Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Carboxamide carbonyl-ruthenium(II) complexes: Detailed structural and mechanistic

studies in the transfer hydrogenation of ketones

Robert T. Kumah[†], Paranthaman, Vijayan [†], and Stephen O. Ojwach^{†*}

*†*School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, South Africa,*

*Corresponding author: Tel.: +27 (33) 260 5239; Fax: +27 (33) 260 5009

E-mail: ojwach@ukzn.ac.za (S. O. Ojwach)

Table of contents

Entry	Item	Page
1	Synthesis of <i>N-(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide</i> (HL1) and <i>N-(1H-benzo[d]imidazol-2-yl)pyrazine-2-carboxamide</i> (HL2)	1
2	Table S1. Crystal data and structure refinement for complexes Ru1,Ru2 and Ru4	3
3	Table S2. Selected bond lengths (Å) and bond angles (°) for Ru1 , Ru2 and Ru4	4
4	¹ H NMR spectra of ligands of HL1 and HL2 and complexes Ru1-Ru4 (Figures S1- S6)	5
5	³¹ C NMR spectra of carboxamide ligands HL1 and HL2 and complexes Ru1-Ru5 (Figures S7- S11)	8
6	³¹ P NMR spectra of complexes Ru1-Ru4 (Figures S12- S15)	11
7	FT-IR spectra of ligands, HL1 and HL2 and complexes Ru1-Ru4 (Figures S16-S21)	13
8	LR LC-MS spectral data of ligands, HL1 and HL2 and complexes Ru1- Ru4 (Figures S22- S27)	17
9	¹ H NMR spectra of TH of ketones reactions sampled at various reaction times (Figure S28- S44)	21
9	Kinetic graphs of the transfer hydrogenation reactions (Figures S45-S47)	34

4.3 Synthesis of the carboxamide ligands

4.3.1 N-(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide (HL1)

Pyrazine-2-dicarboxylic acid (1.00 g, 5.02 mmol) and 2-aminobenzothiazole (0.75 g, 5.02 mmol) were dissolved in 20 mL pyridine and then heated with stirring for 15 minutes at 110 °C. Triphenylphosphite P(OPh)₃ (1.55 g, 5.00 mmol) was introduced drop-wise to the resulting solution and then allowed to stir at 90 °C for 12 h. The crude product was poured into ice-cold water, filtered, and washed with cold water and cold methanol. The yellow crude powder was recrystallized from methanol and toluene. Yield: 1.54 g (74%). ¹H NMR (400 MHz, *d*₆-DMSO): 9.37 (s, 1H_{amidate}), 8.98 (d, ³*J*_{HH} = 2.4 Hz, 1H_{pyz}), 8.90 – 8.85 (m, 1H_{pyz}), 8.07 (d, ³*J*_{HH} = 7.8 Hz, 1H_{pyz}), 7.84 (d, ³*J*_{HH} = 8.0 Hz, 1H_{bz}), 7.50 (t, ³*J*_{HH} = 7.6 Hz, 1H_{bz}), 7.38 (t, ³*J*_{HH} = 7.6 Hz, 1H_{bz}). ¹³C NMR (101 MHz, CDCl₃) δ : 161.3(C-carbonyl), 156.8(C-pyrazine), 148.6(C-pyrazine), 145.0(C-pyrazine), 143.1(C-pyrazine), 142.5(C-benzothiole), 132.5(C-benzothiole), 126.5(C-benzothiole), 124.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 126.5(C-benzothiole), 124.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.5(C-benzothiole), 121.4(C-benzothiole), 121.4(C-benzo

4.3.2 N-(1H-benzo[d]imidazol-2-yl)pyrazine-2-carboxamide (HL2)

Pyrazine-2-dicarboxylic acid (1.00 g, 5.00 mmol), 2-aminobenzothiazole (0.75 g, 5.00 mmol), and P(OPh)3 (1.55 g, 5.00 mmol). Recrystallization was achieved from methanol to obtain a pale-yellow solid. Yield: 1.04 g (72%). ¹H NMR (400 MHz, DMSO) δ 12.20 (s, $1H_{amidate}$), 9.37 (d, ${}^{3}J_{HH} = 1.2$ Hz, $1H_{pyz}$), 8.86 (d, ${}^{3}J_{HH} = 35.5$, 1.9 Hz, $2H_{pyz}$), 7.51 (d, ${}^{3}J_{HH} = 5.9$, 3.2 Hz, $2H_{bz}$), 7.18 (dd, ${}^{3}J_{HH} = 5.9$, 3.2 Hz, $2H_{bz}$). ¹³C NMR (101 MHz, CDCl₃) δ: 163.2(C_{carbonyl}), 149.9(C_{pyrazine}), 149.0(C_{pyrazine}), 138.6(C_{pyrazine}), 131.5(C_{pyrazine}),

127.6($C_{benzoimidazole}$), 126.1($C_{benzoimidazole}$), 126.5($C_{benzoimidazole}$), 127.6($C_{benzoimidazole}$), 126.1($C_{benzoimidazole}$), 122.9($C_{benzoimidazole}$). FT-IR spectrum ((Zn-Se ATR, cm⁻¹): 3251 (N–H), 1684 (C=O), 1546 (C=N). MS spectrum, m/z: calcd. 239.08; found 240.07 (M⁺ + H). Anal. Cald. for: $C_{12}H_9N_5O$: C, 60.21; H, 3.79; N, 29.28; O, 6.69; Found: C, 60.11; H, 3.52; N, 29.64.

	Ru1	Ru2	Ru4
Empirical formula	$C_{99}H_{75}Cl_4N_8O_4P_4Ru_2S_2$	$C_{50}H_{40}Cl_{2}N_{4}O_{2}P_{2}RuS$	$C_{49}H_{39}Cl_2N_5O_2P_2Ru$
Formula weight	1972.61	994.83	963.76
Temperature	100(2) K	100(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P 21/c	P 21/n	P 21/n
Unit cell	a = 21.3269(17) Å	a = 12.1017(6) Å	a = 9.8144(6) Å
dimensions	b = 12.2526(10) Å	b = 13.8083(7) Å	b = 18.5959(12) Å
	c = 37.414(3) Å $\alpha = 90^{\circ}$	c = 27.2988(14) Å $\alpha = 90^{\circ}$	c = 23.1600(15) Å $\alpha = 90^{\circ}$
	$\beta = 101.929(2)^{\circ}$	$\beta = 101.929(2)^{\circ}$	$\beta = 94.309(3)^{\circ}$
	$\gamma=90^\circ$	γ=90°	$\gamma=90^\circ$
Volume Z	9685.9(14) Å ³ 4	4463.2(4) Å ³ 4	4214.9(5) Å ³ 4
Density (calculated)	1.353 Mg/m ³	1.480 Mg/m ³	1.519 Mg/m ³
Absorption	0.585 mm ⁻¹	0.636 mm ⁻¹	0.623 mm ⁻¹
F(000)	4020	2032	1968
Crystal size	0.260×0.200×0.140	0.23×0.14×0.08	0.640×0.440×0.240
Theta range for data collection	1.099 to 28.300°	1.525 to 28.165°	1.406 to 28.291°
Index ranges	-28<=h<=28,	-16<=h<=15	-13<=h<=13,
	-16<=k<=16,	-18<=k<=16,	-24<=k<=22,
	-49<=1<=49	-36<=l<=36	-30<=l<=30
Reflections collected	176176	78016	76052
Independent reflections	24094 [R(int) = 0.0515]	10946 [R(int) = 0.0335]	10451 [R(int) = 0.0332]
Completeness to theta	100.0 %	100.0 %	99.9 %
Data / restraints / parameters	23990 / 0 / 1108	10882 / 0 / 563	10403 / 0 / 554
Goodness-of-	1.061	1.602	1.047
III ON F ² Final P	$P_1 = 0.0638 \text{ m/} P_2 =$	$P_1 = 0.0260$	$P_1 = 0.0410$
indices	1935	wR2 = 0.0209,	wR2 = 0.1157
[]>2sjoma(I)]	0.1/33	witz = 0.0027	$w_{1}\chi = 0.11J/$
R indices (all	R1 = 0.0779.	R1 = 0.0324.	R1 = 0.0445.
data)	wR2 = 0.2063	wR2 = 0.0691	wR2 = 0.1186

Table S1. Crystal data and structure refinement for complexes Ru1, Ru2 and Ru4

Largest diff.	4.897 and -2.779	0.645 and -0.664 e.Å ⁻³	1.803 and -1.997
peak and hole	e.Å ⁻³		e.Å ⁻³

Table S2. Selected bond lengths (Å) and bond angles (°) for Ru1, Ru2 and Ru4

Ru1		Ru2		Ru4	
Ru(1)-C(49)	1.984(7)	Ru(1)-C(13)	1.8519(18)	Ru(1)-C(13)	1.984(7)
Ru(1)-N(1)	2.113(3)	Ru(1)-N(1)	2.1180(14)	Ru(1)-N(1)	2.113(3)
Ru(1)-N(2)	2.115(3)	Ru(1)-N(2)	2.116(14)	Ru(1)-N(2)	2.115(3)
Ru(1)-P(1)	2.4000(11)	Ru(1)-P(1)	2.3636(4)	Ru(1)-P(1)	2.4000(11)
Ru(1)-Cl(1)	2.4258(10)	Ru(1)-H(1A)	1.55(2)	Ru(1)-H(1A)	1.9672(10)
Ru1		Ru2		Ru4	
C(49)-Ru(1)-N(1)	176.32(16)	C(13)-Ru(1)-N(1)	177.73(7)	C(13)-Ru(1)-N(1)	100.81(10)
N(1)-Ru(1)-N(2)	77.84(13)	N(1)-Ru(1)-N(2)	76.13(5)	N(1)-Ru(1)-N(3)	76.24(8)
C(49)-Ru(1)-P(2)	89.04(13)	C(13)-Ru(1)-P(2)	90.76(5)	C(13)-Ru(1)-P(2)	89.05(8)
N(1)-Ru(1)-P(2)	91.12(9)	N(1)-Ru(1)-P(2)	88.31(4)	N(1)-Ru(1)-P(2)	95.06(6)
P(2)-Ru(1)-P(1)	176.88(4)	P(2)-Ru(1)-P(1)	165.302(16)	P(2)-Ru(1)-P(1)	168.60(2)

Figure S1. ¹H NMR spectrum (400 MHz, 298K d_6 -DMSO) of 1 *N*-(benzo[d]thiazol-2yl)pyrazine-2-carboxamide ligand, **HL1** showing the diagnostic signal at $\delta_{\rm H}$:12.68 ppm and all key signals between $\delta_{\rm H}$: 7.37-9.37 ppm.

Figure S2. ¹H NMR spectrum (400 MHz, 298K d_6 -DMSO) of *N-(1H*-benzo[d]imidazol-2yl)pyrazine-2-carboxamide ligand, **HL2** showing the signature peak at $\delta_{\rm H}$: 12.20 ppm and all key peaks between $\delta_{\rm H}$:7.17-9.37 ppm.

Figure S3. ¹H NMR spectrum (400 MHz, 298K *d*-CDCl₃) of complex, **Ru1** showing the signature peak ($H_{pyrazine}$) shifting from δ_{H} : 9.37 to δ 9.15 ppm upfield.

Figure S4. ¹H NMR spectrum (400 MHz, 298K *d*-CDCl₃) of complex **Ru2** showing triplet peak of co-ligand (H⁻) ranging between δ_{H} : -13.08-13.16 ppm.

Figure S5. ¹H NMR spectrum (400 MHz, 298K *d*-CDCl₃) of complex **Ru3** indicating shift of signals corresponding to H_{N-H} (δ_{H} : 12.20 to 11.89 ppm) and $H_{pyrazine}$ (δ_{H} : 9.37 to 9.08 ppm) which confirm successful coordination.

Figure S6. ¹H NMR spectrum (400 MHz, 298K *d*-CDCl₃) of complex **Ru4** indicating triplet peak of co-ligand (H⁻) ranging between δ_{H} : -13.08-13.16 ppm and shifts in H_{pyrazine} (from δ_{H} : 9.20 to 9.24 ppm) and H_{N-H} (from δ_{H} : 12.08 to 12.02 ppm) proton signals confirming formation the compound.

Figure S7. ¹³C{¹H} NMR spectrum (100 MHz, 298K *d*-CDCl₃) of *N*-(benzo[d]thiazol-2yl)pyrazine-2-carboxamide ligand, **HL1** showing the C=O signal at δ : 161.3 ppm confirming the successful formation of the ligands.

Figure S8. ¹³C{¹H} NMR spectrum of *N-(1H*-benzo[d]imidazol-2-yl)pyrazine-2-carboxamide ligand, **HL2** showing the C=O signal at δ : 161.3 ppm confirming the successful formation of the ligands.

Figure S9. ¹³C{1H} NMR spectrum (100 MHz, 298K d_2 CDCl₃) of complex **Ru1** showing signal at δ =166.88 ppm corresponding to the C=O signal confirming the successful coordination.

Figure S10. ¹³C{¹H} NMR spectrum (100 MHz, 298K *d*-CDCl₃) of complex **Ru2** indicating a shift in the chemical shift of C=O (δ : 166.81 ppm) downfield upon coordination.

Figure S11. ¹³C{¹H} NMR spectrum (100 MHz, 298K *d*-CDCl₃) of complex **Ru3** indicating a shift in the chemical shift of C=O (δ : 166.81 ppm) downfield upon coordination.

Figure S12. ¹³C{¹H} NMR spectrum (100 MHz, 298K *d*-CDCl₃) of complex **Ru4** indicating a shift in the chemical shift of C=O (δ : 166.81 ppm) downfield upon coordination.

Figure S13. ³¹P{¹H} NMR spectrum (100 MHz, 298K d_6 CDCl₃) of complex **Ru1** indicating a signal corresponding to two equivalent PPh₃ *trans* to each other.

Figure S14. ³¹P{¹H} NMR spectrum of (100 MHz, 298K d_6 CDCl₃) complex **Ru2** indicating a signal corresponding to two equivalent PPh₃ *trans* to each other.

Figure S15. ³¹P{¹H} NMR spectrum (100 MHz, 298K d_6 CDCl₃) of complex **Ru3** showing a signal at δ : 42.74 ppm confirming to two equivalent PPh₃ *trans* to each other.

Figure S16. ³¹P{¹H} NMR spectrum (122 MHz, 298K *d*-CDCl₃) of complex **Ru4** showing a signal at δ : 48.33 ppm implicating presence of two equivalent PPh₃ *trans* to each other.

Figure S17. FT-IR spectrum of *N*-(benzo[d]thiazol-2-yl)pyrazine-2-carboxamide ligand, **HL1** showing its characteristic signals of v(N–H): 3324 cm⁻¹, 1691; (C=O):1691 cm⁻¹; 1543 v(C=N):

Figure S18. FT-IR spectrum of *N*-(benzo[d]imidazol-2-yl)pyrazine-2-carboxamide ligand, **HL2** depicting the characteristic signals of v(N-H): 3251 cm⁻¹, v(C=O): 1684 cm⁻¹, 1546 cm⁻¹ v(C=N).

Figure S19. FT-IR spectrum of complex **Ru1** depicting signature signals at: 1935 cm⁻¹, vC=O: and 1629 cm⁻¹, 1565 cm⁻¹ v(C=N).

Figure S20. FT-IR spectrum of complex **Ru2** depicting signature signals: 1935 cm⁻¹ vC≡O: 1626 cm⁻¹, v(C=O); 1567 v(C=N).

Figure S21. FT-IR spectrum of complex **Ru3** depicting signature signals at: 1947 cm⁻¹ v(C \equiv O); 1622 cm⁻¹ v(C=O); and 1562 cm⁻¹ v(C=N).

Figure S22. FT-IR spectrum of complex **Ru4** depicting signature signals at 1946 cm⁻¹ v(C=O); 1612 cm⁻¹ v(C=O); and 1569 cm⁻¹ v(C=N).

Figure S23. LR MS spectrum (positive ion mode) of HL1 indicating dimeric form of the ligand at m/z = 511.07. The theoretical isotopic mass distribution plot (inset).

Figure S24. LR MS spectrum (positive ion mode) of HL2 depicting a peak at m/z = 242 corresponding to [M + H]. The theorical isotopic mass distribution plot (inset).

Figure S25. LC-MS spectrum of Ru1. The simulated theoretical mass distribution plot (inset).

Figure S26. LC-MS spectrum of Ru2. The simulated theoretical mass distribution plot (inset).

Figure S27. LC-MS spectrum of **Ru3.** The simulated theoretical mass distribution plot (inset).

Figure S28. LC-MS spectrum of **Ru4** indicating the molecular mass of the fragment [M- H] at m/z = 892.12. Inset is the simulated theoretical mass distribution plot.

Figure S29. ¹H NMR spectrum (400 MHz, d-CDCl₃) of transfer hydrogenation of acetophenone reaction mixture (**Ru3** was used as catalyst). Aliquot withdrawn and analysed after 4 h of reaction. The integral values of methyl peaks of acetophenone and 1-phenylethanol corresponding to percentage conversions of 50% and yields of 50%.

Figure S30. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of TH of acetophenone. (**Ru4** was used as catalyst). Aliquot was taken and analysed after 6 h of reaction. The integral values of methyl protons of acetophenone and 1-phenylethanol corresponding to conversion of 97% and Yield of 97%.

Figure S31. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of the reaction of transfer hydrogenation of acetophenone (**Ru4** used as catalyst). Aliquot was taken and analysed after 6 h of reaction. The integral values of methyl protons of acetophenone and 1-phenylethanol correspond to conversion of 91% and yield of 90%.

Figure S32. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of the reaction of transfer hydrogenation of acetophenone (**Ru3**:catalyst loading of 0.25 mol%). Aliquot sampled and analysed after 4 h of reaction. The integral values of the methyl protons of acetophenone and 1-phenylethanol correspond to percentage conversion of 46% and yield of 41%.

Figure S33. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of the reaction of transfer hydrogenation of acetophenone (**Ru1**: catalyst loading of 0.25 mol%). Aliquot was sampled and analysed after 1 h of reaction. The integral values of the methyl protons of acetophenone and 1-phenylethanol correspond to the percentage conversion of 27% and yield of 27% (Figure S47).

Figure S34. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of transfer hydrogenation of 4chloroacetophenone reaction mixture (**Ru4** used as catalyst). Aliquot taken and analysed after at 4h reaction. The integral values of the methyl protons of 4-chloroacetophenone and 4chlorophenylethanol correspond to the percentage conversion of 98% and yield of 98% (Table 4, entry 3).

Figure S35. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of transfer hydrogenation of 2acetylpyridine reaction mixture (**Ru4** used as catalyst). Aliquot taken and analysed after at 4h reaction. The integral values of the methyl protons of 2-acetylpyridine and product correspond to the percentage conversion of 55% and yield of 55% (Table 4, entry 11).

Figure S36. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of transfer hydrogenation of 2-propanone reaction mixture (**Ru4** used as catalyst). Aliquot taken and analysed after at 4h reaction. The integral values of the methyl protons of 2-propanone and 2-propanol correspond to the percentage conversion of 71% and yield of 71% (Table 4, entry 11).

Figure S37. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of transfer hydrogenation of 1acetylnaphthone reaction mixture (**Ru4** used as catalyst). Aliquot taken and analysed after at 6h reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the percentage conversion of 86% and yield of 84% (Table 4, entry 9).

Figure S38. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of transfer hydrogenation of acetophenone reaction catalysed by **Ru3** without a base. Aliquot taken and analysed after at 36 h of reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the percentage conversion of 99% and yield of 99% (Table 2, entry 5).

Figure S39. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of transfer hydrogenation of acetophenone reaction catalysed by **Ru4** without a base. Aliquot taken and analysed after at 18 h of reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the percentage conversion of 93% and yield of 93% (Table 2, entry 4).

Figure S40. ¹H NMR spectrum (400 MHz, *d*-CDCl₃) of transfer hydrogenation of acetophenone reaction (without a catalyst). Aliquot taken and analysed after at 36 h of reaction. The integral values of the methyl protons of 1-acetylnaphthone and product correspond to the yield of 42% (Table 2, entry 2).

Figure S41. ¹H NMR spectrum of isolated product (1-phenylethanol) from TH of acetophenone. Yield = 0.11 (79%) ¹H NMR spectrum(*d*-CDCl₃): δ (ppm) 1.49 (d, ³J_{H-H} = 6.8 Hz, 3H(CH₃)), 4.89 (q, ³J_{H-H} = 6.4 Hz, 1H(CH)), 4.85 (s, 1H(OH)), 7.30-7.39 (m, cluster 5H_{arom}).

Figure S42. ¹H NMR spectrum of isolated product 1-(4-chloroPhenylethanol) of TH of 4chloroacetophemnone. 4-chloroacetophenone. Yield 0.15 g (97%) = ¹H NMR spectrum(*d*-CDCl₃): δ (ppm) 1.49 (d, ³J_{H-H} = 6.8 Hz, 3H(C**H**₃)), 4.87 (q, ³J_{H-H} = 6.8 Hz, 1H(C**H**)), and 7.32 (m, cluster 4H_{arom}).

1-(naphthalen-1-yl)ethanol(Isolated product)in CDCI3

Figure S43. ¹H NMR spectrum of isolated product (1-naphthalen-1-yl)ethanol) from TH of 1acetylnaphthalenone. 1-(naphthalen-1-yl)ethan-1-ol. Yield 0.14 g (86%) = ¹H NMR spectrum(*d*-CDCl₃): δ (ppm) 1.63 (d, ³J_{H-H} = 6.4 Hz, 3H(CH₃)), 4.98 (q, ³J_{H-H} = 6.4 Hz, 1H(CH)), 7.49-7.55 (m, cluster 2H_{arom}), 7.84-7.88(m, cluster, 4H_{arom}).

Figure S44. ¹H NMR spectrum of isolated product (2-propanol) from TH of 2-propanone. 2propanol. Yield = 0.06 g (67%). ¹H NMR spectrum(*d*-CDCl₃): δ (ppm) 0.89 (d, ³J_{H-H} = 1.6 Hz, 3H(C*H*)), 1.23(t, ³J_{H-H} = 1.6 Hz, 3H(C*H*)), 1.31 (m, ³J_{H-H} = 1.6 Hz, 2H(C*H*)), 1.40(d, ³J_{H-H} = 1.6 Hz, 2H(C*H*)), 4.03 (m, ³J_{H-H} = 1.6 Hz, 1H(C*H*)), 4.89(s, 1H(O*H*)).

Figure S45. Base free TH of acetophenone catalysed by **Ru4** reaction, time, 6 h corresponding to percentage conversion of 39% (Table 2, entry 3^f).

Figure S47. Plots of percentage of conversion vs time showing the effects of catalyst loading on the catalytic activity on transfer hydrogenation of acetophenone reaction using of **Ru3** as a catalyst.

Figure S48. Plots of turnover number (TON) vs time showing the effects of catalyst loading on the catalytic activity of TH of acetophenone reaction using of **Ru3** as a catalyst. Reaction conditions: acetophenone, 1.00 mmol; K'BuO, 0.100 mmol; ⁱPrOH, 5ml; 82°C, time, 6 h. Percentage Conversion and yield determined by NMR spectroscopy (average of two independent runs), methoxybenzene was used as internal standard.

Figure S49. The (a) plot of In[acetophenone]₁/[acetophenone]_o vs In[t] for determination of the rate constants of each catalyst in TH of acetophenone reaction. Condition: acetophenone, 1.00 mmol; ⁱPrOH, 5ml; 82°C, time, 6 h. Percentage conversions were determined by NMR spectroscopy (average of two independent runs), methoxybenzene was used as internal standard.