Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Nucleoside-regulated catalytic activity of copper nanoclusters and its

application for mercury ions detection

Shiyan Li,^{‡a} Zihang Zeng,^{‡a} Congcong Zhao,^a Haoyu Wang,^a Xiaosheng Ye^{bc} and

Taiping Qing^{*ac}

^a College of Environment and Resources, Xiangtan University, Xiangtan 411105,

Hunan Province, China

^b Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China.

^cState Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China

[‡]These authors contributed equally to this work.

* To whom correspondence should be addressed. E-mail: taiping_qing@163.com

Fig. S1. XPS spectra obtained from different copper nanocluster (A-H: A-CuNCs, G-CuNCs, C-CuNCs, T-CuNCs, template free CuNCs), showing the 2p3/2 and Cu 2p1/2 peaks at 932.6 and 952.5 eV respectively indicating the presence of Cu(0)/Cu(I) sate.

Fig. S2. Effect of T-CuNCs volume on the catalytic activity of T-CuNCs; (A) The effect of T-CuNCs volume on ultraviolet absorption spectrum of the catalytic system; (B) The effect of the T-CuNCs volume on the absorbance value of the system at 652nm.

Fig. S3. Effect of TMB concentration on the catalytic activity of T-CuNCs; (A) The effect of TMB concentration on ultraviolet absorption spectrum of the catalytic system; (B) The effect of the TMB concentration on the absorbance value of the system at 652nm.

Fig. S4. Effect of H_2O_2 concentration on the catalytic activity of T-CuNCs; (A) The effect of H_2O_2 concentration on ultraviolet absorption spectrum of the catalytic system; (B) The effect of the H_2O_2 concentration on the absorbance value of the system at 652nm.

Fig. S5. Effect of pH on the catalytic activity of T-CuNCs; (A) The effect of pH onultraviolet absorption spectrum of the catalytic system; (B) The effect of the pH ontheabsorbancevalueofthesystemat652nm.

Fig. S6. TEM images of the effect of mercury ions on copper nanoclusters, (A) TEM of T-CuNCs; (B) TEM of T-CuNCs after added Hg²⁺.

Materials	Linear range	LOD	Ref.
AuNPs	25–750 nM	50 nM	1
AgNPs	10–100 µM	2.2 μM	2
TPDT-AgNPs	/	5 μΜ	3
TPDT-gold nanorods	$1-7 \ \mu M$	0.317 μΜ	4
DNA-AuNPs	0–5 µM	0.5 μΜ	5
MoS ₂ nanosheets	2–200 µM	0.5 μΜ	6
SiO ₂ /AgNPs	0–40 µM	5 μΜ	7
Cu@AuNPs	10–500 nM, 500–2500 nM	10 nM	8
MT-CuNCs	97 nM–2.325 μM, 3.10 μM–15.59 μM	43.8 nM	9
DNA-silica nanoparticles	0–500 nM	20 nM	10
CuNCs	0-350 μM	11.67 μM	This work

Table S1. Performance comparison of this work with other nanomaterials-based sensors for the detection of Hg^{2+} .

Reference

- G.H. Chen, W.Y. Chen, Y.C. Yen, C.W. Wang, H.T. Chang, C.F. Chen, *Anal. Chem.*, 2014, 86, 6843-6849.
- K. Farhadia, M. Forougha, R. Molaeia, S. Hajizadeha, A. Rafipourb, Sens. Actuators B Chem., 2012, 161, 880-885.
- P. Rameshkumar, P. Viswanathan, R. Ramaraj, Sens. Actuators B Chem., 2014, 202, 1070-1077,
- 4. S. Jayabal, R. Sathiyamurthi, R. Ramaraj, J. Mater. Chem. A, 2014, 2, 8918-8925.
- 5. X. Xu, J. Wang, K. Jiao, X. Yang, Biosens. Bioelectron., 2009, 10, 3153-3158.
- Y. Lu, J. Yu, W.C. Ye, Y. Xin, P.P. Zhou, H.X. Zhang, *Microchim. Acta*, 2016, 183, 2481-2489.
- P. Rameshkumar ,S. Manivannan ,R. Ramaraj, J. Nanopart. Res., 2013, 15, 1639-1647.
- 8. Y. Zhao, H. Qiang, Z.B. Chen, Microchim. Acta, 2017, 184, 107-115.
- R. Liu, L. Zuo, X. Huang, S. Liu, G. Yang, S. Li, C. Lv, *Microchim. Acta*, 2019, 186, 250.
- Y.F. Zhang, Q. Yuan, T. Chen, X.B. Zhang, Y. Chen, W.H. Tan, *Anal. Chem.*, 2012, 84, 1956-1962.