm{~F} \mathrm{NMR}(565 \mathrm{MHz}$, Chloroform-d) $\delta-108.32(\mathrm{~s}, 1 \mathrm{~F}),-108.42$ (s, 1F). GC-MS: 272.

## 2,4-Di-(3,4,5-trifluorophenyl)-thiophene (2j)



Prepared according to the general procedure as described above in $80 \%$ yield $(55.0 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 50:1) to afford a white solid. 1 H NMR ( 400 MHz , Chloroform-d) $\delta 7.39(\mathrm{~s}, 2 \mathrm{H})$, 7.26$7.14(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 153.09-152.51(\mathrm{~m}), 150.50-150.25(\mathrm{~m}), 142.71-142.52(\mathrm{~m})$, $140.57-140.37(\mathrm{~m}), 131.49(\mathrm{td}, \mathrm{J}=6.8 \mathrm{~Hz}, 2.3 \mathrm{~Hz}), 130.06(\mathrm{td}, \mathrm{J}=6.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}), 123.02,122.03,110.56-110.00$ (m). 19F NMR (565 MHz, Chloroform-d) $\delta-133.07(\mathrm{dd}, \mathrm{J}=20.5,8.5 \mathrm{~Hz}, 2 \mathrm{~F}),-133.56(\mathrm{dd}, \mathrm{J}=20.6,8.5 \mathrm{~Hz}, 2 \mathrm{~F})$, $-160.56(\mathrm{dd}, J=33.7,13.2 \mathrm{~Hz}, 1 \mathrm{~F}),-161.53(\mathrm{dd}, J=27.0,14.1 \mathrm{~Hz}, 1 \mathrm{~F}) . \mathrm{GC}-\mathrm{MS}: 344$. HRMS (ESI+) calcd for C16H6F6S $[\mathrm{M}+\mathrm{H}]^{+} \quad$ 345.0128. Found 345.0110. Melt point: $94.6-96.3^{\circ} \mathrm{C}$

## 2,4-Di-(4-fluorophenyl)-thiophene (2k)



Prepared according to the general procedure as described above in $72 \%$ yield $(39.2 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.63-7.52(\mathrm{~m}, 4 \mathrm{H})$, $7.44(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{td}, \mathrm{J}=8.8,2.3 \mathrm{~Hz}, 4 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 162.58(\mathrm{~d}, \mathrm{~J}=$ $245.3 \mathrm{~Hz}), 162.54(\mathrm{~d}, \mathrm{~J}=245.1 \mathrm{~Hz}), 144.28,142.26,132.12(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 130.65(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 127.98(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}), 127.65(\mathrm{~J}=8.0 \mathrm{~Hz}), 122.36,119.49,116.10(\mathrm{~d}, \mathrm{~J}=35.6 \mathrm{~Hz}), 115.82(\mathrm{~d}, \mathrm{~J}=35.2 \mathrm{~Hz}) .19 \mathrm{~F}$ NMR ( 565 MHz, Chloroform-d) $\delta-114.03$ (s, 1F), -114.93 (s, 1F). GC-MS: 272.

## 2,4-Di-(3-fluorophenyl)-thiophene (21)



Prepared according to the general procedure as described above in $63 \%$ yield ( 34.3 mg ). It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.55(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 2 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 164.50(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}), 162.06$ $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 144.05,142.07,137.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 136.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 130.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 130.47(\mathrm{~d}$, $\mathrm{J}=8.4 \mathrm{~Hz}), 122.87,122.04(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 121.63(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 121.09,114.71(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 114.28(\mathrm{~d}, \mathrm{~J}$ $=21.2 \mathrm{~Hz}), 113.30(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}), 112.81(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}) .19 \mathrm{~F}$ NMR ( 565 MHz , Chloroform -d$) \delta-112.48(\mathrm{~s}$, 1F), -112.74 (s, 1F). GC-MS: 272.

## 2,4-Di-(2-chlorophenyl)-thiophene (2m)



Prepared according to the general procedure as described above in $64 \%$ yield ( 38.9 mg ). It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1 H NMR ( 400 MHz , Chloroform-d) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.59$ $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}$ NMR ( 101 MHz , Chloroform-d) $\delta 139.68,139.45$, $135.27,133.06,132.53,132.45,131.46,131.19,130.71,130.38,129.56,128.89,128.65,127.11,127.04,125.00$. GC-MS: 304.

## 2,4-Di-(3-chlorophenyl)-thiophene (2n)



Prepared according to the general procedure as described above in $45 \%$ yield ( 27.4 mg ). It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.60$ (d, J = 13.6 $\mathrm{Hz}, 2 \mathrm{H}), 7.55-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 4 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 143.84$, $141.88,137.40,135.89,135.01,134.88,130.29,130.19,127.86,127.47,126.51,125.91,124.50,124.06,122.86$, 121.21. GC-MS: 304.

## 2,4-Di-(4-bromophenyl)-thiophene (20)



Prepared according to the general procedure as described above in $68 \%$ yield $(53.6 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 100:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.55-7.44(\mathrm{~m}, 9 \mathrm{H})$, $7.38(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 144.21,142.17,134.64,133.16,132.16,132.06$, 127.94, 127.41, 122.46, 121.81, 121.41, 120.46. GC-MS: 394.

## 2,4-Di-(2-bromophenyl)-thiophene (2p)



Prepared according to the general procedure as described above in $60 \%$ yield $(47.3 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 70:1) to afford a yellow solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.68(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, 2H), 7.58-7.50 (m, 2H), 7.48-7.43 (m, 2H), 7.38-7.30 (m, 2H), 7.18 (t, J = 7.7 Hz, 2H). 13C NMR ( 101 MHz , Chloroform-d) $\delta 141.14,141.01,137.45,135.15,133.89,133.53,131.99,131.38,129.73,129.23,128.90,127.59$, 127.56, 124.69, 122.88, 122.61. GC-MS: 394.

## 2,4-Di-(3-trifluoromethylphenyl)-thiophene (2q)



Prepared according to the general procedure as described above in $74 \%$ yield $(55.1 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 50:1) to afford a yellow solid. 1 H NMR ( 400 MHz , Chloroform-d) $\delta 7.87(\mathrm{~d}, \mathrm{~J}=10.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.81(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 5 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 144.00$, $141.99,136.33,134.89,129.63,129.49,129.15,124.55-124.47$ (m), 124.19-124.13 (m), 123.18-123.09 (m), 122.63, 122.57, 121.73, 121.66. 19F NMR ( 565 MHz , Chloroform-d) $\delta-62.57$ ( $\mathrm{s}, 3 \mathrm{~F}$ ), -62.67 ( $\mathrm{s}, 3 \mathrm{~F}$ ). GC-MS: 372. HRMS (ESI + ) calcd for $\mathrm{C} 18 \mathrm{H} 10 \mathrm{~F} 6 \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$373.0409. Found 373.0401. Melt point: $84.7-85.9^{\circ} \mathrm{C}$

## 2,4-Di-(4-trifluoromethylphenyl)-thiophene (2r)



Prepared according to the general procedure as described above in $80 \%$ yield ( 59.5 mg ). It was purified by flash chromatography (PE/EA 50:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.78-7.69(\mathrm{~m}, 5 \mathrm{H})$, 7.69-7.64 (m, 6H), 7.54 (s, 1H). 13C NMR (101 MHz, Chloroform-d). 13C NMR (101 MHz, Chloroform-d) $\delta$ $142.65,142.20,138.09,137.49,130.62(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 130.29(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 130.12,127.52,124.01-124.34$ (m), 123.91, 121.59. 19F NMR (565 MHz, Chloroform-d) $\delta-62.38$ (s, 3F), -62.47 (s, 3F). GC-MS: 372.

## 2,4-Di-(naphthalen-1-yl)-thiophene (2s)



Prepared according to the general procedure as described above in $44 \%$ yield ( 29.6 mg ). It was purified by flash chromatography (PE/EA 100:1) to afford a brown solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 8.38(\mathrm{dt}, \mathrm{J}=7.0$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.19(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.69(\mathrm{dd}, \mathrm{J}=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58-7.46 (m, 8H). 13C NMR (101 MHz, Chloroform-d) $\delta 141.84,141.45,135.11,134.03,133.99,132.45$, $131.85,129.99,128.67,128.51,128.49,128.33,127.98,127.11,126.68,126.35,126.19,126.01,125.97,125.82$, 125.56, 125.42, 123.94, 123.84. GC-MS: 336. HRMS (ESI+) calcd for C24H16S [M + H ] 337.0979 . Found 337.0986. Melt point: $84.2-85.7^{\circ} \mathrm{C}$.

## 2,4-Di-(benzofuran-2-yl)-thiophene (2t)



Prepared according to the general procedure as described above in $50 \%$ yield ( 31.6 mg ). It was purified by flash chromatography (PE/EA 100:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.57-7.53$ (m, 2H), 7.50-7.46 (m, 2H), 7.38-7.35 (m, 2H), 7.32-7.19 (m, 4H), $6.87(\mathrm{~s}, 2 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta$
$154.71,153.83,149.87,148.85,134.48,129.08,128.86,126.88,126.33,125.33,124.97,123.44,122.80,122.30$, 121.14, 111.28, 110.81, 110.17, 103.36, 102.10. GC-MS: 316. HRMS (ESI+) calcd for C20H12O2S [M + H ${ }^{+}$ 317.0592. Found 317.0578. Melt point: $94.6-95.7^{\circ} \mathrm{C}$.

## 2,4-Diphenylselenophen (3a)



Prepared according to the general procedure as described above in $37 \%$ yield $(21.0 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 100:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.71-7.59(\mathrm{~m}, 5 \mathrm{H})$, 7.45-7.36 (m, 5H), 7.34-7.29 (m, 2H). 13C NMR (101 MHz, Chloroform-d) $\delta 144.14,143.22,136.74,133.98$, $128.75,128.65,127.78,127.50,126.75,125.86,121.55,120.28$. GC-MS: 284. HRMS (ESI+) calcd for $\mathrm{C} 16 \mathrm{H} 12 \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$285.1104. Found 285.1113. Melt point: $101.6-103.1^{\circ} \mathrm{C}$.

## 2,4-Di-p-tolylselenophen (3b)



Prepared according to the general procedure as described above in $42 \%$ yield $(26.2 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 100:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.49(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}$, $5 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 144.79,143.33,137.22$, $136.70,133.11,131.90,129.03,128.94,126.10,125.85,121.94,117.72,18.90$. GC-MS: 312. HRMS (ESI+) calcd for $\mathrm{C} 18 \mathrm{H} 16 \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+} 313.1418$. Found 313.1416. Melt point: $106.6-107.9^{\circ} \mathrm{C}$.

## 2,4-Di-(4-(tert-butylphenyl)-selenophen (3c)



Prepared according to the general procedure as described above in $31 \%$ yield ( 24.6 mg ). It was purified by flash
chromatography (PE/EA 100:1) to afford a yellow solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.65-7.55$ (m, $5 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 18 \mathrm{H}) .13 \mathrm{C}$ NMR ( 101 MHz , Chloroform-d) $\delta 150.58,150.42$, 144.07, 142.97, $133.71,129.98,125.43,125.23,125.12,125.00,120.59,119.27,34.22,30.00$. GC-MS: 396. HRMS (ESI + ) calcd for C24H28Se $[\mathrm{M}+\mathrm{H}]^{+}$397.1356. Found 397.1351. Melt point: 97.6-98.4 ${ }^{\circ} \mathrm{C}$

## 2,4-Di-(2-methoxyphenyl)-selenophen (3d)



Prepared according to the general procedure as described above in $32 \%$ yield ( 22.0 mg ). It was purified by flash chromatography (PE/EA 70:1) to afford a brown solid. 1 H NMR ( 400 MHz , Chloroform-d) $\delta 7.82$ (dd, J=7.5 $\mathrm{Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=1.5$ Hz, 1H), 3.93 ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.88 ( $\mathrm{s}, 3 \mathrm{H}$ ). 13C NMR (101 MHz, Chloroform-d) $\delta 155.18,154.38,139.80,139.31$, $131.76,128.44,128.16,128.03,127.17,125.62,123.75,123.67,119.62,119.50,113.65,113.37,52.24,52.15$. GC-MS: 344. HRMS (ESI+) calcd for C18H16O2Se $[\mathrm{M}+\mathrm{H}]^{+}$345.0316. Found 345.0312. Melt point: 109.6$111.1^{\circ} \mathrm{C}$.

## 2,4-Di-(4-trifluoromethylphenyl)-selenophen (3e)



Prepared according to the general procedure as described above in $20 \%$ yield ( 16.8 mg ). It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.83-7.67(\mathrm{~m}, 11 \mathrm{H})$, $7.36(\mathrm{~s}, 1 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, CDCl3). 13C NMR (101 MHz, Chloroform-d) $\delta 142.16,141.70,137.65$, $137.05,131.27(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 130.95(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 130.12,127.52,124.90-124.52(\mathrm{~m}), 123.91,121.59 .19 \mathrm{~F}$ NMR (565 MHz, Chloroform-d) $\delta-61.35$ (s, 3F), -61.59 (s, 3F). GC-MS: 420. HRMS (ESI+) calcd for $\mathrm{C} 18 \mathrm{H} 10 \mathrm{~F} 6 \mathrm{Se}[\mathrm{M}+\mathrm{H}]^{+}$420.9852. Found 420.9863. Melt point: $118.3-119.8^{\circ} \mathrm{C}$.

## 2,3,5-triphenylthiophene (4)



Prepared according to the general procedure as described above in $91 \%$ yield $(56.8 \mathrm{mg})$. It was purified by flash chromatography (PE/EA 100:1) to afford a white solid. 1H NMR ( 400 MHz , Chloroform-d) $\delta 7.65$ (dd, J = 8.2, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.22(\mathrm{~m}, 14 \mathrm{H}) .13 \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 142.67,139.10,138.10,136.70,134.32$, $134.21,129.25,129.18,129.05,128.57,128.51,127.72,127.54,127.11,126.61,125.71$. GC-MS: 312.

## 2,4-Di-(4-(4-diphenylaminophenyl)-phenyl)-thiophene (5)



Prepared according to the general procedure as described above in $84 \%$ yield ( 121.5 mg ). It was purified by flash chromatography (PE/EA 70:1) to afford a white solid. 1H NMR (400 MHz, Chloroform-d) $\delta 7.70(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}$, $4 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=8.7,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 13 \mathrm{H})$, 7.06-7.00 (m, 5H). 13C NMR (101 MHz, Chloroform-d) $\delta$ 147.75, 147.72, 147.38, 142.89, 139.58, 134.56, $134.40,132.89,129.40,129.34,127.67,127.63,127.39,127.11,127.07,126.75,126.27,124.61,124.56,124.39$, 124.17, 123.97, 123.90, 123.13, 123.08, 122.91, 122.16, 119.56. HRMS (ESI+) calcd for C52H38N2S [M + H ${ }^{+}$ 723.2828. Found 723.2833 . Melt point: $149.1-150.3^{\circ} \mathrm{C}$

## X-Ray Crystal Structures



The low temperature $\left(173 \pm 2^{\circ} \mathrm{K}\right)$ single-crystal X-ray experiments were performed on a SuperNova diffractometer with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation. Unit cell was obtained and refined by 5388 reflections with $4.5^{\circ}<\theta<74.7^{\circ}$. No decay was observed in data collection. Raw intensities were corrected for Lorentz and polarization effects, and for absorption by empirical method. Direct phase determination yielded the positions of all non-hydrogen atoms. All non-hydrogen atoms were subjected to anisotropic refinement. All hydrogen atoms were generated geometrically with C-H bonds of $0.93 \AA$ according to criteria described in the SHELXTL manual (Bruker, 1997). They were included in the refinement with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\text {eq }}$ of their parent atoms. There are two molecules, $\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~S}$, in an independent area. It was found that the thiophene groups were diorientational disordered which were represented by $S(1), C(4), S\left(1^{\prime}\right), C\left(4^{\prime}\right)$ and $S(2), C(20), S\left(2^{\prime}\right), C\left(20^{\prime}\right)$, respectively. Their occupancies were fixed in the final refinement to be 0.65 for $\mathrm{S}(1), \mathrm{C}(4), 0.35$ for $\mathrm{S}\left(1^{\prime}\right), \mathrm{C}\left(4^{\prime}\right)$ and 0.75 for $\mathrm{S}(2), \mathrm{C}(20), 0.25$ for $S\left(2^{\prime}\right), C\left(20^{\prime}\right)$, respectively, according to the result of refinement for their occupancies before. The final full-matric least-square refinement on $F^{2}$ converged with $R 1=0.0912$ and $w R 2=0.1818$ for 3927 observed reflections [I $\geq$ $2 \sigma(\mathrm{I})]$. The final difference electron density map shows no features. Details of crystal parameters, data collection and structure refinement are given in Table 1.

Data collection was controlled by CrysAlisPro, Agilent Technologies, Version 1.171.36.32 (Oxford, 2013). Computations were performed using the SHELXTL NT ver. 5.10 program package (Bruker, 1997) on an IBM PC 586 computer. Analytic expressions of atomic scattering factors were employed, and anomalous dispersion corrections were incorporated (International Tables for X-ray Crystallography, 1989). Crystal drawings were produced with XP (Bruker, 1997).

## References

Bruker. (1997) SHELXTL. Structure Determination Programs, Version 5.10, Bruker AXS Inc., 6300 Enterprise Lane, Madison, WI 53719-1173, USA.

International Tables for X-ray Crystallography: (1989) Vol. C (Kluwer Academic Publishers, Dordrecht) Tables 4.2.6.8 and 6.1.1.4.

Oxford. (2013) CrysAlisPro, Agilent Technologies, Version 1.171.36.32, Oxford Diffraction Ltd., 68 Milton Park, Abingdon, Oxfordshire, OX14 4RX, UK.

Table 1. Details of Data Collection, Processing and Structure Refinement


Table 2. Atomic coordinates and equivalent isotropic temperature factors* $\left(\AA^{2}\right)$

| Atoms | $x$ | $y$ | $z$ | $U_{e q}$. | Occupancy |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S(1) | 0.7270 (3) | 0.64340 (10) | 0.73180(19) | 0.0330(5) | 0.65 |
| C(4) | $0.5743(15)$ | $0.6639(7)$ | $0.6494(11)$ | 0.0291 (10) | 0.65 |
| S(1') | $0.5935(6)$ | $0.6795(2)$ | $0.6589(5)$ | $0.0291(10)$ | 0.35 |
| C(4') | 0.718(3) | 0.6256(10) | $0.7236(17)$ | $0.0330(5)$ | 0.35 |
| S(2) | 0.7596(2) | $0.75397(9)$ | 0.20980(18) | $0.0350(5)$ | 0.75 |
| C(20) | $0.6052(17)$ | $0.7335(8)$ | $0.1294(14)$ | $0.0346(16)$ | 0.75 |
| $\mathrm{S}\left(2^{\prime}\right)$ | $0.6254(13)$ | $0.7192(5)$ | $0.1400(10)$ | $0.0346(16)$ | 0.25 |
| $\mathrm{C}\left(20{ }^{\prime}\right)$ | 0.745(3) | $0.7708(15)$ | 0.213(3) | 0.0350(5) | 0.25 |
| F(1) | 0.7831(5) | $0.31715(18)$ | 0.7942(3) | 0.0646(11) | 1.00 |
| $F(2)$ | 1.0354(4) | 0.3481(2) | 0.9149(2) | 0.0581(10) | 1.00 |
| F(3) | 1.1185(4) | 0.4821 (2) | 0.9408(3) | $0.0617(11)$ | 1.00 |
| F(4) | $0.0636(4)$ | $0.50689(17)$ | 0.4175(2) | 0.0482(8) | 1.00 |
| $F(5)$ | -0.0245(3) | 0.62966 (19) | 0.3390(2) | 0.0496(8) | 1.00 |
| F(6) | 0.1411(4) | 0.74394(19) | 0.3903(3) | 0.0577(10) | 1.00 |
| $F(7)$ | $1.1236(4)$ | $0.9111(2)$ | 0.4444(2) | 0.0582(10) | 1.00 |
| F(8) | 1.0443(4) | 1.04533(19) | $0.4186(2)$ | $0.0529(9)$ | 1.00 |
| F(9) | 0.7964(4) | 1.07781(17) | 0.2946 (3) | 0.0593(10) | 1.00 |
| $F(10)$ | 0.1119(4) | 0.6502(2) | -0.0750(3) | $0.0602(10)$ | 1.00 |
| $F(11)$ | -0.0179(4) | $0.7649(2)$ | -0.1592(2) | $0.0583(10)$ | 1.00 |
| $F(12)$ | 0.1072(4) | 0.88966(19) | -0.1128(3) | $0.0553(9)$ | 1.00 |
| C(1) | 0.6914(5) | $0.5578(2)$ | 0.7131(3) | $0.0276(9)$ | 1.00 |
| C(2) | 0.5662(5) | 0.5483(2) | 0.6451(3) | $0.0265(9)$ | 1.00 |
| C(3) | 0.4987(5) | $0.6105(2)$ | 0.6077(3) | 0.0268(9) | 1.00 |
| C(5) | 0.7812(5) | 0.5032(3) | 0.7672(3) | $0.0276(9)$ | 1.00 |
| C(6) | 0.7382(6) | 0.4344(3) | 0.7570(3) | 0.0348(11) | 1.00 |
| C(7) | 0.8252(7) | 0.3834(3) | 0.8068(4) | 0.0427(13) | 1.00 |
| C(8) | 0.9538(6) | 0.3985(3) | 0.8685(4) | 0.0391(12) | 1.00 |
| C(9) | 0.9939(6) | 0.4673(3) | 0.8800(4) | 0.0414(13) | 1.00 |
| $\mathrm{C}(10)$ | $0.9106(6)$ | 0.5185(3) | 0.8302(4) | $0.0397(12)$ | 1.00 |
| C(11) | $0.3629(5)$ | 0.6154(2) | 0.5365(3) | 0.0258(9) | 1.00 |
| C(12) | $0.2756(5)$ | 0.5573(2) | 0.5093(3) | 0.0291 (10) | 1.00 |
| C(13) | 0.1479 (5) | $0.5629(3)$ | 0.4438 (3) | $0.0334(11)$ | 1.00 |
| C(14) | $0.1013(6)$ | 0.6262(3) | $0.4036(3)$ | $0.0348(11)$ | 1.00 |
| C(15) | $0.1859(6)$ | 0.6827(3) | 0.4298(4) | 0.0380(12) | 1.00 |
| C(16) | 0.3151(5) | 0.6791(3) | 0.4952(4) | $0.0338(11)$ | 1.00 |
| C(17) | $0.7018(5)$ | 0.8380(2) | 0.2117(3) | 0.0290 (10) | 1.00 |
| C(18) | $0.5666(5)$ | 0.8463(2) | 0.1520(3) | 0.0274(9) | 1.00 |
| C(19) | 0.5111(5) | $0.7848(2)$ | $0.1056(3)$ | $0.0313(10)$ | 1.00 |
| $\mathrm{C}(21)$ | $0.7909(5)$ | 0.8921(2) | 0.2675(3) | 0.0272(9) | 1.00 |

(Table 2. continued)

| Atoms | $x$ | $y$ | $z$ | $U_{\text {eq. }}$ | Occupancy |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}(22)$ | $0.9183(5)$ | $0.8753(3)$ | $0.3331(3)$ | $0.0342(11)$ | 1.00 |
| $\mathrm{C}(23)$ | $1.0012(6)$ | $0.9273(3)$ | $0.3824(3)$ | $0.0391(12)$ | 1.00 |
| $\mathrm{C}(24)$ | $0.9626(6)$ | $0.9955(3)$ | $0.3701(3)$ | $0.0382(12)$ | 1.00 |
| $\mathrm{C}(25)$ | $0.8363(6)$ | $1.0115(3)$ | $0.3062(4)$ | $0.0405(12)$ | 1.00 |
| $\mathrm{C}(26)$ | $0.7508(6)$ | $0.9622(3)$ | $0.2554(3)$ | $0.0344(11)$ | 1.00 |
| $\mathrm{C}(27)$ | $0.3717(5)$ | $0.7792(3)$ | $0.0364(3)$ | $0.0308(10)$ | 1.00 |
| $\mathrm{C}(28)$ | $0.3055(6)$ | $0.7150(3)$ | $0.0126(4)$ | $0.0392(12)$ | 1.00 |
| $\mathrm{C}(29)$ | $0.1754(6)$ | $0.7113(3)$ | $-0.0516(4)$ | $0.0424(13)$ | 1.00 |
| $\mathrm{C}(30)$ | $0.1086(6)$ | $0.7692(3)$ | $-0.0954(4)$ | $0.0395(12)$ | 1.00 |
| $\mathrm{C}(31)$ | $0.1730(6)$ | $0.8329(3)$ | $-0.0709(4)$ | $0.0359(11)$ | 1.00 |
| $\mathrm{C}(32)$ | $0.3024(5)$ | $0.8380(3)$ | $-0.0065(3)$ | $0.0339(11)$ | 1.00 |

* $U_{\text {eq. }}$ defined as one third of the trace of the orthogonalized $\mathbf{U}$ tensor.

Table 3. Bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$

| Molecule I |  | Molecule II |  |
| :--- | :--- | :--- | :--- |
| $\mathrm{S}(1)-\mathrm{C}(1)$ | $1.700(5)$ | $\mathrm{S}(2)-\mathrm{C}(20)$ | $1.705(10)$ |
| $\mathrm{S}(1)-\mathrm{C}(4)$ | $1.710(9)$ | $\mathrm{S}(2)-\mathrm{C}(17)$ | $1.718(4)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)$ | $1.326(14)$ | $\mathrm{C}(20)-\mathrm{C}(19)$ | $1.323(16)$ |
| $\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}(3)$ | $1.688(5)$ | $\mathrm{S}\left(2^{\prime}\right)-\mathrm{C}(19)$ | $1.666(7)$ |
| $\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$ | $1.694(10)$ | $\mathrm{S}\left(2^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$ | $1.699(10)$ |
| $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}(1)$ | $1.34(2)$ | $\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}(17)$ | $1.36(3)$ |
| $\mathrm{F}(1)-\mathrm{C}(7)$ | $1.343(7)$ | $\mathrm{F}(7)-\mathrm{C}(23)$ | $1.338(6)$ |
| $\mathrm{F}(2)-\mathrm{C}(8)$ | $1.333(6)$ | $\mathrm{F}(8)-\mathrm{C}(24)$ | $1.338(6)$ |
| $\mathrm{F}(3)-\mathrm{C}(9)$ | $1.339(6)$ | $\mathrm{F}(9)-\mathrm{C}(25)$ | $1.337(6)$ |
| $\mathrm{F}(4)-\mathrm{C}(13)$ | $1.347(6)$ | $\mathrm{F}(10)-\mathrm{C}(29)$ | $1.336(6)$ |
| $\mathrm{F}(5)-\mathrm{C}(14)$ | $1.345(6)$ | $\mathrm{F}(11)-\mathrm{C}(30)$ | $1.345(6)$ |
| $\mathrm{F}(6)-\mathrm{C}(15)$ | $1.347(6)$ | $\mathrm{F}(12)-\mathrm{C}(31)$ | $1.342(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.380(6)$ | $\mathrm{C}(17)-\mathrm{C}(18)$ | $1.385(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(5)$ | $1.472(7)$ | $\mathrm{C}(17)-\mathrm{C}(21)$ | $1.473(7)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.415(6)$ | $\mathrm{C}(18)-\mathrm{C}(19)$ | $1.416(7)$ |
| $\mathrm{C}(3)-\mathrm{C}(11)$ | $1.465(6)$ | $\mathrm{C}(19)-\mathrm{C}(27)$ | $1.476(7)$ |
| $\mathrm{C}(5)-\mathrm{C}(10)$ | $1.389(7)$ | $\mathrm{C}(21)-\mathrm{C}(22)$ | $1.401(6)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.391(7)$ | $\mathrm{C}(21)-\mathrm{C}(26)$ | $1.410(7)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.384(7)$ | $\mathrm{C}(22)-\mathrm{C}(23)$ | $1.377(8)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.374(8)$ | $\mathrm{C}(23)-\mathrm{C}(24)$ | $1.370(8)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.383(8)$ | $\mathrm{C}(24)-\mathrm{C}(25)$ | $1.377(8)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.372(8)$ | $\mathrm{C}(25)-\mathrm{C}(26)$ | $1.361(7)$ |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | $1.397(7)$ | $\mathrm{C}(27)-\mathrm{C}(32)$ | $1.392(7)$ |
| $\mathrm{C}(11)-\mathrm{C}(16)$ | $1.404(7)$ | $\mathrm{C}(27)-\mathrm{C}(28)$ | $1.398(7)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | $1.369(7)$ | $\mathrm{C}(28)-\mathrm{C}(29)$ | $1.372(7)$ |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | $1.390(7)$ | $\mathrm{C}(29)-\mathrm{C}(30)$ | $1.374(9)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)$ | $1.357(8)$ | $\mathrm{C}(30)-\mathrm{C}(31)$ | $1.386(8)$ |
| $\mathrm{C}(15)-\mathrm{C}(16)$ | $1.376(7)$ | $\mathrm{C}(31)-\mathrm{C}(32)$ | $1.371(7)$ |
| $\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(4)$ |  | $90.4(5)$ | $\mathrm{C}(20)-\mathrm{S}(2)-\mathrm{C}(17)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{S}(1)$ | $115.5(9)$ | $\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{S}(2)$ |  |
| $\mathrm{C}(3)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$ | $89.8(9)$ | $\mathrm{C}(19)-\mathrm{S}\left(2^{\prime}\right)-\mathrm{C}\left(20^{\prime}\right)$ | $90.5(6)$ |
| $\mathrm{C}(1)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$ | $116.8(14)$ | $\mathrm{C}(17)-\mathrm{C}\left(20^{\prime}\right)-\mathrm{S}\left(2^{\prime}\right)$ | $115.2(10)$ |
| $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}(1)-\mathrm{C}(2)$ | $108.8(8)$ | $\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}(17)-\mathrm{C}(18)$ | $92.1(13)$ |
| $\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}(1)-\mathrm{C}(5)$ | $124.8(8)$ | $\mathrm{C}\left(20^{\prime}\right)-\mathrm{C}(17)-\mathrm{C}(21)$ | $113.6(19)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$ | $126.4(4)$ | $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(21)$ | $110.3(9)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$ | $110.7(3)$ | $\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{S}(2)$ | $122.7(9)$ |
| $\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{S}(1)$ | $122.8(4)$ | $\mathrm{C}(21)-\mathrm{C}(17)-\mathrm{S}(2)$ | $127.0(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $114.0(4)$ | $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ | $110.3(3)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ | $109.4(6)$ | $\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$ | $122.6(4)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$ | $125.1(6)$ | $\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(27)$ | $113.5(4)$ |
|  |  |  | $110.5(64.5(7)$ |

(Table 3. continued)

| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$ | $125.5(4)$ | $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(27)$ | $124.9(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}\left(1^{\prime}\right)$ | $110.5(4)$ | $\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{S}\left(2^{\prime}\right)$ | $110.5(5)$ |
| $\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{S}\left(1^{\prime}\right)$ | $124.0(4)$ | $\mathrm{C}(27)-\mathrm{C}(19)-\mathrm{S}\left(2^{\prime}\right)$ | $124.6(5)$ |
| $\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(6)$ | $117.7(5)$ | $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$ | $118.3(4)$ |
| $\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(1)$ | $121.5(5)$ | $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(17)$ | $121.1(4)$ |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(1)$ | $120.8(4)$ | $\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(17)$ | $120.6(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$ | $120.2(5)$ | $\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$ | $119.6(5)$ |
| $\mathrm{F}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | $118.9(5)$ | $\mathrm{F}(7)-\mathrm{C}(23)-\mathrm{C}(22)$ | $119.4(5)$ |
| $\mathrm{F}(1)-\mathrm{C}(7)-\mathrm{C}(6)$ | $119.0(5)$ | $\mathrm{F}(7)-\mathrm{C}(23)-\mathrm{C}(24)$ | $118.5(5)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$ | $122.1(5)$ | $\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ | $122.1(5)$ |
| $\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{C}(7)$ | $120.5(5)$ | $\mathrm{F}(8)-\mathrm{C}(24)-\mathrm{C}(25)$ | $120.6(5)$ |
| $\mathrm{F}(2)-\mathrm{C}(8)-\mathrm{C}(9)$ | $122.1(5)$ | $\mathrm{F}(8)-\mathrm{C}(24)-\mathrm{C}(23)$ | $121.3(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $117.4(5)$ | $\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$ | $118.0(5)$ |
| $\mathrm{F}(3)-\mathrm{C}(9)-\mathrm{C}(10)$ | $121.0(6)$ | $\mathrm{F}(9)-\mathrm{C}(25)-\mathrm{C}(26)$ | $119.15)$ |
| $\mathrm{F}(3)-\mathrm{C}(9)-\mathrm{C}(8)$ | $117.5(5)$ | $\mathrm{F}(9)-\mathrm{C}(25)-\mathrm{C}(24)$ | $118.5(5)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | $121.5(5)$ | $\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$ | $122.3(5)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$ | $121.1(5)$ | $\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$ | $119.7(5)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$ | $118.1(4)$ | $\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(28)$ | $118.3(5)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(3)$ | $121.0(4)$ | $\mathrm{C}(32)-\mathrm{C}(27)-\mathrm{C}(19)$ | $120.6(4)$ |
| $\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(3)$ | $120.9(4)$ | $\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(19)$ | $121.1(5)$ |
| $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$ | $120.4(4)$ | $\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$ | $119.9(5)$ |
| $\mathrm{F}(4)-\mathrm{C}(13)-\mathrm{C}(12)$ | $120.5(5)$ | $\mathrm{F}(10)-\mathrm{C}(29)-\mathrm{C}(30)$ | $117.9(5)$ |
| $\mathrm{F}(4)-\mathrm{C}(13)-\mathrm{C}(14)$ | $118.5(4)$ | $\mathrm{F}(10)-\mathrm{C}(29)-\mathrm{C}(28)$ | $120.2(6)$ |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $121.0(5)$ | $\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$ | $121.8(5)$ |
| $\mathrm{F}(5)-\mathrm{C}(14)-\mathrm{C}(15)$ | $121.9(5)$ | $\mathrm{F}(11)-\mathrm{C}(30)-\mathrm{C}(29)$ | $121.3(5)$ |
| $\mathrm{F}(5)-\mathrm{C}(14)-\mathrm{C}(13)$ | $119.4(5)$ | $\mathrm{F}(11)-\mathrm{C}(30)-\mathrm{C}(31)$ | $120.3(5)$ |
| $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$ | $118.7(5)$ | $\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$ | $118.3(5)$ |
| $\mathrm{F}(6)-\mathrm{C}(15)-\mathrm{C}(14)$ | $118.6(5)$ | $\mathrm{F}(12)-\mathrm{C}(31)-\mathrm{C}(32)$ | $120.6(5)$ |
| $\mathrm{F}(6)-\mathrm{C}(15)-\mathrm{C}(16)$ | $119.5(5)$ | $\mathrm{F}(12)-\mathrm{C}(31)-\mathrm{C}(30)$ | $118.5(5)$ |
| $\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$ | $121.9(5)$ | $\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$ | $120.9(5)$ |
| $\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$ | $119.8(5)$ | $\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(27)$ | $120.7(5)$ |
|  |  |  |  |

Table 4. Anisotropic thermal parameters* $\left(\AA^{2}\right)$

| Atoms | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{23}$ | $U_{13}$ | $U_{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S(1) | 0.0281(9) | 0.0284(13) | 0.0396(10) | -0.0055(10) | 0.0019(7) | -0.0061(10) |
| C(4) | 0.028(2) | 0.016(3) | 0.041(2) | -0.0034(19) | 0.0035(13) | -0.0087(18) |
| S(1) | 0.028(2) | 0.016(3) | 0.041(2) | -0.0034(19) | 0.0035(13) | -0.0087(18) |
| C(4') | 0.0281(9) | 0.0284(13) | 0.0396(10) | -0.0055(10) | 0.0019(7) | -0.0061(10) |
| S(2) | 0.0351(9) | $0.0245(11)$ | 0.0412(8) | 0.0052(9) | 0.0001(7) | 0.0056(8) |
| C(20) | 0.041(3) | 0.014(4) | 0.045(4) | 0.007(3) | 0.001(2) | 0.009(3) |
| S(2') | 0.041(3) | 0.014(4) | 0.045(4) | 0.007(3) | 0.001(2) | 0.009(3) |
| C(20') | 0.0351(9) | 0.0245(11) | 0.0412(8) | 0.0052(9) | 0.0001(7) | 0.0056(8) |
| F(1) | 0.079(3) | 0.0329(19) | 0.070(3) | 0.0079(17) | -0.007(2) | 0.0078(18) |
| F(2) | 0.061(2) | 0.055(2) | 0.051(2) | 0.0104(17) | -0.0024(17) | 0.0234(18) |
| F(3) | 0.0447(19) | 0.073(3) | 0.053(2) | 0.0014(18) | -0.0185(17) | 0.0045(18) |
| F(4) | 0.0459(18) | 0.0419(19) | 0.0458(18) | -0.0084(14) | -0.0119(15) | -0.0117(15) |
| F(5) | 0.0407(17) | 0.064(2) | 0.0379(17) | 0.0038(15) | -0.0026(14) | 0.0117(16) |
| F(6) | 0.061(2) | 0.043(2) | 0.064(2) | 0.0193(17) | 0.0040(18) | 0.0176(17) |
| F(7) | 0.0408(18) | 0.078(3) | 0.0440(19) | -0.0050(18) | -0.0147(15) | 0.0044(18) |
| F (8) | 0.052(2) | 0.059(2) | 0.0448(19) | -0.0165(16) | 0.0054(15) | -0.0139(17) |
| F(9) | 0.071(2) | 0.0310(18) | 0.065(2) | -0.0070(16) | -0.0066(19) | -0.0006(17) |
| F(10) | 0.059(2) | 0.050(2) | 0.070(2) | -0.0247(18) | 0.0121(19) | -0.0220(18) |
| F(11) | $0.0403(17)$ | 0.080(3) | 0.049(2) | -0.0195(18) | -0.0009(15) | -0.0104(18) |
| F(12) | 0.0460(18) | 0.050(2) | 0.058(2) | 0.0009(17) | -0.0124(16) | 0.0099(16) |
| C (1) | 0.029(2) | 0.025(2) | 0.029(2) | -0.0002(18) | 0.0074(18) | $0.0014(19)$ |
| C(2) | 0.027(2) | 0.022(2) | 0.028(2) | -0.0013(17) | 0.0023(18) | 0.0016(18) |
| C(3) | 0.026(2) | 0.024(2) | 0.032(2) | -0.0013(18) | 0.0100(18) | -0.0001(18) |
| C(5) | 0.023(2) | 0.030(2) | 0.028(2) | -0.0060(18) | 0.0015(17) | -0.0013(18) |
| C(6) | 0.035(3) | 0.032(3) | 0.034(3) | 0.000(2) | -0.001(2) | 0.006(2) |
| C(7) | 0.054(3) | 0.032(3) | 0.041(3) | 0.003(2) | 0.010(3) | 0.009(3) |
| C(8) | 0.040(3) | 0.040(3) | 0.035(3) | 0.006(2) | 0.004(2) | 0.015(2) |
| C(9) | 0.031(3) | 0.056(4) | 0.032(3) | -0.002(2) | -0.005(2) | 0.005(2) |
| C(10) | 0.034(3) | 0.043(3) | 0.038(3) | -0.007(2) | 0.001(2) | 0.001(2) |
| C(11) | 0.027(2) | 0.024(2) | 0.026(2) | -0.0012(17) | 0.0061(17) | -0.0009(18) |
| C(12) | 0.029(2) | 0.026(2) | 0.030(2) | 0.0026(18) | 0.0028(19) | 0.0010(19) |
| C(13) | 0.035(3) | 0.031(3) | 0.034(3) | -0.004(2) | 0.007(2) | -0.004(2) |
| C(14) | 0.035(2) | 0.042(3) | 0.026(2) | 0.005(2) | 0.0024(19) | 0.008(2) |
| C(15) | 0.043(3) | 0.031(3) | 0.039(3) | 0.009(2) | 0.008(2) | 0.014(2) |
| $\mathrm{C}(16)$ | 0.035(2) | 0.026(2) | 0.041(3) | -0.002(2) | 0.008(2) | -0.001(2) |
| C(17) | 0.033(2) | 0.022(2) | 0.034(2) | 0.0035(18) | 0.010(2) | 0.0006(19) |
| C(18) | 0.027(2) | 0.023(2) | 0.032(2) | 0.0032(18) | 0.0050(18) | 0.0003(18) |
| $\mathrm{C}(19)$ | 0.035(2) | 0.029(3) | 0.031(2) | -0.0009(19) | 0.011(2) | -0.004(2) |
| C (21) | 0.031(2) | 0.025(2) | 0.026(2) | -0.0005(18) | 0.0062(18) | -0.0021(19) |

(Table 4. continued)

| Atoms | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{23}$ | $U_{13}$ | $U_{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| $\mathrm{C}(22)$ | $0.030(2)$ | $0.043(3)$ | $0.029(2)$ | $0.003(2)$ | $0.0039(19)$ | $0.007(2)$ |
| $\mathrm{C}(23)$ | $0.034(3)$ | $0.055(4)$ | $0.025(2)$ | $-0.003(2)$ | $0.001(2)$ | $0.002(2)$ |
| $\mathrm{C}(24)$ | $0.045(3)$ | $0.039(3)$ | $0.030(2)$ | $-0.012(2)$ | $0.008(2)$ | $-0.014(2)$ |
| $\mathrm{C}(25)$ | $0.053(3)$ | $0.029(3)$ | $0.040(3)$ | $-0.003(2)$ | $0.011(2)$ | $-0.005(2)$ |
| $\mathrm{C}(26)$ | $0.036(3)$ | $0.032(3)$ | $0.032(2)$ | $-0.002(2)$ | $0.001(2)$ | $0.005(2)$ |
| $\mathrm{C}(27)$ | $0.030(2)$ | $0.031(3)$ | $0.032(2)$ | $-0.0035(19)$ | $0.0103(19)$ | $-0.004(2)$ |
| $\mathrm{C}(28)$ | $0.039(3)$ | $0.039(3)$ | $0.039(3)$ | $-0.006(2)$ | $0.008(2)$ | $0.002(2)$ |
| $\mathrm{C}(29)$ | $0.038(3)$ | $0.044(3)$ | $0.045(3)$ | $-0.019(2)$ | $0.010(2)$ | $-0.014(2)$ |
| $\mathrm{C}(30)$ | $0.035(3)$ | $0.048(3)$ | $0.035(3)$ | $-0.012(2)$ | $0.007(2)$ | $-0.007(2)$ |
| $\mathrm{C}(31)$ | $0.034(2)$ | $0.034(3)$ | $0.038(3)$ | $-0.001(2)$ | $0.005(2)$ | $0.003(2)$ |
| $\mathrm{C}(32)$ | $0.032(2)$ | $0.034(3)$ | $0.035(2)$ | $-0.004(2)$ | $0.005(2)$ | $-0.002(2)$ |

*The exponent takes the form: $-2 \pi^{2} \Sigma \Sigma U_{\mathrm{ij}} h_{\mathrm{i}} h_{\mathrm{j}} \mathbf{a}_{\mathrm{i}}{ }^{*} \mathbf{a}_{\mathrm{j}}{ }^{*}$

Table 5. Coordinates and isotropic temperature factors* $\left(\AA^{2}\right)$ for H atoms

| Atoms | $x$ | $y$ | $z$ | $U_{\text {eq. }}$ | Occupancy |
| :--- | :--- | :--- | :--- | :--- | :---: |
| H(4A) | 0.5463 | 0.7093 | 0.6348 | 0.035 | 0.65 |
| H(4B) | 0.8004 | 0.6423 | 0.7645 | 0.040 | 0.35 |
| H(20A) | 0.5884 | 0.6896 | 0.1041 | 0.042 | 0.75 |
| H(20B) | 0.8316 | 0.7547 | 0.2503 | 0.042 | 0.25 |
| H(2A) | 0.5296 | 0.5048 | 0.6255 | 0.032 | 1.00 |
| H(6A) | 0.6508 | 0.4225 | 0.7167 | 0.042 | 1.00 |
| H(10A) | 0.9413 | 0.5642 | 0.8388 | 0.048 | 1.00 |
| H(12A) | 0.3044 | 0.5146 | 0.5360 | 0.035 | 1.00 |
| H(16A) | 0.3707 | 0.7188 | 0.5121 | 0.041 | 1.00 |
| H(18A) | 0.5171 | 0.8883 | 0.1432 | 0.033 | 1.00 |
| H(22A) | 0.9468 | 0.8294 | 0.3434 | 0.041 | 1.00 |
| H(26A) | 0.6662 | 0.9748 | 0.2128 | 0.041 | 1.00 |
| H(28A) | 0.3495 | 0.6749 | 0.0402 | 0.047 | 1.00 |
| H(32A) | 0.3444 | 0.8812 | 0.0087 | 0.041 | 1.00 |

*The exponent takes the form: $-8 \pi^{2} U \sin ^{2} \theta / \lambda^{2}$


Molecule I
ORTEP drawing of $\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~S}$ with $50 \%$ probability ellipsoids, showing the atomic numbering scheme.


Molecule II
ORTEP drawing of $\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~S}$ with $50 \%$ probability ellipsoids, showing the atomic numbering scheme.


A view to show the diorientational disorder of thiophene group in molecule $\mathbf{I}$, solid bonds for an orientation and open bonds for another.


A view to show the diorientational disorder of thiophene group in molecule II, solid bonds for an orientation and open bonds for another.


A packing view along the $c$ direction

## References

(1) Y. Wang, C. Chen, J. Peng, M. Li, Angew. Chem. Int. Ed. 2013, 52, 5323.
(2) J. Sheng, X. Su, C. Cao, C. Chen, Org. Chem. Front. 2016, 3, 501.
(3) M. G. Suero, E. D. Bayle, B. S. L. Collins, M. J. Gaunt, J. Am. Chem. Soc. 2013, 135, 5332.
(4) Cahard, N. Bremeyer, M. J. Gaunt, Angew. Chem. Int. Ed. 2013, 52, 9284;
(5) J. Sheng, X. Su, C. Cao, C. Chen, Org. Chem. Front. 2016, 3, 501.
(6) J. M. Teng, Y. F. Wang, C. F. Chen, J. Mater. Chem. C. 2020, 8, 11340.

## 1H and 13C NMR Spectra

## 2,4-Diphenylthiophene (2a)

## $\mathrm{CDCl}_{3},{ }^{\mathbf{1}}{ }^{\mathbf{H N N M R}, 400 \mathrm{MHz}}$




$\mathrm{CDCl}_{3},{ }^{13} \mathbf{C N M R}, 101 \mathrm{MHz}$



## 2,4-Di-p-tolylthiophene (2b)

## $\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$




$\stackrel{\sim}{n}$
$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$


2,4-Di-m-tolylthiophene (2c)
$\mathrm{CDCl}_{3},{ }^{1} \mathrm{HNMR}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3},{ }^{13} \mathbf{C N M R}, 101 \mathrm{MHz}$


## 2，4－Di－o－tolylthiophene（2d）

## $\mathrm{CDCl}_{3},{ }^{\mathbf{1}}{ }^{\mathbf{H N M R}}, \mathbf{4 0 0} \mathbf{M H z}$





ウ̀
$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



## 2,4-Di-(3, 5-dimethylphenyl)-thiophene (2e)

## $\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$



$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-(4-(tert-butylpheny)-thiophene (2f)


## $\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$



$\circ$
$\cdots$
$\cdots$
$i$
$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2，4－Di－（2－methoxyphenyl）－thiophene（2g）


$\mathrm{CDCl}_{3},{ }^{1} \mathrm{HNMR}, 400 \mathrm{MHz}$





が
$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-(4-trifluoromethoxyphenyl)-thiophene (2h)

<br>近行

$\mathrm{CDCl}_{3},{ }^{\mathbf{1}} \mathbf{H N M R}, \mathbf{4 0 0} \mathbf{M H z}$




$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$

/

$\mathrm{CDCl}_{3},{ }^{19}$ FNMR, 565 MHz
$<_{-60.20}^{-59.97}$


## 2,4-Di-(2-fluorophenyl)-thiophene (2i)




## $\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$





##  

$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$


## CDCl $_{3},{ }^{19}$ FNMR, 565 MHz



2,4-Di-(3,4,5-trifluorophenyl)-thiophene (2j)

$\mathbf{C D C l}_{3},{ }^{\mathbf{1}} \mathbf{H N M R}^{\mathbf{H}} \mathbf{4 0 0} \mathbf{M H z}$



$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-(4-fluorophenyl)-thiophene (2k)

$\mathbf{C D C l}_{3},{ }^{\mathbf{1}}{ }^{\mathbf{H N N M R}, 400 \mathrm{MHz}}$



$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$


## CDCl $_{3},{ }^{19}$ FNMR, 565 MHz

$\stackrel{n}{\substack{\infty \\ \vdots \\=}}$


筧
 fl (ppm)

2,4-Di-(3-fluorophenyl)-thiophene (2I)

$\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$





$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$


## CDCl $_{3},{ }^{19}$ FNMR, 565 MHz



(a)

웅
 fl (ppm)

## 2，4－Di－（2－chlorophenyl）－thiophene（2m）

## त्र⿱⺈⿻コ一心

$\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$




$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-(3-chlorophenyl)-thiophene (2n)

onsinisinisin
$\mathrm{CDCl}_{3},{ }^{1} \mathrm{HNMR}, 400 \mathrm{MHz}$


㲘


$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-(4-bromophenyl)-thiophene (20)


$\mathbf{C D C l}_{3},{ }^{\mathbf{1}}{ }^{\mathbf{H N N M R}}, \mathbf{4 0 0} \mathbf{M H z}$


$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-(2-bromophenyl)-thiophene (2p)

$\mathrm{CDCl}_{3},{ }^{\mathbf{1}}{ }^{\mathbf{H N M R}}, \mathbf{4 0 0} \mathbf{M H z}$



## ヨo

$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$


2,4-Di-(3-trifluoromethyl)-thiophene (2q)

## $\mathrm{CDCl}_{3},{ }^{\mathbf{1}} \mathbf{H N M R}, 400 \mathrm{MHz}$






## $\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



## CDCl $_{3},{ }^{19}$ FNMR, 565 MHz



2,4-Di-(4-trifluoromethyl)-thiophene (2r)
$\mathrm{CDCl}_{3},{ }^{1} \mathrm{HNMR}, 400 \mathrm{MHz}$

$\qquad$ -



$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



[^0]

## 2,4-Di-(naphthalen-1-yl)-thiophene (2s)

## 



## $\mathbf{C D C l}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$

$$
\left.11\right|_{11} \mid
$$




##  

$\mathrm{CDCl}_{3},{ }^{13} \mathbf{C N M R}, 101 \mathrm{MHz}$


2,4-Di-(benzofuran-2-yl)-thiophene (2t)

## 

$\mathbf{C D C l}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$




$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | $\stackrel{1}{10}$ | 30 | 10 | 10 | 0 | -10 | -20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | fl (pp |  |  |  |  |  |  |  |  |  |  |  |  |

2,4-Diphenylselenophen (3a)



## $\mathrm{CDCl}_{3},{ }^{\mathbf{1}}{ }^{\mathbf{H N M R}}, \mathbf{4 0 0} \mathbf{M H z}$




坔
$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-p-tolylselenophen (3b)





2,4-Di-(4-(tert-butylphenyl)-selenophen (3c)

~
$\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$




$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$
a
-
1
1



2,4-Di-(2-methoxyphenyl)-selenophen (3d)

$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,4-Di-(4-trifluoromethylphenyl)-selenophen (3e)




$\mathrm{CDCl}_{3},{ }^{13} \mathrm{CNMR}, 101 \mathrm{MHz}$



2,3,5-triphenylthiophene (4)
$\mathrm{CDCl}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$




$\mathrm{CDCl}_{3},{ }^{13} \mathbf{C N M R}, 101 \mathrm{MHz}$


## 2,4-Di-(4-(4-diphenylaminophenyl)-phenyl)-thiophene (5)




## $\mathbf{C D C l}_{3},{ }^{1} \mathbf{H N M R}, 400 \mathrm{MHz}$



$\qquad$



$\mathrm{CDCl}_{3},{ }^{13} \mathbf{C N M R}, 101 \mathrm{MHz}$



[^0]:    

