Supporting information for

Enhanced water-resistant performance of Cu-BTC through polyvinylpyrrolidone protection and its capture ability evaluation of methylene blue

Yingzhi Zhu,^a Danping Wu,^a Jiehong Chen,^b Na Ma,^b and Wei Dai^{*,a}

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China

^bCollege of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China

Section I:

Chemicals: Copper nitrate trihydrate (Cu(NO₃)₂·3H₂O) (Shanghai Aladdin Biotechnology Co., Ltd.), Benzene-1,3,5-tricarboxylic acid (H₃BTC) (Sinopharm Chemical Reagent Co., Ltd.), polyvinylpyrrolidone K30 ((C₆H₉NO)_n) (Sinopharm Chemical Reagent Co., Ltd.), absolute ethanol (C₂H₆O) (Sinopharm Chemical Reagent Co., Ltd.), deionized water (generated at 25 °C, 18.25m Ω ·cm⁻¹), sodium hydroxide (NaOH) (Sinopharm Chemical Reagent Co., Ltd.), hydrochloric acid (HCl) (Sinopharm Chemical Reagent Co., Ltd.), methylene blue (MB) (Sinopharm Chemical Reagent Co., Ltd.).

Apparatus: SEM images are scanned by electron microscope using Hitachi S4800 equipped with EDAX energy dispersion detector (Zeiss Gemini SEM 300). D8 Advance X-ray diffractometer of Bruck AXS GMBH is used to scan the crystal phase of the material ($2\theta = 5 \sim 30^{\circ}$). The specific surface area and average pore diameter of the material are measured by Autosorb-iQ physical adsorption instrument of Kanta Instrument Co., Ltd. (The samples were degassed at 120°C for 5h and The N₂ adsorption-desorption isotherms were recorded at -196°C). The average particle size of samples are measured by Mastersizer 3000E laser particle size analyzer from Malvern Instruments Co., Ltd. The thermal gravimetric analysis (TGA) was determined using a STA 449 F5 thermal gravimetric analyzer from 20 to 850°C. The functional groups were analyzed by a Fourier transform infrared spectrometer (FT-IR, Thermo Nicolet NEXUS-670). Sample absorbance was measured by Shimadzu UV-3600 spectrophotometer at 664nm.

Scheme S1. Molecular formula of PVP and MB, and the resonance structure of PVP (A: Molecular formula of PVP; B: Molecular formula of MB; C: the resonance structure of PVP)

Fig. S1. SEM images of $((A_1) \text{ and } (A_2))$: Cu-BTC, $((B_1) \text{ and } (B_2))$: PVP5@Cu-BTC after being soaked accordingly in water for 5 and 7 days; $((C_1), (C_2), (C_3), (C_4) \text{ and } (C_5))$: PVP50@Cu-BTC; $((D_1), (D_2), (D_3), (D_4) \text{ and } (D_5))$: PVP250@Cu-BTC; $((E_1), (E_2), (E_3), (E_4) \text{ and } (E_5))$: PVP500@Cu-BTC, $((F_1), (F_2), (F_3), (F_4) \text{ and } (F_5))$: PVP750@Cu-BTC after being soaked in water for 3, 5, 7, 12 and 14 days; $((G_1), (G_2), (G_3))$: PVP1000@Cu-BTC after being soaked accordingly in water for 5, 7 and 12 days.

Fig. S2. XRD patterns of $((A_1) \text{ and } (A_2))$: Cu-BTC, $((B_1) \text{ and } (B_2))$: PVP5@Cu-BTC after being soaked accordingly in water for 5 and 7 days; $((C_1), (C_2), (C_3), (C_4) \text{ and } (C_5))$: PVP50@Cu-BTC; $((D_1), (D_2), (D_3), (D_4) \text{ and } (D_5))$: PVP250@Cu-BTC; $((E_1), (E_2), (E_3), (E_4) \text{ and } (E_5))$: PVP500@Cu-BTC, $((F_1), (F_2), (F_3), (F_4) \text{ and } (F_5))$: PVP750@Cu-BTC after being soaked in water for 3, 5, 7, 12 and 14 days; $((G_1), (G_2) \text{ and } (G_3))$: PVP1000@Cu-BTC after being soaked accordingly in water for 5, 7 and 12 days.

Fig. S3. SEM images of (A₁), (A₂) and (A₃): PVP50@Cu-BTC; (B₁), (B₂) and (B₃): PVP250@Cu-BTC; (C₁), (C₂) and (C₃): PVP500@Cu-BTC; (D₁), (D₂) and (D₃): PVP750@Cu-BTC being soaked accordingly in aqueous solutions at pH=2, 8 and 12 for 30 min.

Fig. S4. XRD patterns of (A₁), (A₂) and (A₃): PVP50@Cu-BTC; (B₁), (B₂) and (B₃): PVP250@Cu-BTC; (C₁), (C₂) and (C₃): PVP500@Cu-BTC; (D₁), (D₂) and (D₃): PVP750@Cu-BTC being soaked accordingly in aqueous solutions at pH=2, 8 and 12 for 30 min.

Fig. S5. SEM images of (A): PVP50@Cu-BTC, (B): PVP250@Cu-BTC, (C): PVP500@Cu-BTC, and (D): PVP750@Cu-BTC being soaked accordingly in water at 100 °C for 30 min.

Fig. S6. XRD patterns of (A): PVP50@Cu-BTC, (B): PVP250@Cu-BTC, (C): PVP500@Cu-BTC, and (D): PVP750@Cu-BTC being soaked accordingly in water at 100 °C for 30 min.

Fig. S7. TGA curves of Cu-BTC and PVP1000@Cu-BTC samples under nitrogen atmosphere.

Samples	S_{BET} $(m^2 \cdot g^{-1})$	Pore volume (cm ³ · g ⁻¹)	Average pore size
Cu-BTC	970	0.37	0.57
PVP(0.00005)@Cu-BTC	1669	0.67	0.75
PVP(0.0005)@Cu-BTC	1166	0.47	0.52
PVP(0.0025)@Cu-BTC	1003	0.42	0.51
PVP(0.005)@Cu-BTC	1187	0.46	0.52
PVP(0.0075)@Cu-BTC	1306	0.49	0.55
PVP(0.01)@Cu-BTC	1162	0.44	0.61

Table S1. Summary of textural properties of the samples

Adsorbent	MB uptake capacity (µmoL/g)	Reference	
PVP750@Cu-BTC	240	this work	
PVP1000@Cu-BTC	271	this work	
M-Cu-BTC	1	1	
MWCNT	184	2	
MIL-101-Cr	63	3	
MIL-53(Al)	63	4	
Cu-BTC	28	5	
Cu-BTC/GO	45	5	
Fe ₃ O ₄ @ZIF-8	63	6	
Co doped Fe-BDC	75	7	
MOF	75		
Pine leaves	396	8	
Citric Acid Modified	240	0	
Sawdust	348	9	
Ce-UiO-66	344	10	

Table S2. Comparison of the MB uptake capacity over different adsorbents

References

- 1 A. R. Abbasi, M. Karimi and K. Daasbjerg, Ultrason. Sonochem., 2017, 37, 182– 191.
- 2 S. B. Wang, C. W. Ng, W. T. Wang, Q. Li and Z. P. Hao, *Chem. Eng. J.*, 2012, **197**, 34–40.
- 3 T. T. Shen, J. M. Luo, S. Y. Zhang and X. B Luo, *J. Environ. Chem. Eng.*, 2015, **3**, 1372–1383.
- 4 C. Li, Z. H. Xiong, J. M. Zhang and C. S. Wu, J. Chem. Eng. Data, 2015, 60, 3414-

- 5 L. Li, X. L. Liu, H. Y. Geng, B. Hu, G. W. Song and Z. S. Xu, *J. Mater. Chem. A.*, 2013, **1**, 10292.
- 6 J. Zheng, C. Cheng, W. J. Fang, C. Chen, R. W. Yan, H. X. Huai and C. C. Wang, *Cryst. Eng. Comm.*, 2014, **16**, 3960–3964.
- 7 S. Soni, P. K. Bajpai, J. Mittal and C. Arora, J. Mol. Liq., 2020, 314, 113642.
- 8 M. T. Yagub, T. K. Sen and H. M. Ang, *Water, Air, Soil Pollut.*, 2012, **223**, 5267–5282.
- 9 W. Zou, H. B. S. Gao and K. Li, Korean J. Chem. Eng., 2013, 30, 111-122.
- 10 R. M. Rego, G. Sriram, K. V. Ajeya, H. Y. Jung, M. D. Kurkuri and M. Kigga, Journal of Hazard. Mater., 2021, 416, 125941.