Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021

Supporting Information for

Oxidation of *o*-Dioxime by (Diacetoxyiodo)benzene: A Green and Mild Access to Furoxans

Qi Zhang^{*a,b*}, Cheng Zhao^{*a,b*}, Xun Zhang^{*a,b*}, Chunlin He^{**a,b,c,d,e*} and Siping Pang^{**a,c*}

^a School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China;

^b Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China;

^c State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;

^d Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China;

^e Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China;

E-mail: chunlinhe@bit.edu.cn; pangsp@bit.edu.cn.

Contents

I.	General information	S2
II.	Experimental procedure	S2
III.	X-Ray crystallographic data	S5
IV.	Characterization data for the products	S8
V.	Copies of ¹ H-NMR and ¹³ C-NMR spectra	S17
VI.	References	S49

I. General information

All reagents were purchased from commercial sources (Energy Chemical, Adamasbeta®, J&K Scientific, Sigma-Aldrich) and used without purification unless otherwise mentioned. The products were purified by column chromatography over silica gel (200-300 size). ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded at 25 °C on a Bruker 400 MHz, 100 MHz, and TMS was used as internal standard. High resolution mass spectra (HRMS) were recorded on Thermo Scientific LTQ Orbitrap XL and Thermo Scientific Q Exactive by using ESI method. Melting point were recorded on TA Discovery DSC 25. All the *o*-dioximes were prepared from 1,2-diones as previous report.^{1,2,4,5} All the 1,2-diones were commercially available or prepared from aryl bromide.³

Note of Caution:

Furoxan is an explosive substance and may explode under certain conditions. Appropriate safety precautions should be taken when preparing and handling.

II. Experimental procedure

General procedure for the synthesis of furoxans: In a Schlenk tube, a solution of 1,2-dioxime (0.30 mmol, 1.0 equiv), PIDA (0.36 mmol, 1.2 equiv) in anhydrous DCM (0.1 M) was stirred for 45 min at 25 °C. Then saturated aq NaHCO₃ solution is added and extracted with DCM (3×30 mL). Combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to give furoxans.

General procedure for the synthesis of aryl dioximes¹: To a dry round bottom flask containing a magnetic stir bar was added a 1,2-dione (2.0 mmol, 1.0 equiv), NH₂OH·HCl (20.0 mmol, 10.0 equiv), pyridine (10 mL) and EtOH (10 mL). The mixture was stirred at 90 °C for 48 h. After cooling down to room temperature 2 N aqueous HCl was add to the round bottom flask, and extracted with ethyl acetate. Then combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by a short silica gel column (petroleum ether/ethyl acetate = 2/1) to give dioxime.

$$\overset{O}{\underset{R}{\rightarrow}} \overset{O}{\underset{R}{\rightarrow}} + \underset{R}{\overset{NH_2OH \bullet HCI}{\longrightarrow}} \overset{KOH}{\underset{EtOH/H_2O, rt}{\longrightarrow}} \overset{HON}{\underset{R}{\rightarrow}} \overset{NOH}{\underset{R}{\rightarrow}}$$

General procedure for the synthesis of alkyl dioximes²: hydroxylamine hydrochloride (5.0 mmol, 2.5 equiv) is dissolved in water (2 mL), and potassium hydroxide (5.0 mmol, 2.5 equiv), dissolved in water (2 mL), is added at 0 °C. 1,2-Dione (2.0 mmol, 1.0 equiv) is added dropwise at 0 °C. Subsequently, 15 mL of ethanol are added and the reaction mixture is stirred for 48 h at room temperature. The precipitate is filtered, and the filtrate is extracted with ethyl acetate. The combined organic phases are dried over Na₂SO₄, filtered and the solvent is removed in vacuo. The residue was purified by a short silica gel column (petroleum ether/ethyl acetate = 2/1) to give dioxime.

General procedure for the synthesis of 1,2-diones³: A stirred mixture of ArBr (6.0 mmol, 3.0 equiv), vinylene carbonate (2.0 mmol, 1.0 equiv), $Pd(OAc)_2$ (10 mol %), PPh_3 (20 mol %), and Cs_2CO_3 (4.4 mmol, 2.2 equiv) in DMF (10.0 mL) was heated to 120 °C for 1 h under nitrogen atmosphere. After aqueous extractive workup and silica gel column chromatography purification process (petroleum ether/ethyl acetate = 20/1), 1,2-dione was obtained.

$$\underbrace{H_{2}O} \xrightarrow{\text{NaNO}_{2}, \text{AcOH}}_{\text{H}_{2}O} \underbrace{H_{2}O} \xrightarrow{\text{NaNO}_{2}, \text{AcOH}}_{\text{H}_{2}O} \underbrace{H_{2}OH \xrightarrow{\text{NH}_{2}OH \xrightarrow{\text{HCI}}}_{\text{NOH}}}_{\text{NOH}} \underbrace{H_{2}OH \xrightarrow{\text{NH}_{2}OH \xrightarrow{\text{HCI}}}_{\text{NOH}}}_{\text{NOH}}$$

Procedure for the synthesis of 1v (ethyl-2,3-bis(hydroxyimino)butanoate)⁴: To a solution of NaNO₂ (5.5 mmol, 1.1 equiv) in H₂O (30 mL) at 0 °C was added ethyl acetoacetate (5.0 mmol, 1.0 equiv). Then the AcOH was added dropwise to the reaction system. The reaction mixture was allowed to warm to room temperature and stirred overnight at room temperature. The reaction mixture was extracted with H₂O (2×50 mL), ethyl acetate (3×50 mL). The combined organic layers were dried over Na₂SO₄, filtered and evaporated under reduced pressure to give the crude product. Then add the product of the previous step (3.0 mmol, 1.0 equiv), NH₂OH·HCl (15.0 mmol, 5.0 equiv), pyridine (15 mL) and EtOH (15 mL) to a dry round bottom flask. The mixture was stirred at 90 °C for 18 h. After cooling down to room temperature 2 N aqueous HCl was add to the round bottom flask, and extracted with ethyl acetate. Then combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by a short silica gel column (petroleum ether/ethyl acetate = 2/1) to give dioxime.

Procedure for the synthesis of 1y (2-amino-N-hydroxy-2-(hydroxyimino)acetimidoyl cyanide)⁵: 4.0 mL (70.0 mmol) acetic acid was added to the solution of malononitrile (3.00 g, 45.4 mmol) and NaNO₂(3.7 g, 53.6 mmol) in 50 mL H₂O at -5 to 0 °C. The mixture was stirred at 20 °C for 4 hours. Then the solution of 3.15 g (45.4 mmol) NH₂OH·HCl in 15 mL H₂O was added at 25 °C. The reaction mixture was stirred for another 4 hours at 25 °C. The precipitate was filtered, washed with ice water and air-dried to obtain yellowish solid.

Procedure for the synthesis of 1z ethyl-3-amino-2,3-bis(hydroxyimino)propanoate: To a solution of NaOH (3.0 mmol, 1.0 equiv) and H_2O (10 mL) at 25 °C, ethyl cyanoglyoxylate-2-oxime (3.0 mmol, 1.0 equiv) was added. The mixture was then stirred for 30 min until substrate disappeared can obtain the quantative crude of product. Then the crude product of previous step (3.0 mmol, 1.0

equiv), NH₂OH·HCl (3.0 mmol, 1.0 equiv) and EtOH (15 mL) to a dry round bottom flask. The mixture was stirred at 80 °C for 4 h. After cooling down to room temperature 2 N aqueous HCl was add to the round bottom flask, and extracted with ethyl acetate. Then combined organic layers was dried over Na₂SO₄ and filtered, evacuated under vacuum. The residue was purified by a short silica gel column (petroleum ether/ethyl acetate = 2/1) to give dioxime (62% yield).

III. X-Ray crystallographic data

Crystal Structure of

3,4-bis(4-bromophenyl)-1,2,5-oxadiazole-2-oxide (2d)

(CCDC No. 2106116)

Empirical formula	$\mathrm{Br_2C_{14}N_2O_2}$
Temperature	170.0 K
Wavelength	0.71073 Å
	a = 7.9284(18) Å
	b = 8.2719(15) Å
TT '2 11 12 '	c = 12.334(2) Å
Unit cell dimensions	alpha = 85.421(7) deg.
	beta = 71.683(7) deg.
	gamma = 63.651(9) deg.
Volume	686.4(2) Å ³
Z	2
Calculated density	1.877 g/cm ³
Absorption coefficient	5.904 mm ⁻¹
F(000)	368.0
Crystal size	0.07 x 0.05 x 0.04 mm
Theta range for data collection	5.51 to 53.084 deg.

Crystal Structure of

4-amino-3-(ethoxycarbonyl)-1,2,5-oxadiazole 2-oxide (2z)

(CCDC No. 2106118)

Empirical formula	C ₅ H ₇ N ₃ O ₄
Temperature	170.0 K
Wavelength	0.71073 Å
Unit cell dimensions	a = 4.8238(6) Å

IV. Characterization data for the products

3,4-diphenyl-1,2,5-oxadiazole-2-oxide (2a) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (113.1 mg, 95%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 115-116 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.51 (m, 5H), 7.48-7.42 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 156.23, 130.98, 130.55, 129.02, 128.95, 128.69, 128.29, 126.67, 122.89, 114.28. HRMS (ESI) m/z calcd for C₁₄H₁₀N₂O₂Na⁺ (M+Na)⁺ 261.06345, found 261.06348.⁶

3,4-di-p-tolyl-1,2,5-oxadiazole-2-oxide (2b) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (122.5 mg, 92%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.40 (m, 4H), 7.25-7.23 (m, 4H), 2.41 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.25, 141.27, 140.86, 129.65, 129.60, 128.55, 128.14, 123.88, 119.97, 114.36, 21.48, 21.46. HRMS (ESI) m/z calcd for C₁₆H₁₄N₂O₂Na⁺ (M+Na)⁺ 289.09475, found 289.09488.⁶

3,4-diphenyl-1,2,5-oxadiazole-2-oxide (2c) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (144.5 mg, 97%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 110-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.44 (m, 4H), 6.97-6.93 (m, 4H), 3.85 (s, 3H), 3.84 (s, 3H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \,\delta \,161.58, 161.02, 155.91, 130.22, 129.73, 118.97, 114.87, 114.42, 114.20, 55.36.$ HRMS (ESI) m/z calcd for C₁₆H₁₄N₂O₄Na⁺ (M+Na)⁺ 321.08458, found 321.08481.⁶

3,4-bis(4-bromophenyl)-1,2,5-oxadiazole-2-oxide (2d) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (168.3mg, 85%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.58 (m, 4H), 7.48-7.42 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 155.06, 132.52, 132.45, 130.00, 129.71, 125.92, 125.28, 121.50, 113.30. HRMS (ESI) m/z calcd for C₁₄H₉Br₂N₂O₂⁺ (M+H)⁺ 396.90048, found 396.90030.⁷

3,4-bis(4-chlorophenyl)-1,2,5-oxadiazole-2-oxide (2e) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (132.0 mg, 86%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 141-142 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.42 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 155.02, 137.56, 136.92, 129.85, 129.54, 129.47, 124.84, 121.03, 113.27. HRMS (ESI) m/z calcd for C₁₄H₁₀Cl₂N₂O₂⁺ (M+H)⁺ 307.00356, found 307.00357.⁸

3,4-bis(3-methoxyphenyl)-1,2,5-oxadiazole-2-oxide (2f) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (134.1 mg, 90%) (petroleum ether/ethyl acetate = 10/1). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.22 (m, 2H), 7.02-6.94 (m, 5H), 6.92-6.89 (m, 1H), 3.68 (s, 3H), 3.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.80, 159.68, 156.06, 130.04, 129.93, 127.71, 123.89, 121.01,

120.64, 117.00, 116.66, 114.15, 113.62, 113.31, 55.30, 55.26. **HRMS** (ESI) m/z calcd for $C_{16}H_{14}N_2O_4Na^+$ (M+Na)⁺ 321.08458, found 321.08459.

3,4-di(naphthalen-2-yl)-1,2,5-oxadiazole-2-oxide (2g) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (131.8 mg, 78%) (petroleum ether/ethyl acetate = 10/1). Yellow solid; mp: 192-193 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 8.12 (s, 1H), 7.90-7.79 (m, 6H), 7.60-7.52 (m, 5H), 7.6 (dd, *J* = 8.8, 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.37, 134.17, 133.78, 132.84, 129.31, 128.91, 128.70, 128.68, 128.63, 128.60, 127.89, 127.86, 127.84, 127.80, 127.03, 126.98, 124.78, 124.62, 124.02, 120.12, 114.50. HRMS (ESI) m/z calcd for C₂₂H₁₄N₂O₂Na⁺ (M+Na)⁺ 361.09475, found 361.09451.

3,4-di(furan-2-yl)-1,2,5-oxadiazole-2-oxide (2h) This compound was prepared according to the general procedure for the synthesis offuroxans. Purified on silica gel chromatography to give the product (63.2 mg, 58%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 110-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 1.6 Hz, 1H), 7.65 (d, *J* = 1.2 Hz, 1H), 7.37 (d, *J* = 3.6 Hz, 1H), 7.32 (d, *J* = 3.2 Hz, 1H), 6.67 (dd, *J* = 3.2, 1.6 Hz, 1H), 6.62 (dd, *J* = 3.6, 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 146.33, 145.36, 144.50, 140.40, 137.79, 115.33, 114.10, 112.30, 111.85, 108.13. HRMS (ESI) m/z calcd for C₁₀H₇N₂O₄⁺ (M+H)⁺ 219.04003, found 219.04016.⁹

acenaphtho[1,2-c][1,2,5]oxadiazole-7-oxide (2i) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the

product (80.9 mg, 77%) (petroleum ether/ethyl acetate = 10/1). Yellow solid; mp: 195 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 6.8 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.75 (dd, J = 8.4, 7.2 Hz, 1H), 7.69 (dd, J = 8.4, 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 161.27, 138.85, 131.03, 129.71, 128.87, 128.56, 128.51, 123.61, 123.54, 122.92, 120.50, 113.55. HRMS (ESI) m/z calcd for C₁₂H₉N₂O₂⁺ (M+H)⁺ 213.06585, found 213.06596.

[1,2,5]oxadiazolo[3,4-f][1,10]phenanthroline-1-oxide (2j) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (89.3 mg, 75%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 250 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 9.21 (dd, *J* = 4.4, 1.6 Hz, 1H), 9.13 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.88 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.79 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.71 (ddd, *J* = 10.0, 8.0, 4.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.71, 152.16, 148.87, 148.30, 147.04, 131.90, 130.97, 124.83, 124.73, 119.18, 116.27, 107.49. HRMS (ESI) m/z calcd for C₁₂H₇N₄O₂⁺ (M+H)⁺ 239.05635, found 239.05656.¹⁰

[1,2,5]oxadiazolo[3,4-b]quinoxaline-1-oxide (2k) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (80.8 mg, 86%) (petroleum ether/ethyl acetate = 10/1). Red solid; mp: 161-162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.85 (m, 2H), 7.74-7.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.43, 134.88, 130.39.¹¹

4H,8H-bis([1,2,5]oxadiazolo)[3,4-b:3',4'-e]pyrazine (2l) This compound was prepared according to the general procedure for the synthesis of furoxans (MeCN as solvent). Purified on silica gel

chromatography to give the product (50.6 mg, 61%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 296 °C (dec.); ¹H NMR (400 MHz, DMSO) δ 11.85 (s, 2H). ¹³C NMR (100 MHz, DMSO) δ 146.91. HRMS (ESI) m/z calcd for C₄H₃N₆O₂⁺ (M+Na)⁺ 167.03120, found 167.03166.¹²

1,2,5-oxadiazole-2-oxide (2m) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (37.0 mg, 86%) (petroleum ether/ethyl acetate = 10/1). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 6.98 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.28, 103.17.¹³

3,4-dimethyl-1,2,5-oxadiazole-2-oxide (2n) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (44.5mg, 78%) (petroleum ether/ethyl acetate = 10/1). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H), 2.15 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.61, 113.09, 11.13, 7.58. HRMS (ESI) m/z calcd for C₄H₇N₂O₂⁺ (M+H)⁺ 115.05020, found 115.05054.⁶

3,4-diethyl-1,2,5-oxadiazole-2-oxide (20) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (61.8 mg, 87%) (petroleum ether/ethyl acetate = 10/1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 2.67 (q, J = 7.6 Hz, 2H), 2.53 (q, J = 7.6 Hz, 2H), 1.32 (t, J = 7.6 Hz, 3H), 1.20 (t, J = 7.6 Hz, 3H), 1.3C NMR (100 MHz, CDCl₃) δ 158.69, 116.73, 19.23, 15.91, 10.91, 9.73. HRMS (ESI) m/z calcd for C₆H₁₀N₂O₂Na⁺ (M+Na)⁺ 165.06345, found 165.06358.⁶

4,5,6,7-tetrahydrobenzo[c][1,2,5]**oxadiazole-1-oxide** (2p) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (58.2 mg, 83%) (petroleum ether/ethyl acetate = 10/1). Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.78 (t, *J* = 6.4 Hz, 2H), 2.58 (t, *J* = 6.4 Hz, 2H), 1.88-1.79 (m,

4H). ¹³C NMR (100 MHz, CDCl₃) δ 156.04, 112.92, 22.05, 21.21, 20.99, 19.36. HRMS (ESI) m/z calcd for C₆H₉N₂O₂⁺ (M+H)⁺ 141.06585, found 141.06590.¹⁰

4-methyl-1,2,5-oxadiazole-2-oxide (2q) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (34.0 mg, 68%) (petroleum ether/ethyl acetate = 10/1). Yellow oil; Major product: ¹H NMR (400 MHz, CDCl₃) δ 6.89 (s, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.86, 104.71, 11.26. Minor product: ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.92, 112.21, 7.93.

major product

minor product

4-butyl-3-methyl-1,2,5-oxadiazole-2-oxide (2r) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (65.5 mg, 84%) (petroleum ether/ethyl acetate = 10/1). Yellow oil; Major product: ¹H NMR (400 MHz, CDCl₃) δ 2.62 (d, *J* = 7.2 Hz, 2H), 2.12-2.11 (m, 3H), 1.70-1.62 (m, 2H), 1.45-1.36 (m, 2H), 0.96-0.89 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.12, 112.70, 28.47, 25.24, 22.16, 13.49, 7.59. Minor product: ¹H NMR (400 MHz, CDCl₃) δ 2.49 (d, *J* = 7.2 Hz, 2H), 2.31-2.30 (m, 3H), 1.60-1.53 (m, 2H), 1.34-1.29 (m, 2H), 0.96-0.89 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 2.49 (d, *J* = 7.2 Hz, 2H), 2.31-2.30 (m, 3H), 1.62-1.53 (m, 2H), 1.34-1.29 (m, 2H), 0.96-0.89 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.31, 116.21, 27.40, 22.03, 21.93, 13.49, 11.01. HRMS (ESI) m/z calcd for C₇H₁₃N₂O₂⁺ (M+H)⁺ 157.09715, found 157.09726.

6-methyl-5,6-dihydro-4H-cyclopenta[c][1,2,5]oxadiazole-1-oxide (2s) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (59.5 mg, 85%) (petroleum ether/ethyl acetate = 10/1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 3.26-3.14 (m, 2H), 2.88-2.62 (m, 6H), 2.17-2.06 (m,

2H), 1.33 (d, J = 6.8 Hz, 3H), 1.28 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.21, 166.37, 119.91, 117.02, 37.61, 37.44, 31.71, 29.57, 22.41, 20.23, 17.18, 15.57. HRMS (ESI) m/z calcd for C₆H₈N₂O₂Na⁺ (M+Na)⁺ 163.04780, found 163.04785.

7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methanobenzo[**c**][**1,2,5**]**oxadiazole-1-oxide** (**2t**) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (86.3 mg, 86%) (petroleum ether/ethyl acetate = 10/1). Yellow solid; mp: 135 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 3.01 (d, *J* = 4.4 Hz, 1H), 2.97 (d, *J* = 4.4 Hz, 1H), 2.26-2.15 (m, 2H), 2.02-1.93 (m, 2H), 1.74-1.64 (m, 2H), 1.61-1.52 (m, 2H), 1.32 (s, 3H), 1.32 (s, 3H), 1.01 (s, 3H), 1.00 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.00, 166.18, 117.32, 116.34, 59.52, 59.36, 51.80, 51.46, 47.73, 46.54, 32.57, 32.54, 25.20, 24.88, 20.37, 20.31, 17.83, 17.75, 9.59, 8.94. HRMS (ESI) m/z calcd for C₁₀H₁₄N₂O₂Na⁺ (M+Na)⁺217.09475, found 217.09496.

8H-indeno[1,2-c][1,2,5]oxadiazole-3-oxide (2u) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (74.8 mg, 86%) (petroleum ether/ethyl acetate = 10/1).White solid; mp: 114-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.88 (m, 1H), 7.75-7.73 (m, 1H), 7.54-7.49 (m, 3H), 7.48-7.43 (m, 3H), 4.00 (s, 2H), 3.87 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.54, 163.51, 145.76, 144.01, 131.48, 130.49, 128.74, 128.71, 128.53, 126.75, 126.52, 125.37, 123.09, 122.98, 116.83, 114.41, 29.27, 26.82. HRMS (ESI) m/z calcd for C₉H₇O₂N₂⁺ (M+H)⁺ 175.05020, found 175.05038.

3-(ethoxycarbonyl)-4-methyl-1,2,5-oxadiazole-2-oxide (2v) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (64.5 mg, 75%) (petroleum ether/ethyl acetate = 10/1). Yellow oil; Major product: ¹H NMR (400 MHz, CDCl₃) δ 4.47 (q, *J* = 7.2 Hz, 2H), 2.35 (s, 3H), 1.42 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.94, 149.24, 112.27, 62.93, 13.93, 8.48. Minor product: ¹H NMR (400 MHz, CDCl₃) δ 4.41 (q, *J* = 7.2 Hz, 2H), 2.51 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.63, 153.85, 108.59, 62.70, 13.95, 12.74. HRMS (ESI) m/z calcd for C₆H₈N₂O₄Na⁺ (M+Na)⁺ 195.03763, found 195.03778.

4,6,6-trimethyl-6,7-dihydrobenzo[c][1,2,5]oxadiazole-1-oxide (2w) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (77.4 mg, 86%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 53-54 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.88 (q, J = 1.6 Hz, 1H), 2.60 (s, 2H), 2.08 (d, J = 1.6 Hz, 3H), 1.16 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.87, 144.44, 122.30, 110.26, 34.54, 31.52, 29.46, 15.84. HRMS (ESI) m/z calcd for C₉H₁₃N₂O₂⁺ (M+H)⁺ 181.09715, found 181.09721.

4-methyl-3-phenyl-1,2,5-oxadiazole-2-oxide (2x) This compound was prepared according to the general procedure for the synthesis of furoxans. Purified on silica gel chromatography to give the product (64.2 mg, 73%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 62-63 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.75 (m, 2H), 7.56-7.48 (m, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.43, 130.48, 129.17, 127.40, 123.05, 115.03, 12.96. HRMS (ESI) m/z calcd for C₉H₉N₂O₂⁺ (M+H)⁺ 177.06585, found 177.06595.¹⁴

4-amino-3-cyano-1,2,5-oxadiazole-2-oxide (2y) This compound was prepared according to the general procedure for the synthesis of furoxans (MeCN as solvent). Purified on silica gel chromatography to give the product (44.1 mg, 70%) (petroleum ether/ethyl acetate = 10/1). Yellow solid; mp: 117-118 °C; ¹H NMR (400 MHz, DMSO) δ 7.13 (s, 2H). ¹³C NMR (100 MHz, DMSO) δ 156.26, 107.25, 93.59. HRMS (ESI) m/z calcd for C₃H₂N₄O₂⁺ (M)⁺ 126.01723, found 126.01640.¹⁵

4-amino-3-(ethoxycarbonyl)-1,2,5-oxadiazole-2-oxide (2z) This compound was prepared according to the general procedure for the synthesis of oxetanes (MeCN as solvent). Purified on silica gel chromatography to give the product (58.0 mg, 67%) (petroleum ether/ethyl acetate = 10/1). White solid; mp: 125-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 5.04 (s, 2H), 4.46 (q, *J* = 7.2 Hz, 2H), 1.42 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.73, 155.43, 102.40, 62.97, 14.06. HRMS (ESI) m/z calcd for C₅H₇N₃O₄Na⁺ (M+Na)⁺ 196.03288, found 196.03300.¹⁶

VII. Copies of ¹H-NMR, ¹³C-NMR spectra

¹H NMR Spectrum of **2a** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2d** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2f** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2g** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2h** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2i** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2j** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2k** (CDCl₃, 400 MHz)

¹³C NMR Spectrum of **2k** (CDCl₃, 100 MHz)

80 70 60 50 40 30 20 10

¹H NMR Spectrum of **2m** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2n** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **20** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2p** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2q** (CDCl₃, 400 MHz) -8.151 -6.893 2.340 2.340 2.176 N, N, O + N-0 2q:2q' 0.86--4.62 1.50-7 2 16 15 13 12 10 9 8 6 4 3 1 0 -1 -2 -3 -4 14 11 5 ¹³C NMR Spectrum of **2q** (CDCl₃, 100 MHz) ~11.258 ~7.925 N, N, O + N, -0 2q:2q'

S33

120

100

80

60

40

20

0

240

220

200

180

160

140

¹H-¹³C HSQC NMR Spectrum of **2q** (CDCl₃, 400 MHz)

¹H-¹³C HMBC NMR Spectrum of **2q** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2r** (CDCl₃, 400 MHz)

¹H-¹³C HSQC NMR Spectrum of **2r** (CDCl₃, 400 MHz)

 $^1\text{H-}{}^{13}\text{C}$ HMBC NMR Spectrum of 2r (CDCl₃, 400 MHz)

S37

¹H NMR Spectrum of **2t**(CDCl₃, 400 MHz)

¹H NMR Spectrum of **2u** (CDCl₃, 400 MHz)

¹H-¹³C HSQC NMR Spectrum of **2u** (CDCl₃, 400 MHz)

¹H-¹³C HMBC NMR Spectrum of **2u** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2v** (CDCl₃, 400 MHz)

¹H-¹³C HSQC NMR Spectrum of **2v** (CDCl₃, 400 MHz)

¹H-¹³C HSQC NMR Spectrum of **2w** (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2**x (CDCl₃, 400 MHz)

¹H NMR Spectrum of **2y** (DMSO, 400 MHz)

¹H NMR Spectrum of **2z** (CDCl₃, 400 MHz)

VIII. References

- 1. Li, S.; Lv, H.; Xie, R.; Yu, Y.; Ye, X.; Kong, X. Org. Lett. 2020, 22, 4207-4212.
- 2. Otto, N.; Opatz, T. Beilstein J. Org. Chem. 2012, 8, 1105-1111.
- 3. Kim, K. H.; Park, B. R.; Lim, J. W.; Kim, J. N. Tetrahedron Lett. 2011, 52, 3463-3466.
- Fershtat, L. L.; Kulikov, A. S.; Ananyev, I. V.; Struchkova, M. I.; Makhova, N. N. J. Heterocycl. Chem. 2016, 53, 102-108.
- 5. Xiong, H.; Cheng, G.; Zhang, Z.; Yang, H. New J. Chem. 2019, 43, 7784-7789.
- 6. Tanaka, S.; Ito, M.; Kishikawa, K.; Kohmoto, S.; Yamamoto, M. Nippon Kagaku Kaishi 2002, 2002, 471-473.
- 7. Baumann, M.; Baxendale, I. R. Beilstein J. Org. Chem. 2013, 9, 1613-1619.
- 8. Kim, J. N.; Ryu, E. K. Synth. Commun. 1990, 20, 1373-1377.
- 9. Sasaki, T.; Yoshioka, T. J. Syn. Org. Chem. Jpn. 1967, 25, 665-671.
- 10. Das, O.; Paria, S.; Paine, T. K. Tetrahedron Lett. 2008, 49, 5924-5927.
- 11. Gallos, J. K.; Lianis, P. S.; Rodios, N. A. J. Heterocyclic Chem. 1994, 31, 481-487.
- 12. Li, W.; Wang, K.; Qi, X.; Jin, Y.; Zhang, Q. Cryst. Growth Des. 2018, 18, 1896-1902.
- 13. Godovikova, T. I.; Golova, S. P.; Streienko, Y. A.; Antipin, M. Y.; Struchkov, Y. T.; Khmeĺnitskii, L. I. *Mendeleev Commun.* 1994, 4, 7-9.
- 14. Calvino, R.; Ferrarotti, B.; Gasco, A.; Serafino, A. J. Heterocyclic Chem. 1983, 20, 1419-1421
- 15. Fershtat, L. L.; Epishina, M. A.; Kulikov, A. S.; Ovchinnikov, I. V.; Ananyev, I. V.; Makhova, N. N. *Tetrahedron* **2015**, *71*, 6764-6775.
- (a) Makhova, N. N.; Blinnikov, A. N.; Khmel'nitskii, L. I. *Mendeleev Commun.* 1995, 5, 56-58. (b) Kulikov,
 A. S.; Ovchinnikov, I. V.; Molotov, S. I.; Makhova, N. N. *Russ. Chem. Bull.* 2003, 52, 1822-1828.