Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Fabrication of a Novel Heteroepitaxial structure from MOF-on-MOF Architecture as a Photocatalyst for Highly Efficient Cr(VI) Reduction

Negin Khosroshahi, Moein Darabi Goudarzi, Vahid Safarifard*

Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran, E-mail: vsafarifard@iust.ac.ir

Figure S1. Calibration curve of Cr(VI)-diphenylcarbazide solution.

Figure S2. Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalyzed by Ce-on-Zr-MOF-808(1:1) in the absence of scavenger.

Figure S3. Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalyzed by Ce-on-Zr-MOF-808(1:1) in the absence of acid.

Figure S4. Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalyzed by Ce-on-Zr-MOF-808(1:1) in the absence of light.

Figure S5. Absorption spectra for photocatalytic reduction of Cr(VI) to Cr(III) catalyzed by Ce-on-Zr-MOF-808(1:1) in the absence of catalyst.

S.No.	Catalysts	Light source	рН	Reduction (%)	Time (min)	Ref.
1	NTU-9/NH ₂ -	UV	3	100	90	[1]
	MIL-125					
2	NH ₂ -UiO-66	Visible	2	97	80	[2]
3	MIL-125(Ti)	Xe-lamp	2	97	60	[3]
4	UiO- 66(Zr/Hf)	Visible	2	98	120	[4]
5	NNU-36	Visible	2.17	95.3	60	[5]
6	MoO ₃ @ZIF-8	Visible	_	96	40	[6]
7	PCN-222	Visible	1	100	25	[7]
8	g-C ₃ N ₄ /MIL- 53(Fe)	Visible	2	100	180	[8]
9	MIL-68(In)- NH ₂	Xe-lamp	2	97	180	[9]
10	MIL-101(Fe)	Visible	2	100	60	[10]
11	Ce-MOF-808	Visible	2	99.6	90	This work
12	Ce-on-Zr- MOF-808	Visible	2	100	45	This work

References

- 1. Dhivya, E., et al., *Synthesis of titanium based hetero MOF photocatalyst for reduction of Cr (VI) from wastewater.* Journal of Environmental Chemical Engineering, 2019. **7**(4): p. 103240.
- Shen, L., et al., Multifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr (vi). Dalton Transactions, 2013. 42(37): p. 13649-13657.
- 3. Wang, H., et al., *Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction.* Journal of hazardous materials, 2015. **286**: p. 187-194.
- Du, X.-D., et al., *Robust photocatalytic reduction of Cr (VI) on UiO-66-NH2 (Zr/Hf) metal-organic framework membrane under sunlight irradiation*. Chemical Engineering Journal, 2019. **356**: p. 393-399.
- Zhao, H., et al., Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr (VI) reduction and dye degradation. ACS Sustainable Chemistry & Engineering, 2017.
 5(5): p. 4449-4456.
- 6. Zhang, Y. and S.-J. Park, *Facile construction of MoO3@ ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI)*. Applied Catalysis B: Environmental, 2019. **240**: p. 92-101.
- 7. Sharma, N., et al., *Highly efficient visible-light-driven reduction of Cr (VI) from water by porphyrin-based metal–organic frameworks: effect of band gap engineering on the photocatalytic activity.* Catalysis Science & Technology, 2020. **10**(22): p. 7724-7733.
- Tang, H., et al., AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: a novel multiheterostructured photocatalyst with enhanced photocatalytic activity. Applied Surface Science, 2017. 391: p. 440-448.
- Liang, R., et al., NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr (VI). Applied Catalysis B: Environmental, 2015.
 162: p. 245-251.
- 10. Shi, L., et al., *An amine-functionalized iron (III) metal–organic framework as efficient visible-light photocatalyst for Cr (VI) reduction.* Advanced science, 2015. **2**(3): p. 1500006.