Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Highly water-soluble dimeric and trimeric lanthanide carbonates with

ethylenediaminetetraacetates as precursors of catalysts for oxidative

coupling reaction of methane

Rong-Yan Lin, Yan-Ru Shi, Yu-Hui Hou, Wen-Sheng Xia, Wei-Zheng Weng, Zhao-Hui Zhou*

State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, Tel: + 86-592-2184531; Fax: + 86-592-2183047 zhzhou@xmu.edu.cn

Figures and Table Options

Fig. S17. Solution ¹³ C NMR spectrum of K ₂ CO ₃ in dimethylformamide-water11
Fig. S18. Solution ¹³ C NMR spectrum of DMF
Fig. S19. IR spectrum of (NH ₄) ₅ [La ₃ (CO ₃)(EDTA) ₃ (H ₂ O) ₃] ·12H ₂ O (1)12
Fig. S20. IR spectrum of Na ₈ [La ₂ (CO ₃) ₃ (EDTA) ₂] ·17.5H ₂ O (2)12
Fig. S21. IR spectrum of Na ₈ [Ce ₂ (CO ₃) ₃ (EDTA) ₂] ·17.5H ₂ O (3)13
Fig. S22. IR spectrum of K ₅ [La ₃ (CO ₃)(EDTA) ₃ (H ₂ O) ₃] ·13.5H ₂ O (4)13
Fig. S23. IR spectrum of K ₅ [Ce ₃ (CO ₃)(EDTA) ₃ (H ₂ O) ₃] ·13.5H ₂ O (5)14
Fig. S24. TG-DTG curve of (NH ₄) ₅ [La ₃ (CO ₃)(EDTA) ₃ (H ₂ O) ₃] ·12H ₂ O (1)14
Fig. S25. TG-DTG curve of Na ₈ [La ₂ (CO ₃) ₃ (EDTA) ₂] ·17.5H ₂ O (2)15
Fig. S26. TG-DTG curve of Na ₈ [Ce ₂ (CO ₃) ₃ (EDTA) ₂] ·17.5H ₂ O (3)15
Fig. S27. TG-DTG curve of K ₅ [La ₃ (CO ₃)(EDTA) ₃ (H ₂ O) ₃] 13.5H ₂ O (4)16
Fig. S28. TG-DTG curve of K ₅ [Ce ₃ (CO ₃)(EDTA) ₃ (H ₂ O) ₃] 13.5H ₂ O (5)16
Fig. S29. The X-ray diffraction patterns of the conventional bulk La ₂ O ₃ (before and after catalytic reactions)
Fig. S30. Reaction of K[La(EDTA)(H ₂ O)] 5H ₂ O with atmospheric CO ₂ monitored by 13 C NMR. (a) The spectrum of the sample was recorded after 12 hours. (b) The spectrum of the sample was recorded after 1 day. (c) The spectrum of the sample was recorded after 2 days. (d) The spectrum of the sample was recorded after 4 days
Table S1. Crystal data and structure refinements for 1 ~ 5.
Table S2. Selected bond lengths for 1 ~ 5 and K[La(EDTA)(H ₂ O) ₃] 5H ₂ O, {[La(EDTA)(H ₂ O)] ₂] _n , [La(EDTA)(H ₂ O) ₃] 5H ₂ O, Na[Ce(EDTA)(H ₂ O) ₃] 5H ₂ O, N ₂ H ₅ [Ce(edta)(H ₂ O) ₃] 4H ₂ O, [La(CO ₃)(OH)] _n , La(CO ₃)(OH), LaCl(CO ₃) 3H ₂ O, Na _{12n} [La(edta)CO ₃] _{4n} 8nNaCl 4nH ₂ O, Na ₈ [(CO ₃) ₃ Ce] ₂ (μ - η^2 - η^2 -O ₂) ₂ ·12H ₂ O
Table S3. Comparisons of C–O bond lengths in complexes 1 ~ 5 and $[La(CO_3)(OH)]_n$, $La(CO_3)(OH)$, $LaCl(CO_3) 3H_2O$, $Na_{12n}[La(edta)CO_3]_{4n} 8nNaCl 4nH_2O$, $Na_{8}[(CO_3)_3Ce]_2(\mu-\eta^2-\eta^2-O_2)_2 12H_2O$, $\{[Ce_2(CO_3)(ox)_2(H_2O)_2] 3H_2O\}_n$, K_2CO_3 , free CO2. $Na_{12n}[La(edta)CO_3]_{4n} 8nNaCl 4nH_2O$, $\{[La_2(HL)_2(H_2O)_2(CO_3)](H_2O)_7\}_{\infty}$, $\{[Ce_2(CO_3)(ox)_2(H_2O)_2] 3H_2O\}_n$, K_2CO_3 , free CO2.
Table S4. ¹³ C NMR spectral data (in ppm) of complexes 1, 2, 4, K_2CO_3 , K_3Hcit , K_4EDTA , K_2Hmal , $K[La(EDTA)(H_2O)_3]$ 5H ₂ O
Table S5. The coordination number and the selected average bond length for $1 \sim 5$ and other lanthanide carbonate complexes (O _c are the coordinated O atoms by carbonate)22
Table S6. Comparisons of catalytic activity of the thermal decomposition products (T = $650 ^{\circ}$ C and 750 $^{\circ}$ C) from 1 , 2 , reported La ₂ O ₃ and La ₂ O ₂ CO ₃ towards the OCM reaction.
Table S7. Catalytic Performances of 1 , 2 and $La_2O_2CO_3$ –H, $La_2O_2CO_3$ –P, La_2O_3 , $BaCO_3/LaOBr$, $LaAlO_3$ _C, $La_2O_2CO_3$, $La_2O_2SO_4$, La_2O_3 for OCM

Fig. S1. Anion structure of trimeric complex $(NH_4)_5[La_3(CO_3)(EDTA)_3(H_2O)_3] \cdot 12H_2O$ (1) in 30% thermal ellipsoids.

Fig. S2. Anion structure of dimeric complex $Na_8[Ce_2(CO_3)_3(EDTA)_2]$ 17.5H2O (3) in 30% thermal ellipsoids.

Fig. S3. Anion structure of trimeric complex $K_5[Ce_3(CO_3)(EDTA)_3(H_2O)_3]$ 13.5H₂O (5) in 30% thermal ellipsoids.

Fig. S4. ¹H NMR spectrum of (NH₄)₅[La₃(CO₃)(EDTA)₃(H₂O)₃] ·12H₂O (1).

Fig. S5. ¹H NMR spectrum of $Na_8[La_2(CO_3)_3(EDTA)_2]$ ·17.5H₂O (2).

Fig. S6. ¹H NMR spectrum of $K_5[La_3(CO_3)(EDTA)_3(H_2O)_3]$ ·13.5H₂O (4).

Fig. S7. ¹H NMR spectrum of K₄EDTA.

Fig. S8. ¹H NMR spectrum of K[La(EDTA)(H₂O)₃] 5H₂O.

Fig. S9. Solution ¹³C NMR spectrum of (NH₄)₅[La₃(CO₃)(EDTA)₃(H₂O)₃] ·12H₂O (1).

Fig. S10. Solution ${}^{13}C$ NMR spectrum of Na₈[La₂(CO₃)₃(EDTA)₂] \cdot 17.5H₂O (2).

Fig. S11. Solution ¹³C NMR spectrum of K₅[La₃(CO₃)(EDTA)₃(H₂O)₃] ·13.5H₂O (4).

Fig. S12. Solution ¹³C NMR spectrum of (NH₄)₂CO_{3.}

Fig. S13. Solution ¹³C NMR spectrum of (NH₄)₂CO₃ in dimethylformamide-water.

Fig. S14. Solution ¹³C NMR spectrum of Na₂CO₃.

Fig. S15. Solution ¹³C NMR spectrum of Na₂CO₃ in dimethylformamide-water.

Fig. S16. Solution ¹³C NMR spectrum of K₂CO₃.

Fig. S17. Solution ¹³C NMR spectrum of K₂CO₃ in dimethylformamide-water.

Fig. S18. Solution ¹³C NMR spectrum of DMF.

Fig. S19. IR spectrum of (NH₄)₅[La₃(CO₃)(EDTA)₃(H₂O)₃] 12H₂O (1).

Fig. S20. IR spectrum of Na₈[La₂(CO₃)₃(EDTA)₂] 17.5H₂O (2).

Fig. S21. IR spectrum of $Na_8[Ce_2(CO_3)_3(EDTA)_2]$ 17.5H₂O (3).

Fig. S22. IR spectrum of K₅[La₃(CO₃)(EDTA)₃(H₂O)₃] ·13.5H₂O (4).

Fig. S23. IR spectrum of K₅[Ce₃(CO₃)(EDTA)₃(H₂O)₃] ·13.5H₂O (5).

Fig. S24. TG-DTG curve of (NH₄)₅[La₃(CO₃)(EDTA)₃(H₂O)₃] ·12H₂O (1).

Fig. S25. TG-DTG curve of Na₈[La₂(CO₃)₃(EDTA)₂] ·17.5H₂O (2).

Fig. S26. TG-DTG curve of Na₈[Ce₂(CO₃)₃(EDTA)₂] 47.5H₂O (3).

Fig. S27. TG-DTG curve of K₅[La₃(CO₃)(EDTA)₃(H₂O)₃] ·13.5H₂O (4).

Fig. S28. TG-DTG curve of K₅[Ce₃(CO₃)(EDTA)₃(H₂O)₃] ·13.5H₂O (5).

Fig. S29. The X-ray diffraction patterns of the conventional bulk La₂O₃ (before and after catalytic reactions).

Fig. S30. Reaction of K[La(EDTA)(H₂O)] 5H₂O with atmospheric CO₂ monitored by 13 C NMR. (a) The spectrum of the sample was recorded after 12 hours. (b) The spectrum of the sample was recorded after 1 day. (c) The spectrum of the sample was recorded after 2 days. (d) The spectrum of the sample was recorded after 4 days.

Compounds	1	2	3	4	5		
Chemical formulaC ₃₁ H _{78.5} La ₃ N ₁₁ O ₄₂		$C_{23}H_{38}La_2Na_8N_4O_{42.5}, C_{23}H_{41.5}Ce_2N_4Na_8O_{42.5}C_{31}H_{54}K_5La_3N_6O_{43.5}C_{31}H_{60.5}Ce_3K_5N_6O_{43.5}C_{4$					
Formula weight	1694.27	1512.31	1518.26	1819.03	1829.21		
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic	Monoclinic		
a/Å	13.8336(5)	12.4288(8)	12.416(2)	18.3281(1)	18.3813(7)		
$b/{ m \AA}$	17.2510(5)	14.3340(1)	14.310(2)	15.3082(6)	15.2765(6)		
$c/\text{\AA}$	27.2896(7)	16.0464(1)	16.017(3)	23.6676(1)	23.6607(9)		
α / °	94.969(2)	73.795(6)	73.825(1)	90	90		
eta/\circ	97.482(2)	85.301(5)	85.236(1)	104.899(5)	104.641(4)		
γ/°	99.709(3)	82.669(5)	82.697(1)	90	90		
Unit cell	6325.1(3)	2719.5(3)	2707.5(8)	6417.2(5)	6428.2(4)		
volume/Å ³							
Temperature/K			173				
Space group	P ī	<i>P</i> ī	<i>P</i> ī	<i>P</i> 2 ₁ /n	P21/n		
No. of formula	4	2	2	4	4		
units per unit cell	,						
Ζ							
No. of reflections	65391	24018	25042	35831	36008		
measured							
No. of	29117	12373	13550	14603	14908		
independent							
reflections							
Rint	0.0573	0.0611	0.1065	0.0695	0.0612		
Final R1 values	0.0501	0.0531	0.0800	0.0665	0.0614		
$(I>2\sigma(I))$							
Final $wR(F^2)$	0.0978	0.1086	0.1192	0.1290	0.1091		
values $(I > 2\sigma(I))$							
Final R1 values	0.0725	0.0737	0.1416	0.0993	0.0831		
(all data)							
Final $wR(F^2)$	0.1066	0.1217	0.1477	0.1438	0.1169		
values (all data)							
Goodness of fit	1.024	1.020	0.974	1.032	1.111		
on F^2							

Table S1. Crystal data and structure refinements for $1 \sim 5$.

Table S2. Selected bond lengths for 1 ~ 5 and K[La(EDTA)(H₂O)₃] 5H₂O, ${[La(EDTA)(H_2O)]_2}_n$, $[La(EDTA)(H_2O)_3]$ 5H₂O,Na[Ce(EDTA)(H_2O)_3] 4H_2O, $[La(CO_3)(OH)]_n$,La(CO_3)(OH),LaCl(CO_3) 3H_2O,Na_{12n}[La(edta)CO_3]_{4n} 8nNaCl 4nH₂O, Na₈[(CO₃)₃Ce]₂(μ - η^2 - η^2 -O₂)₂ ·12H₂O.

Compound	Ln-O-carbonate(av)	Ln-Oβ-carboxy(av)	Ln-N(av)
1	2.557(4)	2.579(4)	2.771(4)
2	2.581(3)	2.572(4)	2.785(4)
3	2.566(6)	2.553(6)	2.764(7)
4	2.576(5)	2.573(5)	2.766(6)
5	2.562(5)	2.557(4)	2.750(5)
$K[La(EDTA)(H_2O)_3] 5H_2O^1$		2.507(6)	2.755(6)
${[La(EDTA)(H_2O)]_2}_n^2$		2.555(3)	2.848(3)
$[La(EDTA)(H_2O)_3] 5H_2O^3$		2.507(6)	2.755(6)
$Na[Ce(EDTA)(H_2O)_3] 5H_2O^4$		2.49(2)	2.71(2)
$N_2H_5[Ce(edta)(H_2O)_3] 4H_2O^5$		2.471(3)	2.730(3)
[La(CO ₃)(OH)] ⁶	2.648(7)		
$La(CO_3)(OH)^7$	2.680 (5)		
LaCl(CO ₃) 3H ₂ O ⁸	2.612(2)		
$Na_{12n}[La(edta)CO_3]_{4n}$ 8nNaCl 4nH ₂	2.630(7)		2.829(7)
$\tilde{N}_{10}a_8[(CO_3)_3Ce]_2(\mu-\eta^2-\eta^2-O_2)_2 \cdot 12H_2O$	2.417(2)		

 Table S3. Comparisons of C–O bond lengths in complexes 1 ~ 5 and $[La(CO_3)(OH)]_n$,

 $La(CO_3)(OH)$,
 $LaCl(CO_3) 3H_2O$,
 $Na_{12n}[La(edta)CO_3]_{4n} 8nNaCl 4nH_2O$,

 $Na_8[(CO_3)_3Ce]_2(\mu-\eta^2-\eta^2-O_2)_2 \cdot 12H_2O$,
 $\{[La_2(HL)_2(H_2O)_2(CO_3)](H_2O)_7\}_{\infty}$,

 $\{[Ce_2(CO_3)(ox)_2(H_2O)_2] 3H_2O\}_n$,
 K_2CO_3 , free CO_2.

C	C O heideine		C. O. manual
Compound	C-O-bridging	C-O-unbridging	C–O-normal
1	1.315(6), 1.282(6), 1.275(6)		
2	1.309(6), 1.280(6), 1.273(6)	1.297(6), 1.302(6), 1.315(7) 1.272(6), 1.250(7), 1.293(6)	
3	1.293(9), 1.286(1), 1.278(1)	1.293(9), 1.304(9), 1.300(1) 1.278(1), 1.277(1), 1.294(9)	
4	1.303(8), 1.280(9), 1.272(8)		
5	1.301(7), 1.298(8), 1.265(8)		
$[La(CO_3)(OH)]_n^6$	1.308(2),1.291(1),1.291(1)		
$La(CO_3)(OH)^7$	1.265(5) - 1.294(3)		
LaCl(CO ₃) 3H ₂ O ⁸	1.277(3), 1.278(3), 1.284(4)		
Na _{12n} [La(edta)CO ₃] _{4n} 8nN	1 270(9) 1 270(9) 1 210(1)		
aCl 4nH ₂ O ⁹	1.270(8),1.270(8),1.310(1)		
Na ₈ [(CO ₃) ₃ Ce] ₂ (μ - η^2 - η^2 -O		1 0(0(2) 1 004(2) 1 200(2)	
2)2 12H2O ¹⁰		1.200(3),1.294(3),1.308(3)	
${[La_2(HL)_2(H_2O)_2(CO_3)]}($	1 270(9) 1 270(9) 1 294(1)		
$H_2O_7\}_{\infty}^{11}$	1.270(8),1.270(8),1.284(1)		
${[Ce_2(CO_3)(ox)_2(H_2O)_2] 3}$	1 260(0) 1 297(0) 1 202(0)		
$H_2O_{n}^{12}$	1.209(9),1.287(9),1.293(9)		
K ₂ CO ₃ ¹³			1.250
free CO ₂ ¹⁴			1.160

Compound	Coordination number	Ln-O _c (av)	C–O _c (av)
1	10	2.557(4)	1.290(6)
2	10	2.581(3)	1.287(6)
3	10	2.566(6)	1.286(6)
4	10	2.576(5)	1.285(8)
5	10	2.562(5)	1.288(8)
LaCl[CO ₃] 3H ₂ O ⁸	10	2.612(2)	1.280(3)
Na _{12n} [La(edta)CO ₃] _{4n} 8nNaCl 4nH ₂ O ⁹	10	2.630(7)	1.283(6)
$[Eu_2(CO_3)(ox)_2(H_2O)_2] 4H_2O^{15}$	9	2.493(5)	1.280(9)
$[C(NH_2)]_3[Pr(CO_3)_4(H_2O)] 2H_2O^{16}$	9	2.502(30)	1.299(14)
$[C(NH_2)]_3[Lu(CO_3)_4] 2H_2O^{16}$	8	2.311(12)	1.304(12)
[C(NH ₂) ₃] ₃ [Er(EDTA)(CO ₃)] H ₂ O ¹⁷	8	2.329(2)	1.299(5)
$[C(NH_2)]_6[Eu_2(L)_2(CO_3)_2]$ 8H ₂ O ¹⁸	8	2.432(4)	1.290(9)

Table S4. The coordination number and the selected average bond length for $1 \sim 5$ and otherlanthanide carbonate complexes (Oc are the coordinated O atoms by carbonate).

Compound	CO3 ²⁻	-CH ₂ N	-NCH ₂ CO ₂	-CO ₂
1	173.5(2.9)	54.3(0.6), 57.3(3.6)	60.7(0.6), 64.5(4.4)	182.9(4.4)
2	171.6(1.0)	55.6(1.9)	63.0(2.9)	182.6(4.1)
4	171.0(0.4)	56.1(2.4) 63.4(3.3)		182.7(4.2)
CO ₃ ²⁻	170.6			
[EDTA] ⁴⁻		53.7	60.1	178.5
[La(EDTA)(H ₂ O) ₃] ⁻		57.2(3.5)	64.4(4.3)	183.0(4.5)
Solid				
1		58.8. 52.4	63.6, 61.3	183.0, 180.8, 177.2
2	171.1, 169.8	59.0, 55.5, 52.9, 51.9	63.6, 62.7, 61.9, 60.6	181.3, 180.7, 179.4, 178.5
4	170.2	58.5, 57.4, 55.1, 51.7	68.2, 64.6, 62.9, 60.1	184.5, 182.1, 180.3, 177.7

Table S5. ¹³C NMR spectral data (in ppm) of complexes **1**, **2**, **4**, K₂CO₃, K₃Hcit, K₄EDTA, K₂Hmal, K[La(EDTA)(H₂O)₃] 5H₂O.

Sample	T/ °C	Conv CH4/%	Sel C2/%	Yield C2/%	Sample	T/ °C	Conv CH4/%	Sel C2/%	Yield C2/%
1(650 °C)	550	17.8	20.6	3.7	La ₂ O ₃ ¹⁹ (650 °C)	550	23.2	34.6	8.0
	600	26.4	24.6	6.5		600	26.5	42.0	11.1
	650	38.2	29.1	11.1		650	28.1	44.2	12.4
	700	41.5	32.2	13.4		700	27.2	45.7	12.4
	750	43.1	32.5	14.0		750	29.6	45.4	13.4
1(750 °C)	550	28.5	43.7	12.5	La ₂ O ₂ CO ₃ ²⁰ (650 °C)	550	0.0	0.0	0.0
	600	29.3	46.1	13.5		600	13.1	28.4	3.7
	650	29.8	49.2	14.6		650	17.4	42.4	7.4
	700	31.6	46.0	14.5		700	23.0	45.8	10.5
	750	31.1	45.7	14.2		750	29.6	46.6	13.8
2 (650 °C)	550	0	0	0					
	600	1.7	0	0					
	650	3.1	49.1	1.5					
	700	4.5	57.9	2.6					
	750	8.4	63.6	5.3					

Table S6. Comparisons of catalytic activity of the thermal decomposition products (T = 650 °C and 750 °C) from **1**. **2**, reported La₂O₃ and La₂O₂CO₃ towards the OCM reaction.

Table S7. Catalytic Performances of **1**, **2** and La₂O₂CO₃–H, La₂O₂CO₃–P, La₂O₃, BaCO₃/LaOBr, LaAlO₃_C, La₂O₂CO₃, La₂O₂SO₄, La₂O₃ for OCM.

Sample	T/ °C	Conv CH4/%	Sel C2/%	Yield C2/%
1	750	43.1	32.5	14.0
2	750	8.4	63.6	5.3
$La_2O_2CO_3\!\!-\!\!H^{21}$	500	30.5	48.6	14.8
$La_2O_2CO_3-P^{21}$	500	26.8	29.1	7.8
$La_2O_3{}^{22}$	750	24.1	28.1	6.8
BaCO ₃ /LaOBr ²²	750	29.1	46.8	13.6
LaAlO ₃ _C ²³	750	24	50	
$La_2O_2CO_3^{24}$	750	30.1	46.6	
$La_2O_2SO_4{}^{24}$	750	26.5	43.2	
$La_2O_3^{25}$	700	30	47	

References

- 1. J. L. Hoard, Byungkook Lee and M. D. Lind, J. Am. Chem. Soc., 1965, 87, 1612–1613.
- 2. D. B. Xiong, H. H. Chen, X. X. Yang and J. T. Zhao, *Inorg. Chim. Acta*, 2007, **360**, 1616–1620.
- 3. J. L. Hoard, B. Lee and M. D. Lind, J. Am. Chem. Soc., 1965, 87, 1612–1613.
- 4. M. G. B. Drew, M. R. S. Foreman, M. J. Hudson and K. F. Kennedy, *Inorg. Chim. Acta*, 2004, **357**, 4102–4112.
- 5. R. Ragul and B. N. Sivasankar, J. Chem. Crystallogr., 2011, **41**, 1273–1279.
- 6. K. Michiba, T. Tahara, I. Nakai, R. Miyawaki and S. Matsubara, Z. Kristall., 2011, 226, 518–530.
- 7. M. Haemmer and H. A. Hoeppe, *Z.Naturforsch.(B)*, 2019, **74**, 59–70.
- 8. O. Reckeweg, F. Lissner, B. Blaschkowski, A. Schulz and T. Schleid, *Z.Naturforsch.(B)*, 2018, **73**, 661–667.
- 9. S. Y. Wang, S. Gao, J. W. Dai, Y. R. Shi, X. Dong, W. Z. Weng and Z. H. Zhou, *Dalton Trans.*, 2019, **48**, 2959–2966.
- L. E. Sweet, J. F. Corbey, F. Gendron, J. Autschbach, B. K. McNamara, K. L. Ziegelgruber, L. M. Arrigo, S. M. Peper and J. M. Schwantes, *Inorg. Chem.*, 2017, 56, 791–801.
- 11. J. Zhao, L. S. Long, R. B. Huang and L. S. Zheng, *Dalton Trans.*, 2008, DOI: 10.1039/b806615a, 4714–4716.
- 12. Q. Tang, Y. L. Yang, N. Zhang, Z. Liu, S. H. Zhang, F. S. Tang, J. Y. Hu, Y. Z. Zheng and F. P. Liang, *Inorg. Chem.*, 2018, **57**, 9020–9027.
- 13. H. Y. Becht and R. Struikmans, *Acta Cryst*, 1976, **32**, 3344–3346.
- 14. V. S. Mastryukov and J. E. Boggs, J. Mol. Struct., 1993, 300, 141–147.
- 15. Q. Tang, Y. Liu, S. Liu, D. He, J. Miao, X. Wang, G. Yang, Z. Shi and Z. Zheng, *J. Am. Chem. Soc.*, 2014, **136**, 12444–12449.
- 16. R. Janicki, P. Starynowicz and A. Mondry, *Eur. J. Inorg. Chem.*, 2011, **2011**, 3601–3616.
- 17. R. Janicki and A. Mondry, *Inorg. Chem. Front.*, 2019, **6**, 153–163.
- 18. J. Galezowska, R. Janicki, H. Kozlowski, A. Mondry, P. Mlynarz and L. Szyrwiel, *Eur. J. Inorg. Chem.*, 2010, 2010, 1696–1702.
- 19. M. L. Chen, S. Gao and Z. H. Zhou, *Dalton Trans.*, 2012, **41**, 1202–1209.
- M. L. Chen, Y. H. Hou, W. S. Xia, W. Z. Weng, Z. X. Cao, Z. H. Zhou and H. L. Wan, *Dalton Trans.*, 2014, 43, 8690–8697.
- 21. Y. H. Hou, W. C. Han, W. S. Xia and H. L. Wan, ACS Catal., 2015, 5, 1663–1674.
- 22. C. T. Au, H. He, S. Y. Lai and C. F. Ng, J. Catal., 1996, 163, 399-408.
- 23. G. Lee, I. Kim, I. Yang, J.-M. Ha, H. B. Na and J. C. Jung, *Appl. Surf. Sci.*, 2018, **429**, 55–61.
- Y. C. Guo, Y. H. Hou, X. Dong, Y. C. Yang, W. S. Xia, W. Z. Weng and Z. H. Zhou, *Inorg. Chim. Acta*, 2015, 434, 221–229.
- 25. P. Huang, Y. Zhao, J. Zhang, Y. Zhu and Y. Sun, *Nanoscale*, 2013, **5**, 10844–10848.