Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Cobalt Metal Organic Framework (Co-MOF) derived CoSe₂/C hybrid nanostructures for Electrochemical Hydrogen Evolution Reaction Supported by DFT Studies

Rajat K. Tripathy, ^{a, b, c} Aneeya K. Samantara, ^{a, b, c} Pratap Mane ^d, Brahmananda Chakraborty*^{b, e} and J.N. Behera*^{a, b, c}

^a School of Chemical Sciences, National Institute of Science Education and Research

(NISER), P. O. Jatni, Khurda 752050, Odisha, India. E-mail: jnbehera@niser.ac.in

^b Homi Bhabha National Institute (HBNI), Mumbai-400094, India.

^c Centre for Interdisciplinary Sciences (CIS), NISER, Jatni, Odisha, India 752050.

^d Seismology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.

^e High Pressure & amp; Synchroton Radiation Physics Division, Bhabha Atomic Research

Centre, Trombay, Mumbai-400085, India. E-mail: brahma@barc.gov.in

*Corresponding author.

Email addresses: jnbehera@niser.ac.in

brahma@barc.gov.in

Calculation of electrochemical active surface area (ECSA):

At first, the cyclic voltammograms at different scan rates in a non-Faradaic potential region were recorded and double layer capacitance (C_{dl}) has been calculated by linear fitting the plot of cathodic and anodic current against scan rates. Since the ECSA is directly correlated to the values of C_{dl} , thus the ECSA has been calculated as per the following equation,

$$ECSA = \frac{c_{dl}}{c_s}....(1)$$

Here, C_s is the specific capacitance of an atomically smooth nanostructure in acidic medium and its value is 35 μ F/cm².

Fig. S1. FESEM images of Co-MOF.

Fig. S 2 (a) Survey spectrum and high resolution XPS spectrum of (b) O1s and (c) N1s of CoSe₂/C hybrid.

Fig. S3. Powder X-ray diffraction pattern of post TGA CoSe₂/C hybrid sample (a) under the flow of nitrogen and (b) oxygen gas.

Fig. S4. EDS spectrum of CoSe₂/C hybrid. The inset shows the weight and atomic percentage distribution of different elements.

Fig. S 5 LSVs showing the HER activity of CoSe₂/C modified electrode at different mass loading in 0.5 M H₂SO₄ solution at a sweep rate of 5 mV/s.

Fig. S6. FESEM (a, b) and PXRD of CoSe₂/C after HER stability test.

Fig. S7 (a-c) Cyclic voltammograms showing the charging currents measured in a non-Faradaic region at a scan rate of 25, 50, 100, 150, 200 mV/s respectively and (d-f) the plot of cathodic and anodic charging currents measured at -0.13 V (vs. Ag/AgCl) against scan rates for CoSe₂/C, CoSe₂ and Co-MOF respectively.

Fig. S8. TDOS plot for CoSe₂ (101) layer.

Fig. S9. DFT optimized structure after H adsorption for (101) layer of (a) CoSe₂ (b) CoSe₂ /C; blue, green, brown and cyan represent Cobalt, Selenium, Carbon and Hydrogen.

Fig. S10. Reaction coordinates for HER of (101) layer of CoSe₂ andCoSe₂/C.

Table S1. Table showing the comparison of electrocatalytic activity of CoSe₂/C hybrid with other reported nanostructures.

	Catalysts		Overpotential(mV)	Tafel slope	Reference
Sl.No		Electrolyte	@10 mA/cm ⁻²	(mV/dec)	
1	CoSea	(Conc.)	_272	60	ACS Energy
1		H_2SO_4	-272	00	Lett. 2016. 1. 3.
		112~ 0 4			607-611
2	CoSe ₂ /C	0.5 M	-196	45.73	International
		H_2SO_4			journal of
					hydrogen energy,
					2019, 4 4,
3	CoSe_CNT	0.5 M	_174	37.8	Small 2017 13
5		H_2SO_4	-1/7	57.0	1700068
4	Co-NC/CNT	1M KOH	-263	125	J. Mater. Chem.
					A, 2016, 4,
					16057
5	CoSe ₂ /CF	1M KOH	-95	52.0	Nano Research
					2016, 9, 2234-
6	Carbon Supported	0.1M KOH	-270	118.5	Journal of The
, i i i i i i i i i i i i i i i i i i i	Cobalt Di-selenide				Electrochemical
					Society, 2020
					167 026507
7	CoSe ₂ /SDGC	0.5 M	-203	58.0	International
		H_2SO_4			journal of
					2019, 44, 1344-
					13431
8	CoSe ₂	0.5 M	-272.0	60.0	ACS Energy
		H_2SO_4			Lett, 2016, 1, 3,
0	CoSo /NC 170	0.5 M	150	82.0	607-611
9	C0Se ₂ /INC-1/0	H_2SO_4	-139.	85.0	iournal of
		112004			hvdrogen energy
					43(2018)17
					021e17029
10	CoSe ₂ /C	0.5 M	-224.0	34.0	j. mater.sci,54.22
		H_2SO_4			(2019): 14123-
11	Fe-CoSe ₂ @NC	0.5 M	-143	40.0	ACS Sustainable
		H_2SO_4	1.15	10.0	Chem. Eng.
					2018, 6,
					8672-8678
12	CoSe ₂ /C	0.5 M	-253.0	46.0	Present work
		H_2SO_4			