Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Optimization of toxic metals adsorption on DEA-calix[4]arene appended silica resin using central composite design

Samiha Gul^a, Fakhar N. Memon^{b*}, Shahabuddin Memon^a

^a National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan ^b Department of Chemistry, University of Karachi, Karachi 75270, Pakistan

*Corresponding Author Email address: <u>fakhar.nisa@uok.edu.pk</u>, <u>fakhar_memon2@yahoo.com</u> (Fakhar N. Memon).

Supplementary Figures

- Fig. 1. Response surface plots of desirability for the effects of pH, adsorbent Dosage and metal ion concentration on the % adsorption of Pb²⁺
- Fig. 2. Response surface plots of desirability for the effects of pH, adsorbent Dosage and metal ion concentration on the % adsorption of Cd $^{2+}$
- Fig. 3. Response surface plots of desirability for the effects of pH, adsorbent Dosage and metal ion concentration on the % adsorption of Hg²⁺
- Fig. 4. Langmuir adsorption isotherm of Pb^{2+} , Cd^{2+} and Hg^{2+} on DEA- C4 resin.
- Fig. 5. Freundlich adsorption isotherm of Pb^{2+} , Cd^{2+} and Hg^{2+} on DEA- C4 resin
- Fig. 6(a) Lagergren model for % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+}
- Fig. 6(b) Ho and Mckay model for % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+}
- Fig. 6(c) Morris Weber model for % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+}
- Fig. 7. Effect of temperature on the % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+} .

Fig. 1. Response surface plots of desirability for the effects of pH, adsorbent Dosage and metal ion concentration on the % adsorption of Pb^{2+}

Fig. 2. Response surface plots of desirability for the effects of pH, adsorbent Dosage and metal ion concentration on the % adsorption of Cd $^{2+}$

Fig. 3. Response surface plots of desirability for the effects of pH, adsorbent Dosage and metal ion concentration on the % adsorption of Hg^{2+}

Fig. 4. Langmuir adsorption isotherm of Pb^{2+} , Cd^{2+} and Hg^{2+} on DEA- C4 resin.

Fig. 5. Freundlich adsorption isotherm of Pb^{2+} , Cd^{2+} and Hg^{2+} on DEA- C4 resin.

Fig. 6(a). Lagergren model for % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+}

Fig. 6(b). Ho and Mckay model for % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+} .

Fig. 6(c) Morris Weber model for % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+}

Fig. 7. Effect of temperature on the % adsorption of Pb^{2+} , Cd^{2+} and Hg^{2+} .