Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Aggregation-induced emissive pyridoxal derived tetradentate Schiff base for the fluorescent turn-off sensing of copper(II) in aqueous medium

Vinita Bhardwaj^a, Lavani Hindocha^a, Ashok Kumar SK^b and Suban K Sahoo^{a,*}

^a Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat-395007,

Gujarat, India.

^b Materials Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632014, India.

*E-mail: sks@chem.svnit.ac.in, subansahoo@gmail.com.

Fig. S1. HRMS of L.

Fig. S2. The fluorescence spectral changes of L in pure EtOH/DMSO and EtOH/DMSO containing 95% water/HEPES buffer.

Fig. S3. The fluorescence spectral changes of L (5×10^{-5} M) with Cu²⁺ (5×10^{-5} M) in the presence of equimolar amount of other interfering metal ions (vials showed the corresponding fluorescent color changes irradiated with UV light at 365 nm).

Fig. S5. B-H plot for the estimation of L-Cu²⁺ binding constant by using UV-Vis titration data.

Fig. S6. DFT computed HOMO and LUMO diagrams of (a) L, (b) L-Cu²⁺ (alpha MO's) and (c) L-Cu²⁺ (beta MO's).

Fig. S7. B-H plot for the estimation of L-Cu²⁺ binding constant by using fluorescence titration data.

Fig. S8. Fluorometric test strips coated with L for the detection of Cu^{2+} ions under UV lamp at 365 nm.

Fig. S9. The fluorescence spectral changes of $L-Cu^{2+}$ (5×10⁻⁵ M) with S²⁻ (5×10⁻⁵ M) in the presence of equimolar amount of other interfering anions.

Fig. S10. The change in fluorescence intensity of L-Cu²⁺ (5×10^{-5} M, $\lambda_{exc} = 300$ nm) at 428 nm with increasing amounts of S²⁻ in EtOH:HEPES buffer (5% EtOH, pH = 7.4).

Fig. S11. The calibration plot for the estimation of LOD for S^{2-} .

Sensors	Medium	$\lambda_{\rm exc}$ / $\lambda_{\rm em}$	LOD	Ref.
HO	MeOH-water	467 nm/537	0.27	1
	(v/v = 1:1, 10)	nm	μM	
N N	mM HEPES,			
~ N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	pH 7.0)			
l				
s H ₃ CO	HEPES buffer	340 nm/512	0.44 μ	2
	(1‰ DMSO,	nm	M	
H ₂ N NH N	pH = 7.4)			
N N				
0	DMSO/HEPE	410 nm/468	8.68 µ	3
	S (20 mM, pH	nm	M.	
	7.22, 9:1, v/v)			
ОН				
011				
	H ₂ O	467 nm/517 n	10.8 µ	4
	(containing	m	M.	
	5% DMSO)			
N V V V V V				
1	1		1	

Table S1. Comparison of L with reported fluorescent turn-off sensors.

OCH ₃ N N N N N O	HEPES buffered (1‰ DMSO, pH = 7.4)	340 nm/523 nm	0.3 μΜ	5
	DMSO/H ₂ O	300 nm/383 nm	0.27 μ Μ	6
	DMF/H ₂ O	386 nm/ 554 nm	0.35 μΜ	7
	EtOH:HEPES buffer (5% EtOH, pH = 7.4)	300 nm/380 nm	0.53 μΜ	This wor k

References

- 1. J.-T. Yeh, W.-C. Chen, S.-R. Liu and S.-P. Wu, New J. Chem., 2014, 38, 4434.
- 2. L. Tang, P. Zhou, Q. Zhang, Z. Huang, J. Zhao and M. Cai, *Inorg. Chem. Commun.*, 2013, **36**, 100-104.
- 3. C. Gao, X. Liu, X. Jin, J. Wu, Y. Xie, W. Liu, X. Yao and Y. Tang, Sens. Actuators, B, 2013, 185, 125.
- 4. F. Chen, F. Hou, L. Huang, J. Cheng, H. Liu, P. Xi, D. Bai and Z. Zeng, *Dyes Pigm.*, 2013, **98**, 146
- 5. L. Tang, P. Zhou, Z. Qi, Z. Huang, J. Zhao and M. Cai, *Bull. Korean Chem. Soc.*, 2013, **34**, 2256.
- 6. M. Sonawane, S.K. Sahoo, J. Singh, N. Singh, C.P. Sawant and A. Kuwar, *Inorg. Chim. Acta*, 2015, **438**, 37-41.
- 7. P. Torawane, S. K. Sahoo, A. Borse and A. Kuwar, Luminescence. 2017, 0, 1-5.
