Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Carboxamide carbonyl-ruthenium(II) complexes: Detailed structural and mechanistic

studies in the transfer hydrogenation of ketones

Robert T. Kumah \dagger, Paranthaman, Vijayan $广$, and Stephen O. Ojwach \dagger^{*}
\dagger *School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, South Africa,

*Corresponding author: Tel.: +27 (33) 260 5239; Fax: +27 (33) 2605009
E-mail: ojwach@ukzn.ac.za (S. O. Ojwach)

Table of contents

Entry	Item	Page
1	Synthesis of N -(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide (HL1) and N-(1H-benzo[d]imidazol-2-yl)pyrazine-2-carboxamide (HL2)	1
2	Table S1. Crystal data and structure refinement for complexes Ru1, Ru2 and Ru4	3
3	Table S2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for Ru1, Ru2 and Ru4	4
4	${ }^{1}$ H NMR spectra of ligands of HL1 and HL2 and complexes Ru1-Ru4 (Figures S1-S6)	5
5	${ }^{31} \mathrm{C}$ NMR spectra of carboxamide ligands HL1 and HL2 and complexes Ru1-Ru5 (Figures S7- S11)	8
6	${ }^{31} \mathrm{P}$ NMR spectra of complexes Ru1-Ru4 (Figures S12-S15)	11
7	FT-IR spectra of ligands, HL1 and HL2 and complexes Ru1-Ru4 (Figures S16- S21)	13
8	LR LC-MS spectral data of ligands, HL1 and HL2 and complexes Ru1Ru4 (Figures S22- S27)	17
9	${ }^{1} \mathrm{H}$ NMR spectra of TH of ketones reactions sampled at various reaction times (Figure S28- S44)	21
9	Kinetic graphs of the transfer hydrogenation reactions (Figures S45-S47)	34

4.3 Synthesis of the carboxamide ligands

4.3.1 N-(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide (HL1)

Pyrazine-2-dicarboxylic acid $(1.00 \mathrm{~g}, 5.02 \mathrm{mmol})$ and 2-aminobenzothiazole $(0.75 \mathrm{~g}$, 5.02 mmol) were dissolved in 20 mL pyridine and then heated with stirring for 15 minutes at $110{ }^{\circ} \mathrm{C}$. Triphenylphosphite $\mathrm{P}(\mathrm{OPh})_{3}(1.55 \mathrm{~g}, 5.00 \mathrm{mmol})$ was introduced drop-wise to the resulting solution and then allowed to stir at $90^{\circ} \mathrm{C}$ for 12 h . The crude product was poured into ice-cold water, filtered, and washed with cold water and cold methanol. The yellow crude powder was recrystallized from methanol and toluene. Yield: 1.54 g (74\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, d_{6}-DMSO): $9.37\left(\mathrm{~s}, 1 \mathrm{H}_{\text {amidate }}\right), 8.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{pyz}}\right), 8.90-8.85\left(\mathrm{~m}, 1 \mathrm{H}_{\mathrm{pyz}}\right)$, $8.07\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{pyz}}\right), 7.84\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{bz}}\right), 7.50\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{bz}}\right), 7.38$ $\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{bz}}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 161.3(\mathrm{C}$-carbonyl), 156.8(C-pyrazine), 148.6(C-pyrazine), 145.0(C-pyrazine), 143.1(C-pyrazine), 142.5(C-benzothiole), 132.5(Cbenzothiole), 126.5(C-benzothiole), 124.4(C-benzothiole), 121.5(C-benzothiole), 121.4(Cbenzothiole). FT-IR spectrum (Zn-Se ATR, cm ${ }^{-1}$): $3324(\mathrm{~N}-\mathrm{H}), 1691$ (C=O), 1533 (C=N). MS spectrum (m/z): Calcd. 510.04; Found $511.08\left(2 \mathrm{M}^{+}-\mathrm{H}\right)$. Anal. Cald. for: $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{OS}$: C, 56.24; H, 3.15; N, 21.86; S, 12.51\%. Found: C, 56.11; H, 3.52; N, 21.64; S, 12.11\%.

4.3.2 N-(1H-benzo[d]imidazol-2-yl)pyrazine-2-carboxamide (HL2)

Pyrazine-2-dicarboxylic acid ($1.00 \mathrm{~g}, 5.00 \mathrm{mmol}$), 2-aminobenzothiazole ($0.75 \mathrm{~g}, 5.00$ $\mathrm{mmol})$, and $\mathrm{P}(\mathrm{OPh}) 3(1.55 \mathrm{~g}, 5.00 \mathrm{mmol})$. Recrystallization was achieved from methanol to obtain a pale-yellow solid. Yield: $1.04 \mathrm{~g}(72 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.20$ (s, $\left.1 \mathrm{H}_{\text {amidate }}\right), 9.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}_{\mathrm{pyz}}\right), 8.86\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=35.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{pyz}}\right), 7.51\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $5.9,3.2 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{bz}}$), $7.18\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.9,3.2 \mathrm{~Hz}, 2 \mathrm{H}_{\mathrm{bz}}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $163.2\left(\mathrm{C}_{\text {carbonyl }}\right), \quad 149.9\left(\mathrm{C}_{\text {pyrazine }}\right), \quad 149.0\left(\mathrm{C}_{\text {pyrazine }}\right), \quad 138.6\left(\mathrm{C}_{\text {pyrazine }}\right), \quad 131.5\left(\mathrm{C}_{\text {pyrazine }}\right)$,
127.6($\left.\mathrm{C}_{\text {benzoimidazole }}\right), \quad 126.1\left(\mathrm{C}_{\text {benzoimidazole }}\right), \quad 126.5\left(\mathrm{C}_{\text {benzoimidazole }}\right), \quad 127.6\left(\mathrm{C}_{\text {benzoimidazole }}\right)$, 126.1 ($\mathrm{C}_{\text {benzoimidazole }}$), 122.9($\left.\mathrm{C}_{\text {benzoimidazole }}\right)$. FT-IR spectrum ((Zn-Se ATR, $\left.\mathrm{cm}^{-1}\right)$: $3251(\mathrm{~N}-\mathrm{H})$, $1684(\mathrm{C}=\mathrm{O}), 1546(\mathrm{C}=\mathrm{N})$. MS spectrum, m/z: calcd. 239.08; found $240.07\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Cald. for: $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 60.21$; H, 3.79; N, 29.28; O, 6.69; Found: C, 60.11; H, 3.52; N, 29.64.

Table S1. Crystal data and structure refinement for complexes Ru1, Ru2 and Ru4

	Ru1	Ru2	Ru4
Empirical formula	$\mathrm{C}_{99} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Ru}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{50} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{RuS}$	$\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}$
Formula weight	1972.61	994.83	963.76
Temperature	100(2) K	100(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å	$0.71073 \AA$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P 21/c	P 21/n	P $21 / \mathrm{n}$
Unit cell	$\mathrm{a}=21.3269(17) \AA$	$\mathrm{a}=12.1017(6) \AA$	$\mathrm{a}=9.8144(6) \AA$
dimensions	$\mathrm{b}=12.2526(10) \AA$	$\mathrm{b}=13.8083(7) \AA$	$\mathrm{b}=18.5959(12) \AA$
	$\mathrm{c}=37.414(3) \AA$	$c=27.2988(14) \AA$	$c=23.1600(15) \AA$
	$\alpha=90^{\circ}$	$\alpha=90^{\circ}$	
	$\beta=101.929(2)^{\circ}$	$\beta=101.929(2)^{\circ}$	$\beta=94.309(3)^{\circ}$
	$\gamma=90^{\circ}$	$\gamma=90^{\circ}$	$\gamma=90^{\circ}$
Volume	$9685.9(14) \AA^{3}$	4463.2(4) \AA^{3}	4214.9(5) \AA^{3}
Z	4	4	4
Density (calculated)	$1.353 \mathrm{Mg} / \mathrm{m}^{3}$	$1.480 \mathrm{Mg} / \mathrm{m}^{3}$	$1.519 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.585 \mathrm{~mm}^{-1}$	$0.636 \mathrm{~mm}^{-1}$	$0.623 \mathrm{~mm}^{-1}$
F(000)	4020	2032	1968
$\begin{aligned} & \text { Crystal size } \\ & \left(\mathrm{mm}^{3}\right) \end{aligned}$	$0.260 \times 0.200 \times 0.140$	$0.23 \times 0.14 \times 0.08$	$0.640 \times 0.440 \times 0.240$
Theta range for data collection	1.099 to 28.300°	1.525 to 28.165°	1.406 to 28.291°
Index ranges	$-28<=\mathrm{h}<=28$,	$-16<=h<=15$	$-13<=\mathrm{h}<=13$,
	$\begin{aligned} & -16<=k<=16 \\ & -49<=1<=49 \end{aligned}$	$\begin{aligned} & -18<=\mathrm{k}<=16, \\ & -36<=1<=36 \end{aligned}$	$\begin{aligned} & -24<=k<=22, \\ & -30<=1<=30 \end{aligned}$
Reflections collected	176176	78016	76052
Independent reflections	$\begin{aligned} & 24094[\mathrm{R}(\text { int })= \\ & 0.0515] \end{aligned}$	$10946[\mathrm{R}(\mathrm{int})=0.0335]$	$\begin{aligned} & 10451[\mathrm{R}(\mathrm{int})= \\ & 0.0332] \end{aligned}$
Completeness to theta	100.0 \%	100.0 \%	99.9 \%
Data restraints parameters	23990 / 0 / 1108	10882 / 0 / 563	10403 / 0 / 554
Goodness-offit on F^{2}	1.061	1.602	1.047
Final indices [I>2sigma(I)]	$\begin{aligned} & \mathrm{R} 1=0.0638, \mathrm{wR} 2= \\ & 0.1935 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0269 \\ & \mathrm{wR} 2=0.0627 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0410, \\ & \mathrm{wR} 2=0.1157 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R} 1=0.0779 \\ & \mathrm{wR} 2=0.2063 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0324, \\ & \mathrm{wR} 2=0.0691 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0445, \\ & \mathrm{wR} 2=0.1186 \end{aligned}$

Largest diff.	4.897 and -2.779	0.645 and -0.664 e..\AA^{-3}	1.803 and -1.997
peak and hole	e. \AA^{-3}		e. \AA^{-3}

Table S2. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for Ru1, Ru2 and Ru4

Ru1	Ru2		Ru4		
$\mathrm{Ru}(1)-\mathrm{C}(49)$	$1.984(7)$	$\mathrm{Ru}(1)-\mathrm{C}(13)$	$1.8519(18)$	$\mathrm{Ru}(1)-\mathrm{C}(13)$	$1.984(7)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.113(3)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.1180(14)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.113(3)$
$\mathrm{Ru}(1)-\mathrm{N}(2)$	$2.115(3)$	$\mathrm{Ru}(1)-\mathrm{N}(2)$	$2.116(14)$	$\mathrm{Ru}(1)-\mathrm{N}(2)$	$2.115(3)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.4000(11)$	$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.3636(4)$	$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.4000(11)$
$\mathrm{Ru}(1)-\mathrm{Cl}(1)$	$2.4258(10)$	$\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~A})$	$1.55(2)$	$\mathrm{Ru}(1)-\mathrm{H}(1 \mathrm{~A})$	$1.9672(10)$
Ru 1	Ru 2	Ru			
$\mathrm{C}(49)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$176.32(16)$	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$177.73(7)$	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$100.81(10)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$77.84(13)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	$76.13(5)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(3)$	$76.24(8)$
$\mathrm{C}(49)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$89.04(13)$	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$90.76(5)$	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$89.05(8)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$91.12(9)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$88.31(4)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$95.06(6)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$176.88(4)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$165.302(16)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$168.60(2)$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , 298K d_{6}-DMSO) of 1 N -(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide ligand, HL1 showing the diagnostic signal at $\delta_{\mathrm{H}}: 12.68 \mathrm{ppm}$ and all key signals between δ_{H} : 7.37-9.37 ppm.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , $298 \mathrm{~K} d_{6}$-DMSO) of N -(1 H -benzo[d]imidazol-2-yl)pyrazine-2-carboxamide ligand, HL2 showing the signature peak at $\delta_{\mathrm{H}}: 12.20 \mathrm{ppm}$ and all key peaks between $\delta_{\mathrm{H}}: 7 \cdot 17-9.37 \mathrm{ppm}$.

Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K} d-\mathrm{CDCl}_{3}$) of complex, Ru1 showing the signature peak $\left(\mathrm{H}_{\mathrm{pyrazine}}\right)$ shifting from $\delta_{\mathrm{H}}: 9.37$ to $\delta 9.15 \mathrm{ppm}$ upfield.

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, 298 \mathrm{~K} d-\mathrm{CDCl}_{3}\right)$ of complex $\mathbf{R u} 2$ showing triplet peak of co-ligand $\left(\mathrm{H}^{-}\right)$ranging between $\delta_{\mathrm{H}}:-13.08-13.16 \mathrm{ppm}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K} d-\mathrm{CDCl}_{3}$) of complex Ru3 indicating shift of signals corresponding to $\mathrm{H}_{\mathrm{N}-\mathrm{H}}\left(\delta_{\mathrm{H}}: 12.20\right.$ to 11.89 ppm) and $\mathrm{H}_{\mathrm{pyrazine}}\left(\delta_{\mathrm{H}}: 9.37\right.$ to 9.08 ppm$)$ which confirm successful coordination.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, 298 \mathrm{~K} d-\mathrm{CDCl}_{3}$) of complex Ru4 indicating triplet peak of co-ligand $\left(\mathrm{H}^{-}\right)$ranging between δ_{H} : -13.08-13.16 ppm and shifts in $\mathrm{H}_{\text {pyrazine }}$ (from δ_{H} : 9.20 to 9.24 ppm) and $\mathrm{H}_{\mathrm{N}-\mathrm{H}}\left(\right.$ from $\delta_{\mathrm{H}}: 12.08$ to 12.02 ppm) proton signals confirming formation the compound.

Figure $\mathrm{S} 7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (100 MHz , $298 \mathrm{~K} d-\mathrm{CDCl}_{3}$) of N -(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide ligand, HL1 showing the $\mathrm{C}=\mathrm{O}$ signal at δ : 161.3 ppm confirming the successful formation of the ligands.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of N -(1 H -benzo[d]imidazol-2-yl)pyrazine-2-carboxamide ligand, HL2 showing the $\mathrm{C}=\mathrm{O}$ signal at $\delta: 161.3 \mathrm{ppm}$ confirming the successful formation of the ligands.

Figure $\mathrm{S} 9 .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum (100 MHz , $298 \mathrm{~K} \mathrm{~d}_{-} \mathrm{CDCl}_{3}$) of complex Ru1 showing signal at $\delta=166.88 \mathrm{ppm}$ corresponding to the $\mathrm{C}=\mathrm{O}$ signal confirming the successful coordination.

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100 \mathrm{MHz}, 298 \mathrm{~K} d-\mathrm{CDCl}_{3}$) of complex $\mathbf{R u 2}$ indicating a shift in the chemical shift of $\mathrm{C}=\mathrm{O}(\delta: 166.81 \mathrm{ppm})$ downfield upon coordination.

Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100 \mathrm{MHz}, 298 \mathrm{~K} d-\mathrm{CDCl}_{3}\right)$ of complex $\mathbf{R u} 3$ indicating a shift in the chemical shift of $\mathrm{C}=\mathrm{O}(\delta: 166.81 \mathrm{ppm})$ downfield upon coordination.

Figure $\mathrm{S} 12 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(100 \mathrm{MHz}\right.$, $298 \mathrm{~K} d-\mathrm{CDCl}_{3}$) of complex Ru4 indicating a shift in the chemical shift of $\mathrm{C}=\mathrm{O}(\delta: 166.81 \mathrm{ppm})$ downfield upon coordination.

Figure $\mathrm{S} 13 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (100 MHz , $298 \mathrm{~K} d_{6} \mathrm{CDCl}_{3}$) of complex Ru1 indicating a signal corresponding to two equivalent PPh_{3} trans to each other.
Ru-2 -31P

Figure S14. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left(100 \mathrm{MHz}, 298 \mathrm{~K} d_{6} \mathrm{CDCl}_{3}\right)$ complex $\mathbf{R u 2}$ indicating a signal corresponding to two equivalent PPh_{3} trans to each other.

Figure $\mathrm{S} 15 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($100 \mathrm{MHz}, 298 \mathrm{~K} d_{6} \mathrm{CDCl}_{3}$) of complex Ru3 showing a signal at $\delta: 42.74 \mathrm{ppm}$ confirming to two equivalent PPh_{3} trans to each other.

```
31P NMR of Ru4 in CDCl3


Figure S16. \({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum ( 122 MHz , \(298 \mathrm{~K} d-\mathrm{CDCl}_{3}\) ) of complex Ru4 showing a signal at \(\delta: 48.33 \mathrm{ppm}\) implicating presence of two equivalent \(\mathrm{PPh}_{3}\) trans to each other.


Figure S17. FT-IR spectrum of N -(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide ligand, HL1 showing its characteristic signals of \(\mathrm{v}(\mathrm{N}-\mathrm{H}): 3324 \mathrm{~cm}^{-1}, 1691\); \((\mathrm{C}=\mathrm{O}): 1691 \mathrm{~cm}^{-1} ; 1543\) \(v(C=N)\) :


Figure S18. FT-IR spectrum of \(N\)-(benzo[d]imidazol-2-yl)pyrazine-2-carboxamide ligand, HL2 depicting the characteristic signals of \(v(N-H): 3251 \mathrm{~cm}^{-1}, v(\mathrm{C}=\mathrm{O}): 1684 \mathrm{~cm}^{-1}, 1546 \mathrm{~cm}^{-}\) \({ }^{1} v(C=N)\).


Figure S19. FT-IR spectrum of complex Ru1 depicting signature signals at: \(1935 \mathrm{~cm}^{-1}, \nu \mathrm{C} \equiv \mathrm{O}\) : and \(1629 \mathrm{~cm}^{-1}, 1565 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{N})\).


Figure S20. FT-IR spectrum of complex Ru2 depicting signature signals: \(1935 \mathrm{~cm}^{-1} \nu \mathrm{C} \equiv \mathrm{O}\) : \(1626 \mathrm{~cm}^{-1}, v(\mathrm{C}=\mathrm{O}) ; 1567 \mathrm{v}(\mathrm{C}=\mathrm{N})\).


Figure S21. FT-IR spectrum of complex Ru3 depicting signature signals at: \(1947 \mathrm{~cm}^{-1} v(\mathrm{C} \equiv \mathrm{O})\); \(1622 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{O})\); and \(1562 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{N})\).


Figure S22. FT-IR spectrum of complex Ru4 depicting signature signals at \(1946 \mathrm{~cm}^{-1} v(\mathrm{C} \equiv \mathrm{O})\); \(1612 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{O})\); and \(1569 \mathrm{~cm}^{-1} v(\mathrm{C}=\mathrm{N})\).


Figure S23. LR MS spectrum (positive ion mode) of HL1 indicating dimeric form of the ligand at \(\mathrm{m} / \mathrm{z}=511.07\). The theoretical isotopic mass distribution plot (inset).


Figure S24. LR MS spectrum (positive ion mode) of HL2 depicting a peak at \(\mathrm{m} / \mathrm{z}=242\) corresponding to \([\mathrm{M}+\mathrm{H}]\). The theorical isotopic mass distribution plot (inset).


Figure S25. LC-MS spectrum of Ru1. The simulated theoretical mass distribution plot (inset).


Figure S26. LC-MS spectrum of Ru2. The simulated theoretical mass distribution plot (inset).


Figure S27. LC-MS spectrum of Ru3. The simulated theoretical mass distribution plot (inset).


Figure S28. LC-MS spectrum of Ru4 indicating the molecular mass of the fragment [M-H] at \(\mathrm{m} / \mathrm{z}=892.12\). Inset is the simulated theoretical mass distribution plot.


Figure S29. \({ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of transfer hydrogenation of acetophenone reaction mixture (Ru3 was used as catalyst). Aliquot withdrawn and analysed after 4 h of reaction. The integral values of methyl peaks of acetophenone and 1-phenylethanol corresponding to percentage conversions of \(50 \%\) and yields of \(50 \%\).


Figure S30. \({ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of TH of acetophenone. (Ru4 was used as catalyst). Aliquot was taken and analysed after 6 h of reaction. The integral values of methyl protons of acetophenone and 1-phenylethanol corresponding to conversion of \(97 \%\) and Yield of \(97 \%\).


Figure \(\mathrm{S} 31 .{ }^{1} \mathrm{H}\) NMR spectrum \(\left(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\right)\) of the reaction of transfer hydrogenation of acetophenone (Ru4 used as catalyst). Aliquot was taken and analysed after 6 h of reaction. The integral values of methyl protons of acetophenone and 1-phenylethanol correspond to conversion of \(91 \%\) and yield of \(90 \%\).


Figure \(\mathrm{S} 32 .{ }^{1} \mathrm{H}\) NMR spectrum \(\left(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\right)\) of the reaction of transfer hydrogenation of acetophenone (Ru3:catalyst loading of \(0.25 \mathrm{~mol} \%\) ). Aliquot sampled and analysed after 4 \(h\) of reaction. The integral values of the methyl protons of acetophenone and 1-phenylethanol correspond to percentage conversion of \(46 \%\) and yield of \(41 \%\).


Figure S33. \({ }^{1} \mathrm{H}\) NMR spectrum \(\left(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\right)\) of the reaction of transfer hydrogenation of acetophenone (Ru1: catalyst loading of \(0.25 \mathrm{~mol} \%\) ). Aliquot was sampled and analysed after 1 h of reaction. The integral values of the methyl protons of acetophenone and 1phenylethanol correspond to the percentage conversion of \(27 \%\) and yield of \(27 \%\) (Figure S47).


Figure S34. \({ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of transfer hydrogenation of 4chloroacetophenone reaction mixture (Ru4 used as catalyst). Aliquot taken and analysed after at 4 h reaction. The integral values of the methyl protons of 4-chloroacetophenone and 4chlorophenylethanol correspond to the percentage conversion of \(98 \%\) and yield of \(98 \%\) (Table 4, entry 3 ).


Figure \(\mathrm{S} 35 .{ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of transfer hydrogenation of 2acetylpyridine reaction mixture (Ru4 used as catalyst). Aliquot taken and analysed after at 4h reaction. The integral values of the methyl protons of 2-acetylpyridine and product correspond to the percentage conversion of \(55 \%\) and yield of \(55 \%\) (Table 4, entry 11).


Figure \(\mathrm{S} 36 .{ }^{1} \mathrm{H}\) NMR spectrum \(\left(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\right)\) of transfer hydrogenation of 2-propanone reaction mixture (Ru4 used as catalyst). Aliquot taken and analysed after at 4 h reaction. The integral values of the methyl protons of 2-propanone and 2-propanol correspond to the percentage conversion of \(71 \%\) and yield of \(71 \%\) (Table 4, entry 11).


Figure S37. \({ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of transfer hydrogenation of 1acetylnaphthone reaction mixture (Ru4 used as catalyst). Aliquot taken and analysed after at 6 h reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the percentage conversion of \(86 \%\) and yield of \(84 \%\) (Table 4 , entry 9).


Figure \(\mathrm{S} 38 .{ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of transfer hydrogenation of acetophenone reaction catalysed by Ru3 without a base. Aliquot taken and analysed after at 36 h of reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the percentage conversion of \(99 \%\) and yield of \(99 \%\) (Table 2, entry 5).


Figure \(\mathrm{S} 39 .{ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of transfer hydrogenation of acetophenone reaction catalysed by Ru4 without a base. Aliquot taken and analysed after at 18 h of reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the percentage conversion of \(93 \%\) and yield of \(93 \%\) (Table 2, entry 4).


Figure \(\mathrm{S} 40 .{ }^{1} \mathrm{H}\) NMR spectrum \(\left(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\right)\) of transfer hydrogenation of acetophenone reaction (without a catalyst). Aliquot taken and analysed after at 36 h of reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the yield of \(42 \%\) (Table 2, entry 2 ).


Figure S41. \({ }^{1} \mathrm{H}\) NMR spectrum of isolated product (1-phenylethanol) from TH of acetophenone. Yield \(=0.11(79 \%){ }^{1} \mathrm{H}\) NMR spectrum \(\left(d-\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 1.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.8\right.\) \(\left.\mathrm{Hz}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)\right), 4.89\left(\mathrm{q},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{CH})\right), 4.85(\mathrm{~s}, 1 \mathrm{H}(\mathrm{OH})), 7.30-7.39(\mathrm{~m}\), cluster \(5 \mathrm{H}_{\text {arom }}\) ).


Figure S42. \({ }^{1} \mathrm{H}\) NMR spectrum of isolated product 1-(4-chloroPhenylethanol) of TH of 4chloroacetophemnone. 4-chloroacetophenone. Yield \(0.15 \mathrm{~g}(97 \%)={ }^{1} \mathrm{H}\) NMR \(\operatorname{spectrum}(d-\) \(\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 1.49\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)\right), 4.87\left(\mathrm{q},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{CH})\right)\), and 7.32 (m, cluster \(4 \mathrm{H}_{\text {arom }}\) ).

1-(naphthalen-1-yI)ethanol(Isolated product)in CDCI 3


Figure S43. \({ }^{1} \mathrm{H}\) NMR spectrum of isolated product (1-naphthalen-1-yl)ethanol) from TH of 1acetylnaphthalenone. 1-(naphthalen-1-yl)ethan-1-ol. Yield 0.14 g (86\%) \(={ }^{1} \mathrm{H}\) NMR \(\operatorname{spectrum}\left(d-\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 1.63\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.4 \mathrm{~Hz}, 3 \mathrm{H}\left(\mathrm{CH}_{3}\right)\right), 4.98\left(\mathrm{q},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.4 \mathrm{~Hz}\right.\), \(1 \mathrm{H}(\mathrm{CH})\) ), 7.49-7.55 (m, cluster \(2 \mathrm{H}_{\text {arom }}\) ), \(7.84-7.88\left(\mathrm{~m}\right.\), cluster, \(\left.4 \mathrm{H}_{\text {arom }}\right)\).


Figure S44. \({ }^{1} \mathrm{H}\) NMR spectrum of isolated product (2-propanol) from TH of 2-propanone. 2propanol. Yield \(=0.06 \mathrm{~g}(67 \%) .{ }^{1} \mathrm{H}\) NMR spectrum \(\left(d-\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm}) 0.89\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=1.6 \mathrm{~Hz}\right.\), \(3 \mathrm{H}(\mathbf{C H})), 1.23\left(\mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=1.6 \mathrm{~Hz}, 3 \mathrm{H}(\mathrm{CH})\right), 1.31\left(\mathrm{~m},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=1.6 \mathrm{~Hz}, 2 \mathrm{H}(\mathbf{C H})\right), 1.40\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=\right.\) \(1.6 \mathrm{~Hz}, 2 \mathrm{H}(\mathrm{CH})), 4.03\left(\mathrm{~m},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}(\mathrm{CH})\right), 4.89(\mathrm{~s}, 1 \mathrm{H}(\mathrm{OH}))\).


Figure S 45 . Base free TH of acetophenone catalysed by Ru4 reaction, time, 6 h corresponding to percentage conversion of \(39 \%\) (Table 2 , entry \(3^{f}\) ).


Figure \(\mathrm{S} 46 .{ }^{1} \mathrm{H}\) NMR spectrum ( \(400 \mathrm{MHz}, d-\mathrm{CDCl}_{3}\) ) of transfer hydrogenation of acetophenone reaction catalysed by Ru3 with base loading of \(100 \mathrm{~mol} \%\). Aliquot taken and analysed after at 18 h of reaction. The integral values of the methyl protons of 1acetylnaphthone and product correspond to the percentage conversion of \(97 \%\) (Table 2, entry 10).


Figure S47. Plots of percentage of conversion vs time showing the effects of catalyst loading on the catalytic activity on transfer hydrogenation of acetophenone reaction using of Ru3 as a catalyst.


Figure S48. Plots of turnover number (TON) vs time showing the effects of catalyst loading on the catalytic activity of TH of acetophenone reaction using of \(\mathbf{R u 3}\) as a catalyst. Reaction conditions: acetophenone, \(1.00 \mathrm{mmol} ; \mathrm{K}^{\ell} \mathrm{BuO}, 0.100 \mathrm{mmol} ;{ }^{\mathrm{i}} \mathrm{PrOH}, 5 \mathrm{ml} ; 82^{\circ} \mathrm{C}\), time, 6 h . Percentage Conversion and yield determined by NMR spectroscopy (average of two independent runs), methoxybenzene was used as internal standard.


Figure S49. The (a) plot of In[acetophenone \(]_{t}[\text { acetophenone }]_{o}\) vs \(\operatorname{In}[t]\) for determination of the rate constants of each catalyst in TH of acetophenone reaction. Condition: acetophenone, 1.00 \(\mathrm{mmol} ;{ }^{\mathrm{i}} \mathrm{PrOH}, 5 \mathrm{ml} ; 82^{\circ} \mathrm{C}\), time, 6 h . Percentage conversions were determined by NMR spectroscopy (average of two independent runs), methoxybenzene was used as internal standard.```

