Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Coumarin 102 excitation in aqueous solution: contributions of vibronic coupling and hydration Evgeniy S. Savenko and Victor V. Kostjukov

SUPPLEMENTARY MATERIAL

Functional choice

It is known that all three values of E_{vert} , E_{adia} , and E_{vibron} are largely determined by the X fraction of the "exact" Hartree-Fock exchange: with X increasing, as a rule, and the values of these three energies grow also [78,79]. The comparison with the experimental energy E_{max} should not be E_{vert} (as was for the C102 case in Refs. [35,43,45,47,49,57–60], but E_{vibron} [80]). It is known from the just-mentioned theoretical works on C102 that the absorption spectrum of its solutions in the visible range consists of one band due to the singlet HOMO→LUMO ($S_0 \rightarrow S_1$) transition of $\pi \rightarrow \pi^*$ type. As an initial approximation, we used the most popular B3LYP functional with X=20% [81]. However, it gave the $E_{vibron}=2.95$ eV value underestimated compared with the experimental $E_{max}=3.16$ eV energy (Table S1).

Table S1. Calculated energies and corresponding wavelengths (vertical, adiabatic and maxima of vibronic absorption spectra) for C102 absorption in aqueous media. The X portion of the exact Hartree-Fock exchange is shown in parentheses

Functional	λ_{vert} (nm)	$E_{\rm vert} ({\rm eV})$	λ_{adia} (nm)	$E_{\rm adia}({\rm eV})$	$\lambda_{\rm vibron} (\rm nm)$	$E_{\rm vibron}~({\rm eV})$
B3LYP (20)	381	3.25	414	3.00	420	2.95
BMK (42)	341	3.64	376	3.30	377	3.29
M05 (28)	364	3.41	391	3.17	394	3.15
MN15 (44)	348	3.56	385	3.22	385	3.22
PBE0 (25)	366	3.39	398	3.12	404	3.07

Therefore, after that, several functionals with *X* larger values were applied, of which the M05 functional [82] gave excellent agreement with the experiment (see Table 1). The vibronic absorption spectrum of C102, calculated at the M05/(6-31++G(d,p)/IEFPCM theory level, in its shape also coincides well with the experimental one (Fig. 2). Therefore, further analysis will be carried out at this theory level.

#	Transition	λ (nm)	E (eV)	v (cm ⁻¹)	$\frac{I}{(\text{cm}^{-1}/(\text{molecule}\cdot\text{cm}^{-2}))}$	<i>p</i> (atomic units)	Vibration definition
1	$0_0 \rightarrow 0^0$	404	3.07	0	14250	2.79	-
2	$0_0 \rightarrow 7^1$	402	3.09	168	483	0.0941	Flexural vibration of the chromophore perpendicular to its plane
3	$0_0 \rightarrow 14^1$	399	3.11	338	1631	0.315	Compression-stretching of a chromophore along its long (B-C-D) axis
4	$0_0 \rightarrow 21^1$	396	3.13	500	2663	0.511	Compression-stretching of a perpendicular to its long axis
5	$0_0 \rightarrow 22^1$	396	3.13	522	465	0.0892	Shear vibration of a chromophore along its long axis
6	$0_0 \rightarrow 25^1$	395	3.14	586	529	0.101	Shear vibrations of C and D rings
7	$0_0 \rightarrow 52^1$	386	3.21	1198	958	0.179	Pendulum vibrations of hydrogen atoms
8	$0_0 \rightarrow 83^1$	381	3.26	1558	775	0.143	Compression-stretching of C and D rings
9	$0_0 \rightarrow 85^1$	378	3.28	1724	1798	0.329	Compression-stretching of carbonyl C=O bond

Table S2. Parameters of vibronic transitions of C102 excitation in an aqueous media

 λ is the wavelength, *E* is the energy of the vibronic transition, *v* is the vibration frequency, *I* is the line intensity, and *p* is the dipole strength

	Gr	ound state ($\overline{S_0}$	Equilibri	um excited	state (S ₁)
Atom	X	Y	Z	X	Y	Z
0	-2.00626	-1.38851	0.022638	-2.00749	-1.39995	0.044042
С	-1.01206	-0.4495	0.018273	-1.02273	-0.45602	0.030233
С	-1.33107	0.920412	0.006721	-1.33006	0.932038	0.018384
С	-2.71662	1.3056	-0.01053	-2.7089	1.340524	-0.00541
С	-3.67387	0.327649	-0.00966	-3.67782	0.324405	-0.02389
С	-3.34357	-1.06967	0.008879	-3.37287	-1.05645	0.000013
С	0.292918	-0.93799	0.028063	0.27719	-0.93912	0.029652
С	1.357795	-0.00198	0.044033	1.361082	0.008428	0.05884
С	1.068181	1.399626	0.044762	1.08933	1.40794	0.050861
С	-0.24614	1.818693	0.015834	-0.23109	1.832319	0.021099
Ν	2.661009	-0.43879	0.036811	2.653014	-0.45075	0.084849
С	3.761896	0.493264	0.237512	3.771548	0.471438	0.226075
С	3.487887	1.82565	-0.42841	3.500582	1.799144	-0.44899
С	2.188735	2.407271	0.101712	2.21497	2.401704	0.08973
С	0.550334	-2.42254	0.027616	0.538551	-2.41616	0.029155
С	1.966178	-2.7416	-0.42211	1.944706	-2.73954	-0.44108
С	2.959095	-1.84191	0.283683	2.947776	-1.86343	0.276477
C	-3.10335	2.750485	-0.02921	-3.07634	2.784804	-0.02495
0	-4.13133	-2.00596	0.014267	-4.1489	-2.02181	-0.00559
Н	-0.4443	2.886205	0.01068	-0.43001	2.898734	0.008549
Н	-4.73047	0.567872	-0.02229	-4.73438 0.572007		-0.05141
Н	2.957009	-2.04417	1.366487	2.944038	-2.08031	1.357694
Н	3.972428	-2.03344	-0.07764	3.961826	-2.04101	-0.0852
Н	2.059521	-2.5963	-1.50362	2.032492	-2.57809	-1.52041
Н	2.207465	-3.7871	-0.21321	2.183603	-3.78775	-0.24673
Н	0.381603	-2.82181	1.035949	0.39119	-2.80069	1.048086
Н	-0.17564	-2.92388	-0.6173	-0.20671	-2.91994	-0.58971
Н	1.907826	3.304668	-0.45663	1.936571	3.294679	-0.47664
Н	2.335885	2.724974	1.141958	2.369745	2.730808	1.126145
Н	3.424602	1.682248	-1.51255	3.425125	1.646685	-1.5308
Н	4.322908	2.504773	-0.2374	4.348969	2.464228	-0.27184
Н	4.660776	0.034625	-0.18283	4.653177	-0.01482	-0.19604
Н	3.945499	0.636491	1.314138	3.965706	0.619134	1.301003
Н	-4.1869	2.867801	-0.04601	-4.16041	2.912102	-0.04191
Н	-2.71425	3.269593	0.851611	-2.69096	3.319654	0.854052
Н	-2.68836	3.253923	-0.90725	-2.66552	3.301751	-0.90361

Table S3. Cartesian coordinates (Å) of C102 molecule

Table S4. Cartesian coordinates (Å) of the "C102+H₂O (A)" system

Atom	Ground state (S ₀)						
Atom	X	Y	Ζ				
0	2.190727	-1.41242	-0.07434				
С	1.230098	-0.44106	-0.10667				
С	1.584932	0.914004	-0.01165				
С	2.97924	1.254084	0.136484				
С	3.899836	0.246012	0.171654				
С	3.530333	-1.14	0.06273				
С	-0.08676	-0.88478	-0.24229				
С	-1.11182	0.086159	-0.29425				
С	-0.78584	1.472847	-0.23131				
С	0.536335	1.847938	-0.08104				
N	-2.44681	-0.31583	-0.36249				
С	-3.44519	0.669416	-0.7815				
С	-3.24112	1.993408	-0.075				
С	-1.85247	2.531106	-0.37369				
С	-0.37112	-2.36015	-0.35828				
С	-1.83869	-2.68238	-0.13049				
С	-2.72239	-1.67356	-0.83287				
С	3.403624	2.683262	0.24833				
0	4.289	-2.09801	0.07949				
0	-3.33662	-0.54846	2.521181				
Н	0.766284	2.907602	-0.02852				
H	4.958721	0.448138	0.281956				
Н	-2.5785	-1.72874	-1.92328				
H	-3.77642	-1.8812	-0.63244				
H	-2.0663	-2.6783	0.940329				
Н	-2.06865	-3.68508	-0.49984				
Н	-0.06499	-2.69982	-1.35573				
Н	0.253473	-2.91369	0.347346				
Н	-1.61855	3.379988	0.274914				
H	-1.8281	2.915356	-1.40116				
Н	-3.37426	1.855489	1.002908				
Н	-4.00602	2.700694	-0.40597				
Н	-4.42838	0.254539	-0.54467				
H	-3.40306	0.80697	-1.87327				
Н	4.484335	2.764933	0.363337				
H	3.107897	3.247673	-0.64096				
H	2.927238	3.165149	1.107031				
Н	-2.95648	-0.47363	1.629625				
H	-2.59942	-0.80191	3.084242				

Ground state (S_0) Equilibrium excited state (S_1) Atom Χ Y Ζ Χ Y Ζ -2.09788-3.19518 -2.12401 С -3.21584 -0.28401 -0.27952 Ν -3.07238 -0.66946 -0.04142 -3.06148 -0.68709 -0.08571С -1.82644-0.09296 -0.04726 -1.83055 -0.08464 -0.05826С -0.6649 -0.90669 -0.03118 -0.64659 -0.90452 -0.03314 С -0.75731 -2.41038 -0.031 -0.73903 -2.40103 -0.03222-2.09966 0.420972 С -2.12906 -2.88231 -2.88194 0.43722 С -1.69226 1.332853 -0.04803 -1.71832 1.335874 -0.04817С -0.43324 1.894521 -0.01854 -0.45387 1.90532 -0.02259 С 0.744407 1.120609 -0.00880.738613 1.135457 -0.02356 С 0.576537 -0.27608-0.02044 0.590471 -0.27509 -0.03586 -1.0994 -0.02362 1.676419 -1.10362 -0.05054Ο 1.670117 -0.60543 С 2.982257 2.954055 -0.63342 -0.00787-0.01333 С 3.137188 0.786247 0.010123 3.139082 0.797179 0.008475 С 2.077304 1.654922 0.009471 2.065369 1.699121 -0.00357 0.135071 -4.27873 С -4.27281 -0.22684 0.103193 -0.21378 С -4.1406 1.490473 0.435711 -4.154681.45146 0.463485 С -2.94888-2.91742 2.20948 -0.10572 2.19645 -0.08105С 2.304639 3.132781 0.027653 2.266267 3.175057 0.013859 -0.01129 -0.01015 0 3.841528 -1.485853.866916 -1.48416Ο 6.54022 -0.68359 0.009729 6.536403 -0.70709 0.041142 1.15959 Η 4.161349 1.140674 0.023712 4.162291 0.030957 Η 3.368681 3.36814 0.044011 3.328663 3.425278 0.027252 0.905646 Η 1.83688 3.587562 1.801295 3.642477 0.893273 3.605461 3.661248 Η 1.860318 -0.85311 1.819151 -0.86426 Η -0.3538 2.977262 -0.01346 -0.3762 2.987355 -0.00894Η -2.7353.136621 0.444609 -2.770543.11459 0.485318 Η 2.500469 -1.14747-3.14503 2.506435 -1.11625 -3.10366 Η -4.05344 1.357453 1.519484 -4.05603 1.306133 1.544357 Η -5.04655 2.073385 0.250504 -5.07397 2.016509 0.292998 Η -4.48427 0.255371 -1.3009-4.49711 0.230202 -1.286460.204851 Η -5.10952 -0.42037 -5.09578 -0.48125 0.213802 Η -4.20118 -2.39785 0.080513 -4.18267 -2.41521 0.08162 -3.19445 -2.30032 -1.36634 -3.16682 -2.33651 Η -1.361 Η -2.25439 -3.9480.212802 -2.21792 -3.95003 0.241081 Η -2.23617 -2.74746 1.502504 -2.20518 -2.73319 1.516719 -0.54748-2.78826 Η -1.03979 -0.54835-2.7652-1.051490.019983 -2.82912 0.613008 0.058215 -2.81776 0.586526 Η Η 5.617951 -1.001010.000662 5.602861 -1.00183 0.023291 Η 7.080848 -1.47664-0.03537 7.056118 -1.51504 0.03964

Table S5. Cartesian coordinates (Å) of "C102+H₂O (B)"

Table S6. Cartesian coordinates (Å) of the "C102+ $2H_2O(A+B)$ " system

		2 1120 (1112) system				
Atom	Ground state (S_0)						
Atom	X	Y	Ζ				
0	1.879565	-1.08685	-0.12962				
С	0.812142	-0.23155	-0.13904				
С	1.012761	1.154125	-0.03573				
С	2.359736	1.648983	0.095105				
С	3.390429	0.75062	0.104967				
С	3.171364	-0.66212	-0.0122				
С	-0.44556	-0.82323	-0.26115				
С	-1.57541	0.025044	-0.29127				
С	-1.40867	1.440175	-0.219				
С	-0.13682	1.962993	-0.08199				
Ν	-2.85526	-0.5252	-0.34866				
С	-3.96617	0.342281	-0.74511				
С	-3.90537	1.675177	-0.02884				
С	-2.59101	2.370376	-0.33848				
С	-0.56131	-2.32042	-0.38595				
С	-1.97892	-2.80848	-0.13802				
С	-2.98228	-1.90404	-0.82135				
С	2.621839	3.115281	0.216626				
0	4.035777	-1.53548	-0.01771				
0	-3.70646	-0.85812	2.543282				
0	6.760667	-0.84223	0.203397				
Н	5.830298	-1.12266	0.125868				
Н	7.271114	-1.65622	0.192733				
Н	-0.02796	3.041341	-0.0224				
Н	4.42136	1.071104	0.20081				
Н	-2.85047	-1.93847	-1.91398				
Н	-4.0026	-2.2304	-0.6059				
Н	-2.18802	-2.83536	0.936267				
Н	-2.09904	-3.82921	-0.50986				
Н	-0.23519	-2.6159	-1.39102				
Н	0.13335	-2.80423	0.305274				
Н	-2.44744	3.235137	0.315295				
Н	-2.62319	2.763045	-1.36253				
Н	-4.00833	1.514567	1.049198				
Н	-4.74988	2.293167	-0.34446				
Н	-4.89176	-0.18466	-0.49912				
Н	-3.95527	0.491588	-1.83596				
Н	3.688334	3.318458	0.311168				
Н	2.244308	3.65107	-0.65914				
Н	2.111666	3.529791	1.090902				
Н	-3.33274	-0.74653	1.653347				
Н	-2.9587	-1.09903	3.097887				

Table S7. Cartesian coordinates (Å) of the "C102+3H₂O (A+2B)" system

	$Ground state (S_0)$						
Atom	X	Y	Z				
0	2.175555	-1.41719	-0.08739				
С	1.216693	-0.43911	-0.11669				
С	1.576021	0.909871	-0.0142				
С	2.963877	1.244445	0.137611				
С	3.883331	0.237875	0.167127				
С	3.508317	-1.13469	0.050872				
С	-0.09474	-0.87676	-0.25456				
С	-1.11437	0.096507	-0.30194				
С	-0.78215	1.479239	-0.23478				
С	0.535732	1.849283	-0.07938				
N	-2.44177	-0.29758	-0.37683				
C	-3.45092	0.689532	-0.74806				
С	-3.22417	1.997794	-0.02202				
C	-1.84757	2.536744	-0.36842				
С	-0.38587	-2.34925	-0.37167				
С	-1.85355	-2.65876	-0.12754				
С	-2.73025	-1.651	-0.8386				
С	3.388313	2.668908	0.259027				
0	4.264633	-2.0979	0.062631				
0	-3.16332	-0.55626	2.546252				
0	7.099842	-1.60591	0.180367				
Н	6.153189	-1.82423	0.082518				
Н	7.560423	-2.34089	-0.2342				
Н	0.77317	0.77317 2.906755					
Н	4.941301	0.440969	0.280881				
Н	-2.58559	-1.71938	-1.92811				
Н	-3.78652	-1.84524	-0.6365				
Н	-2.07218	-2.63054	0.94509				
H	-2.09322	-3.66448	-0.48199				
Н	-0.09604	-2.68883	-1.37419				
Н	0.241424	-2.90684	0.32889				
Н	-1.58979	3.395912	0.257288				
Н	-1.85652	2.898789	-1.40456				
Н	-3.31076	1.83461	1.057714				
Н	-4.00149	2.71032	-0.30988				
Н	-4.42504	0.265871	-0.48991				
Н	-3.44241	0.853643	-1.83694				
Н	4.469432	2.744016	0.381721				
Н	3.095045	3.23629	-0.63004				
Н	2.902782	3.146819	1.115742				
Н	-2.88902	-0.46699	1.616671				
Н	-2.92915	-1.46162	2.772235				
0	4.427679	-4.98172	-0.03415				
H	4.253534	-4.02205	0.011642				
H	3.558913	-5.39294	-0.01543				

Table S8. Cartesian coordinates (Å) of "C102+2H₂O (2B)"

Atom	Gr	ound state (S ₀)	Equilibrium excited state (S ₁)			
Atom	X	Y	Ζ	X	Y	Ζ	
0	1.571572	0.624336	-0.02396	1.576542	0.629696	-0.00238	
С	0.376262	-0.04406	-0.00613	0.388842	-0.04679	0.007086	
С	0.357844	-1.45093	0.001722	0.346695	-1.4615	0.017845	
С	1.606211	-2.15683	-0.02258	1.588707	-2.19951	-0.00874	
С	2.774186	-1.43638	-0.0481	2.770638	-1.44872	-0.05011	
С	2.774523	-0.01002	-0.04603	2.795275	-0.0407	-0.04864	
С	-0.76699	0.748846	0.004485	-0.75157	0.745885	0.000709	
С	-2.02684	0.098301	0.046837	-2.03429	0.093629	0.054777	
С	-2.08434	-1.33345	0.068781	-2.11423	-1.32861	0.071049	
С	-0.91345	-2.05975	0.034381	-0.93775	-2.06293	0.042993	
Ν	-3.18286	0.835734	0.047873	-3.17112	0.857831	0.088048	
С	-4.48003	0.203132	0.250441	-4.48171	0.241458	0.247526	
С	-4.53615	-1.16727	-0.39147	-4.55136	-1.12162	-0.40769	
С	-3.41548	-2.03561	0.152858	-3.44893	-2.01485	0.13303	
С	-0.65592	2.250944	-0.02567	-0.6397	2.240017	-0.0376	
С	-1.95895	2.894382	-0.46942	-1.93028	2.890461	-0.50037	
С	-3.13052	2.275053	0.263619	-3.10652	2.30391	0.248308	
С	1.637559	-3.65152	-0.02174	1.589981	-3.68869	-0.00422	
0	3.770864	0.722905	-0.06131	3.79442	0.717096	-0.07808	
0	6.380736	-0.36833	-0.02953	6.385653	-0.32756	-0.06976	
Н	5.491702	0.029603	-0.01597	5.481432	0.043689	-0.0539	
Н	6.86223	0.068344	0.67827	6.849389	0.110312	0.648834	
Н	-0.98056	-3.14317	0.044558	-1.00642	-3.14564	0.048193	
Н	3.742343	-1.92237	-0.06722	3.737368	-1.94135	-0.08001	
Н	-3.06696	2.491366	1.341386	-3.03305	2.534446	1.323742	
Н	-4.07192	2.697589	-0.0952	-4.0511	2.717766	-0.10763	
Н	-2.09886	2.756385	-1.54672	-2.07191	2.733885	-1.57451	
Н	-1.93763	3.970611	-0.2801	-1.89985	3.968629	-0.32808	
Н	-0.37983	2.61663	0.971781	-0.38198	2.598468	0.969128	
Н	0.15898	2.548054	-0.69096	0.195485	2.528309	-0.67956	
Н	-3.36545	-2.98816	-0.38165	-3.40438	-2.95596	-0.42171	
Н	-3.62761	-2.28054	1.201464	-3.66977	-2.28185	1.17513	
Н	-4.44192	-1.06356	-1.4778	-4.45134	-1.00747	-1.49212	
Н	-5.51016	-1.62065	-0.19033	-5.53571	-1.55422	-0.21478	
Н	-5.23653	0.860227	-0.18622	-5.21917	0.924605	-0.1781	
Н	-4.69825	0.128954	1.327117	-4.69655	0.162368	1.325422	
Н	2.661311	-4.02449	-0.0435	2.609071	-4.07898	-0.02629	
Н	1.143731	-4.04983	0.869249	1.09391	-4.09689	0.887136	
Н	1.105536	-4.05176	-0.88956	1.054091	-4.10189	-0.87023	
0	3.416701	3.536651	0.089842	3.440839	3.490075	0.127312	
Н	3.499974	2.566991	0.037832	3.518568	2.517777	0.056642	
Н	2.56338	3.686045	0.5062	2.597339	3.635973	0.563937	

T	Гab	le S9. Para	meters	of vibr	onic tra	ansitions	of "C102+	H ₂ O (B)"	system	excitation	in an ag	lueous	media

		2	F	12	Ι	р	
#	Transition	(nm)	L (eV)	(cm^{-1})	(cm ⁻¹ /	(atomic	Vibration definition
		(IIIII)	$(\mathbf{c}\mathbf{v})$	(cm)	$(molecule \cdot cm^{-2}))$	units)	
1	$0_0 \rightarrow 0^0$	409	3.03	0	11670	2.31	-
				21.2			Pendulum vibration of bound water in
2	$0_0 \rightarrow 2^1 5^1$	408	3.04	51.2	462	0.0912	the plane of the chromophore;
				00.0			torsional vibration of B ring
2	$0 \sim 10^{1}$	404	2.07	242	1/25	0.280	Compression-stretching of the
3	00→18	404	5.07	542	1455	0.280	chromophore along its long axis
							Compression-stretching of the
4	$0_0 \rightarrow 26^1$	401	3.09	501	2233	0.434	chromophore perpendicular to its long
							axis
5	0	401	2 10	522	161	0.0000	Shear vibration of a chromophore
3	$0_0 \rightarrow 27$	401	5.10	323	404	0.0900	along its long axis
6	0×60^{1}	200	2 10	1012	790	0.140	Compression-stretching of the C and
0	0 ₀ →00	390	5.18	1215	789	0.149	D rings
							Compression-stretching of the
7	0 .021	202	2 24	1712	1416	0.262	carbonyl bond and the corresponding
/	$0_0 \rightarrow 92^{\circ}$	382	3.24		1410	0.202	tracking oscillations of the angle of the
							bound water molecule

Table S10. Parameters of vibronic transitions of "C102+2H₂O (2B)" system photoexcitation in an aqueous media

#	Transition	λ (nm)	E (eV)	v (cm ⁻¹)	$\frac{I}{(\text{cm}^{-1}/(\text{molecule}\cdot\text{cm}^{-2}))}$	<i>p</i> (atomic units)	Vibration definition
1	$0_0 \rightarrow 0^0$	414	2.99	0	12370	2.48	-
2	$0_0 \rightarrow 3^1$	414	3.00	27.2	708	0.142	Pendulum vibration of the water molecules in the plane of the chromophore
3	$0_0 \rightarrow 9^1$	412	3.01	108.9	554	0.111	Flexural vibration of the chromophore perpendicular to its plane
4	$0_0 \rightarrow 22^1$	408	3.04	343	1453	0.287	Compression-stretching of the chromophore along its long axis
5	$0_0 \rightarrow 31^1$	406	3.06	502	2511	0.493	Compression-stretching of the chromophore perpendicular to its long axis
6	$0_0 \rightarrow 32^1$	405	3.06	524	585	0.115	Sheared vibration of the chromophore along its long axis
7	$0_0 \rightarrow 66^1$	394	3.15	1214	847	0.162	Sheared vibrations of C and D rings
8	$0_0 \rightarrow 99^1$	387	3.21	1702	1440	0.270	Compression-stretching of the carbonyl group and the corresponding tracking vibrations of the angles of bound water molecules

Fig. S1. IR spectra of C102 in aqueous media. Vibrations involved in vibronic transitions are shown with red arrows

Fig. S2. IR spectra of the "C102+H₂O (B)" system in aqueous media. Here and in the following IR spectra, the region of pendulum vibrations of a water molecule relative to C102 and vibrations of its bond angle are shown by blue arcs. The compression-stretching of the O-H bonds of the water molecule is shown by blue arrows.

Fig. S9. Duschinsky rotation matrix of "C102+2H₂O (2B)" system in aqueous media

Table S11. Merz-Kollman charges (e) with hyd	ogens summed into heavy atoms for C102 molecule
and its hydrated complexes in an aqueous media	

	C41												
	C13 C5 C4 C14 C6 ≈C10 ≈C3												
	C11 C7 C9 C2												
				Ċ12	_ć16								
C15 C102 C102+H ₂ O (B) C102+2H ₂ O (2B)													
	~ .	Exci	ted state		Exci	ited state	~ 1	Exci	ted state				
Atom	Ground	Franck-		Ground	Franck-		Ground	Franck-					
	state	Condon	Equilibrium	state	Condon	Equilibrium	state	Condon	Equilibrium				
01	-0.537	-0.525	-0.511	-0.529	-0.526	-0.511	-0.331	-0.330	-0.378				
C2	1.029	0.947	0.913	1.072	0.988	0.946	0.647	0.551	0.596				
O2	-0.728	-0.772	-0.765	-0.739	-0.783	-0.771	-0.478	-0.514	-0.617				
C3	-0.584	-0.594	-0.563	-0.594	-0.594	-0.554	-0.394	-0.382	-0.367				
C4	0.656	0.463	0.433	0.645	0.454	0.404	0.518	0.330	0.323				
C41	-0.055	-0.080	-0.070	-0.053	-0.086	-0.070	-0.042	-0.077	-0.063				
C5	0.006	-0.106	-0.107	-0.016	-0.121	-0.124	-0.063	-0.151	-0.090				
C6	-0.008	0.046	0.077	0.031	0.068	0.078	0.053	0.080	0.055				
C7	0.088	0.049	-0.017	0.029	0.014	-0.021	0.059	0.035	0.005				
N7	-0.044	0.063	0.121	-0.034	0.063	0.093	-0.033	0.074	0.117				
C8	-0.197	-0.117	-0.080	-0.161	-0.087	-0.058	-0.238	-0.142	-0.112				
C9	0.547	0.471	0.452	0.516	0.447	0.427	0.393	0.324	0.389				
C10	-0.520	-0.300	-0.294	-0.461	-0.245	-0.223	-0.312	-0.114	-0.201				
C11	0.043	0.071	0.041	0.023	0.057	0.057	0.043	0.069	0.064				
C12	0.049	0.058	0.054	0.081	0.091	0.088	0.074	0.083	0.080				
C13	0.044	0.055	0.030	0.024	0.037	0.030	0.036	0.048	0.038				
C14	0.071	0.093	0.117	0.099	0.117	0.118	0.082	0.105	0.112				
C15	0.076	0.110	0.111	0.068	0.101	0.104	0.021	0.057	0.078				
C16	0.065	0.067	0.059	0.062	0.068	0.060	0.160	0.156	0.130				
$OB1^*$	—	—	—	-0.062	-0.064	-0.071	-0.081	-0.085	-0.059				
OB2*	-	_	_	_	_	_	-0.116	-0.117	-0.101				

*Oxygen atom of a water molecule bound

Table S11 (continued)

	C102+H ₂ O (A)		C102+2H ₂ O (A+B)		C102+3H ₂ O (A+2B)	
Atom	Ground state	Franck– Condon excited state	Ground state	Franck– Condon excited state	Ground state	Franck–Condon excited state
01	-0.502	-0.494	-0.521	-0.522	-0.388	-0.387
C2	1.004	0.926	1.068	0.985	0.745	0.647
02	-0.719	-0.758	-0.727	-0.765	-0.546	-0.578
C3	-0.519	-0.541	-0.567	-0.583	-0.425	-0.425
C4	0.541	0.363	0.617	0.440	0.548	0.368
C41	-0.034	-0.058	-0.042	-0.071	-0.040	-0.074
C5	-0.031	-0.139	-0.018	-0.118	-0.012	-0.101
C6	0.128	0.155	0.148	0.174	0.114	0.136
C7	-0.377	-0.262	-0.359	-0.271	-0.274	-0.206
N7	0.561	0.453	0.522	0.458	0.473	0.432
C8	-0.030	-0.025	-0.030	-0.016	-0.194	-0.150
C9	0.434	0.385	0.483	0.444	0.464	0.412
C10	-0.345	-0.142	-0.407	-0.215	-0.349	-0.164
C11	-0.073	-0.008	-0.091	-0.031	-0.088	-0.031
C12	-0.130	-0.061	-0.103	-0.046	-0.047	0.001
C13	-0.078	-0.049	-0.106	-0.080	-0.086	-0.063
C14	0.171	0.183	0.207	0.220	0.193	0.209
C15	0.149	0.159	0.145	0.159	0.049	0.071
C16	-0.002	0.024	-0.009	0.017	0.138	0.153
OA^*	-0.149	-0.112	-0.143	-0.111	-0.121	-0.091
$OB1^*$	-	-	-0.064	-0.067	-0.067	-0.072
$OB2^*$	-	-	-	-	-0.086	-0.088

Fig. S12. Difference (*e*) of Merz-Kollman charges summed into heavy atoms of C102 between its equilibrium and Franck-Condon states

Fig. S14. Difference (e) of Merz-Kollman charges of "C102+H₂O (B)" system between its Franck-Condon and ground states

Fig. S15. Difference (*e*) of Merz-Kollman charges of "C102+H₂O (B)" system between its equilibrium excited and Franck-Condon states

Fig. S18. Difference (e) of Merz-Kollman charges of "C102+2H₂O (2B)" system between its equilibrium and Franck-Condon states

Fig. S20. Difference (*e*) of Merz-Kollman charges of "C102+H₂O (A)" system between its Franck-Condon and ground states

Fig. S21. Merz-Kollman charges (e) of "C102+2H₂O (A+B)" system in its ground state

Fig. S22. Difference (*e*) of Merz-Kollman charges of "C102+2H₂O (A+B)" system between its Franck-Condon and ground states

Fig. S24. Difference (e) of Merz-Kollman charges of "C102+3H₂O (A+2B)" system between its Franck-Condon and ground states

Fig. S25. Electrostatic potential maps of the ground state (left), Franck-Condon point (center), and equilibrium excited states (right). Positive potential surfaces are colored by blue and negative potential surfaces are colored by red