Support Information – New. J. Chem.

Three-Component [3+2] Cycloaddition for Regio- and Diastereoselective

Synthesis of Spirooxindole-Pyrrolidines

Xiaofeng Zhang, ^{a,b}* Miao Liu,^a Desheng Zhan,^c Manpreet Kaur,^d Jerry P. Jasinski^d and Wei

Zhang^a*

- ^{a.} Department of Chemistry and Centre for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA.
 E-mail: xfxiaofengzhang@gmail.com; wei2.zhang@umb.edu
- ^{b.} Department of Cancer Biology Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- ^{c.} Department of Chemistry, Changchun Normal University, Changchun 130032, P. R. China
- d. Department of Chemistry, Keene State College, Keene, NH 03435, USA

Content

1.	General information	S2
2.	General procedures	S2
3.	Characterization of products	S2
4.	NMR spectra of products	S6
5.	X-Ray Crystal Structure Analysis of 1a	.S21

1. General information

All commercially available chemical reagents and solvents were purchased from Sigma-Aldrich, and Oakwood. ¹H-NMR (400 MHz) and ¹³C-NMR spectra (101 MHz) were detected on Agilent NMR spectrometers. LC-MS were performed on an Agilent 2100 LC with 6130 quadrupole MS spectrometers. A linear gradient from 25:75 (v/v) MeOH/water to 100% MeOH over 7.0 min at a flow rate of 0.7 mL/min was used as a mobile phase. UV detections were conducted at 210 nm and 254 nm. Low resolution mass spectra were recorded in APCI (atmospheric pressure chemical ionization). A C18 column (5.0 μ m, 6.0 x 50 mm) was used for the separation from Agela. The high-resolution mass spectra were obtained on a Waters Micromass GCT Premier. All products were purified on Agela Flash System with Venusil PrepG C18 column (10 μ m, 120 Å, 21.2 mm x 250 mm).

2. General procedure for products

General procedure I for one-pot synthesis of compound 1, 5 and 6.

To a solution of cyclic amines **2** (1.3 mmol), aldehydes **3** (1.1 mmol), and olefinic oxindoles **4** (1.0 mmol) in 4 mL of EtOH was added BzOH (0.5 mmol). The reaction solution was stirred at 125 °C for 30 mins under microwave heating. Upon the completion of the reaction as monitored by LC-MS, the reaction mixture was evaporated to remove solvents, and the concentrated reaction solution was isolated by Agela Flash System to give product **1**, **5** and **6**.

General procedure II for one-pot synthesis of compound 7a.

To a solution of THIQ **2a** (1.3 mmol), 2-azidobenzaldehyde or 2-nitrobenzaldehyde (1.1 mmol), and olefinic oxindoles **4a** (1.0 mmol) in 4 mL of EtOH was added BzOH (0.5 mmol). The reaction solution was stirred at 125 °C for 30 mins under microwave heating. Upon the completion of the reaction as monitored by LC-MS, the reaction mixture was added to 1 mL of H₂O, Fe (2.5 mmol) and AcOH (3.0 mmol) *in situ*, then stirred at 85 °C for 6 h. the concentrated reaction solution was isolated by Agela Flash System to give product **7a**.

3. Characterization of products

Compound 1a: white solid (63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 7.07 (td, J = 7.7, 1.2 Hz, 1H), 6.90 (ddt, J = 14.3, 7.6, 4.5 Hz, 3H), 6.76 – 6.68 (m, 3H), 6.39 (d, J = 7.8 Hz, 1H), 5.29 (s, 1H), 4.90 (d, J = 9.1 Hz, 1H), 3.77 (d, J = 9.1 Hz, 1H), 3.54 (ddd, J = 14.3, 9.0, 3.6 Hz, 2H), 3.35 (s, 3H), 3.00 – 2.91 (m, 2H), 2.76 (ddd, J = 12.7, 11.3, 3.2 Hz, 1H), 2.56

-2.49 (m, 1H), 0.62 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 175.2, 168.3, 143.4, 135.1,

130.1, 129.3, 128.8, 126.2, 125.9, 122.1, 121.2, 107.8, 67.2, 65.9, 60.6, 56.5, 26.5, 13.5. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₂₉H₂₇BrN₂O₃ 531.1283, found: 531.1279.

Compound 1b: white solid (66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.63 (m, 2H), 7.40 – 7.27 (m, 5H), 7.12 – 7.01 (m, 3H), 6.93 – 6.88 (m, 1H), 6.86 – 6.79 (m, 1H), 6.13 (d, J = 7.7 Hz, 1H), 4.28 – 4.22 (m, 2H), 3.62 (d, J = 9.6 Hz, 1H), 3.58 – 3.48 (m, 2H), 3.24 – 3.14 (m, 4H), 3.06 (ddd, J = 10.9, 6.4, 1.9 Hz, 1H), 2.68

(d, J = 16.2 Hz, 1H), 2.38 (td, J = 11.0, 4.1 Hz, 1H), 0.59 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 169.9, 144.1, 139.5, 135.6, 134.8, 130.2, 129.3, 128.8, 128.6, 128.6, 127.9, 126.7, 125.5, 124.2, 122.7, 122.6, 107.9, 72.9, 69.7, 61.7, 60.2, 57.2, 46.2, 29.8, 26.4, 13.4. HRMS (ESI-TOF, m/z): [M+H]⁺ calcd. for C₂₉H₂₈N₂O₃ 453.2178, found: 453.2181.

Compound 1c: white solid (72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.09 (td, *J* = 7.7, 1.2 Hz, 1H), 6.98 – 6.87 (m, 3H), 6.75 (ddd, *J* = 10.5, 8.5, 4.4 Hz, 3H), 6.41 (d, *J* = 7.7 Hz, 1H), 5.34 (s, 1H), 5.01 (d, *J* = 9.2 Hz, 1H), 3.81 (d, *J* = 9.2 Hz, 1H), 3.63 – 3.49 (m, 2H), 3.36 (s, 3H), 3.02 – 2.92 (m, 2H), 2.81 (ddd, *J* = 12.7, 11.2, 3.1 Hz, 1H), 2.56 (dd, *J* =

12.5, 3.3 Hz, 1H), 0.64 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 168.8, 145.8, 143.8, 135.5, 135.0, 128.8, 128.6, 128.2, 127.3, 126.1, 125.8, 125.4, 125.0, 124.9, 122.2, 107.5, 67.9, 66.2, 61.0, 60.4, 60.1, 43.9, 27.1, 26.7, 26.7, 13.4. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₃₀H₂₇F₃N₂O₃ 521.2052, found: 521.2050.

Compound 1d: white solid (60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 1H), 7.37 – 7.27 (m, 2H), 7.22 – 6.98 (m, 6H), 6.76 (dd, J = 10.5, 4.3 Hz, 2H), 6.01 (d, J = 7.7 Hz, 1H), 5.57 – 5.51 (m, 2H), 3.82 – 3.70 (m, 2H), 3.31 (dd, J = 6.4, 0.4 Hz, 1H), 3.22 – 3.12 (m, 1H), 3.04 – 2.98 (m, 2H), 2.82 (d, J = 2.5 Hz, 3H), 2.44 (d, J = 15.1 Hz, 1H), 2.26 (d, J = 1.5 Hz, 3H), 0.81 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.47, 169.05, 144.3, 137.9, 134.9, 130.8, 129.0, 128.5, 127.2, 126.1, 125.6, 125.2, 124.3, 123.3, 122.9, 107.9, 67.9, 66.9, 60.9, 60.2, 57.0, 44.7, 26.2, 13.6. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₃₀H₂₉FN₂O₃ 485.2240, found: 485.2235.

Compound 1e: white solid (39% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 7.4, 0.8 Hz, 1H), 7.38 (dd, J = 6.3, 2.6 Hz, 1H), 7.31 (d, J = 7.2 Hz, 1H), 7.22 – 7.09 (m, 5H), 7.02 (td, J = 7.6, 1.0 Hz, 1H), 6.69 (dd, J = 9.7, 8.7 Hz, 1H), 6.57 (d, J = 7.7 Hz, 1H), 5.51 (d, J = 7.6 Hz, 1H), 5.01 (s, 1H), 3.86 – 3.79 (m, 1H),

3.77 (d, J = 7.6 Hz, 1H), 3.67 – 3.60 (m, 1H), 3.14 – 3.04 (m, 4H), 3.02 – 2.88 (m, 3H), 2.45 (d, J = 15.7 Hz, 1H), 0.61 (t, J = 7.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 175.2, 170.4, 143.7, 138.9, 134.5, 131.6, 128.7, 128.6, 126.9, 126.7, 126.3, 126.2, 126.1, 125.3, 121.9, 116.0, 107.3, 60.6, 60.4, 59.2, 59.0, 43.6, 26.4, 23.3, 13.4. HRMS (ESI-TOF, m/z): [M+H]⁺ calcd. for C₂₉H₂₆BrFN₂O₃

3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 170.5, 139.4, 139.2, 134.9, 134.5, 130.4, 129.7, 128.8, 127.9, 127.7, 127.6, 126.9, 126.7, 126.1, 124.9, 122.7, 114.6, 71.4, 61.3, 60.7, 59.3, 58.9, 43.0, 29.7, 22.8, 13.4. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₂₉H₂₇ClN₂O₃ 487.1788, found: 487.1791.

Compound **1***g*: off-white solid (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.63 (m, 2H), 7.40 – 7.34 (m, 2H), 7.31 (dt, J = 9.6, 4.3 Hz, 1H), 7.06 (t, J = 4.3 Hz, 2H), 6.97 (d, J = 2.5 Hz, 1H), 6.89 (dd, J = 8.4, 2.5 Hz, 1H), 6.85 – 6.79 (m, 2H), 6.15 (d, J = 7.7 Hz, 1H), 4.27 – 4.18 (m, 2H), 3.81 (s, 3H), 3.61 (dd, J = 15.4, 8.3 Hz, 3H), 3.24 – 3.16 (m, 1H), 3.15 (s, 3H), 3.05 (ddd, J = 10.9, 6.3,

1.8 Hz, 1H), 2.67 (d, J = 16.5 Hz, 1H), 2.37 (td, J = 11.1, 4.1 Hz, 1H), 0.63 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.2, 169.9, 155.9, 139.5, 137.6, 135.5, 134.7, 131.4, 129.3, 128.6, 128.6, 127.9, 126.7, 125.5, 113.6, 111.3, 108.3, 73.1, 69.8, 61.6, 60.2, 57.6, 46.2, 29.8, 26.4, 13.4. HRMS (ESI-TOF, *m/z*): [M+H]⁺ calcd. for C₃₀H₃₀N₂O₄ 483.2284, found: 483.2280.

Compound 1h: white solid (53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 1.2, 0.5 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.18 (dtd, J = 16.2, 7.3, 1.2 Hz, 2H), 7.12 – 7.01 (m, 6H), 6.89 (ddd, J = 7.9, 1.7, 0.8 Hz, 1H), 6.36 (d, J = 7.9 Hz, 1H), 5.50 (d, J = 7.4 Hz, 1H), 4.66 (s, 1H), 3.82 (dt, J = 14.2, 7.1 Hz, 1H), 3.70 – 3.61 (m, 2H), 3.13 – 3.03 (m, 2H), 3.02 – 2.92 (m, 4H), 2.35 (s, 3H), 0.62 (t, J = 7.1

Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.9, 170.7, 141.2, 139.5, 135.5, 134.7, 131.2, 128.7, 128.3, 127.9, 127.5, 127.3, 127.0, 126.8, 126.9, 126.7, 125.9, 106.8, 71.2, 61.6, 60.5, 59.0, 43.2, 26.2, 22.9, 21.2, 13.4. HRMS (ESI-TOF, *m*/*z*): [M+H] ⁺ calcd. for C₃₀H₃₀N₂O₃ 467.2335, found: 467.2340.

Compound 1i: white solid (57% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 2.0 Hz, 1H), 7.30 (d, J = 7.4 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.22 – 7.13 (m, 2H), 7.09 (d, J = 19.8 Hz, 6H), 6.36 (d, J = 8.3 Hz, 1H), 5.47 (d, J = 7.2 Hz, 1H), 4.65 (s, 1H), 3.93 – 3.86 (m, 1H), 3.75 – 3.67 (m, 2H), 3.15 – 3.03 (m, 2H), 3.01 (s, 3H), 2.97 – 2.89 (m, 1H), 2.38 (d, J = 16.2 Hz, 1H), 0.68 (t, J = 7.1 Hz, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 175.4, 170.3, 142.6, 139.2, 134.8, 134.4, 131.0, 129.1, 128.8, 127.9, 127.6, 126.9, 126.7, 126.1, 114.6, 108.4, 71.1, 61.7, 60.7, 58.9, 43.0, 26.3, 22.9, 13.5. HRMS (ESI-TOF, *m/z*): [M+H] ⁺ calcd. for C₂₉H₂₇BrN₂O₃ 531.1283, found: 531.1279.

Compound 1j: white solid (55% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 1H), 7.22 – 7.09 (m, 7H), 7.08 – 6.98 (m, 7H), 6.82 (dd, *J* = 7.9, 1.6 Hz, 2H), 6.41 – 6.36 (m, 1H), 5.64 (d, *J* = 7.0 Hz, 1H), 5.01 (d, J = 15.8 Hz, 1H), 4.73 (s, 1H), 4.58 (d, *J* = 15.8 Hz, 1H), 3.85 (d, *J* = 6.9 Hz, 1H), 3.10 – 2.90 (m, 3H), 2.36 (d, *J* = 16.1 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.2, 176.2,

142.0, 139.7, 135.0, 134.8, 134.4, 128.8, 128.5, 128.4, 127.9, 127.7, 127.5, 127.4, 126.9, 126.5, 125.9, 125.8, 122.5, 108.7, 72.7, 67.5, 61.4, 57.7, 43.0, 28.9, 22.7. HRMS (ESI-TOF, *m/z*): [M+H] ⁺ calcd. for C₃₄H₃₀N₂O₂ 499.2386, found: 499.2390.

Compound 1k: white solid (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.53 (m, 1H), 7.28 – 7.24 (m, 2H), 7.22 – 7.16 (m, 2H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.6, 1.0 Hz, 1H), 6.70 (d, *J* = 7.7 Hz, 1H), 5.95 (d, *J* = 3.3 Hz, 1H), 5.79 (dd, *J* = 3.3, 0.6 Hz, 1H), 5.42 (d, *J* = 7.5 Hz, 1H), 4.70 (s, 1H), 3.86 – 3.78 (m,

1H), 3.68 – 3.59 (m, 2H), 3.17 (s, 3H), 3.12 – 3.00 (m, 3H), 2.49 – 2.42 (m, 1H), 0.65 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 170.2, 152.7, 143.7, 138.7, 134.5, 128.8, 128.6, 126.9, 126.7, 126.1, 122.2, 120.8, 111.0, 107.3, 65.5, 60.6, 59.6, 58.7, 43.7, 26.5, 23.0, 13.4. HRMS (ESI-TOF, m/z): [M+H]⁺ calcd. for C₂₇H₂₅BrN₂O₄ 521.1076, found: 521.1072.

Compound 5a: white solid (79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 4H), 7.44 (dt, J = 6.8, 3.3 Hz, 1H), 7.18 – 7.13 (m, 1H), 7.03 (dtd, J = 7.1, 3.6, 1.2 Hz, 2H), 6.98 (tdd, J = 5.6, 3.2, 1.5 Hz, 1H), 6.86 – 6.83 (m, 1H), 6.75 – 6.64 (m, 3H), 5.26 (d, J = 1.4 Hz, 1H), 4.86 (d, J = 10.0 Hz, 1H), 3.73 (dd, J = 10.0, 1.1 Hz, 1H), 3.48 (ddd, J = 7.2, 3.1, 1.1 Hz, 2H), 3.39 (d, J = 1.1 Hz,

3H), 3.07 - 3.00 (m, 1H), 2.94 - 2.85 (m, 2H), 2.62 - 2.54 (m, 1H), 0.60 (td, J = 7.1, 1.1 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 177.9, 168.5, 143.5, 139.5, 136.1, 131.7, 131.0, 130.3, 128.8, 126.8, 126.7, 125.8, 122.7, 121.8, 121.8, 119.4, 118.2, 111.2, 110.6, 107.7, 64.8, 64.3, 61.3, 60.2, 58.4, 43.6, 27.0, 17.5, 13.4. HRMS (ESI-TOF, m/z): [M+H]⁺ calcd. for C₃₁H₂₈BrN₃O₃ 570.1392, found: 570.1388.

Compound 6a: white solid (46% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.55 (m, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.16 – 7.01 (m, 3H), 6.91 – 6.83 (m, 1H), 6.82 – 6.67 (m, 1H), 6.58 (ddd, J = 7.6, 1.3, 0.5 Hz, 1H), 6.52 – 6.38 (m, 1H), 5.53 (d, J = 3.0 Hz, 1H), 4.73 (d, J = 10.5 Hz, 1H), 4.55 – 4.37 (m, 1H), 4.15 (dd, J = 14.5, 3.2 Hz, 1H), 3.88 (d, J = 10.5 Hz, 1H), 3.77 – 3.48 (m, 1H), 3.34 (s,

3H), 0.65 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 169.5, 144.2, 141.2, 139.9, 137.7, 131.1, 129.1, 129.0, 128.2, 126.6, 125.9, 124.7, 123.0, 122.5, 120.7, 120.6, 108.1, 78.6, 71.9, 61.5, 60.5, 60.1, 60.0, 59.6, 25.8, 13.7. HRMS (ESI-TOF, m/z): [M+H]⁺ calcd. for C₂₈H₂₅BrN₂O₃ 517.1127, found: 517.1131.

Compound 7*a*: white solid (NO₂ 32%, N₃ 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.84 (dt, J = 7.7, 1.4 Hz, 1H), 7.31 (dddd, J = 7.9, 7.4, 1.6, 0.9 Hz, 1H), 7.23 – 7.09 (m, 3H), 7.08 – 7.01 (m, 1H), 6.84 (td, J = 7.6, 1.0 Hz, 1H), 6.79 – 6.67 (m, 3H), 6.22 (ddd, J = 7.5, 1.2, 0.5 Hz, 1H), 5.85 – 5.79 (m, 1H), 4.81 (d,

J = 8.0 Hz, 1H), 4.49 (s, 1H), 4.15 (d, J = 8.1 Hz, 1H), 3.99 (ddd, J = 12.3, 9.9, 3.4 Hz, 1H), 3.48 (s, 1H), 3.21 (ddd, J = 16.5, 11.8, 5.8 Hz, 1H), 3.14 – 3.08 (m, 1H), 2.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 168.6, 144.2, 136.5, 134.5, 132.5, 129.6, 129.3, 128.7, 127.5, 127.1, 125.4, 124.3, 122.9, 122.6, 115.5, 108.0, 71.6, 71.6, 67.19, 65.9, 53.8, 46.0, 29.8, 26.3. HRMS (ESI-TOF, *m/z*): [M+H] ⁺ calcd. for C₂₇H₂₃N₃O₂ 422.1869, found: 422.1873.

4. NMR Spectra of Products

 $\overbrace{0.59}^{0.63}$

 $\underbrace{}_{0.60}^{0.64}$

€0.70 0.68 0.67

7,55

7.151 7.1

5. X-Ray Report of 1a

1a Br	and the second s			
Cell	a=10.4594 (6)	b=10.8089(8) c=13.2837(8)		
	α=101.462 (5)	β=112.148 (5) γ=105.775 (6)		
Temperature	173K (2)			
	Calculated	Reported		
Volume	1259.83(17) 1259.83(15)		
Space group	P-1	P-1		
Hall group	-P 1	-P 1		
Moiety	$C_{29} H_{27} Br N_2$	$O_3 C_{29} H_{27} Br N_2 O_3$		
Sum formula	$C_{29} H_{27} Br N_2$	$O_3 C_{29} H_{27} Br N_2 O_3$		
Z	2	2		
μ (mm⁻¹)	2.490	2.490		
F000	548.0	548.0		
F000'	548.04			
Nref	4924	4792		
Tmin,Tmax	0.523,0.706	5 0.683,1.000		
Tmin'	0.474			
CCDC 2098307				
Ellipsoid contour	probability	30%		