Supporting Information

Morphology and Element Doping Effect : Phosphorus-Doped Hollow Polygonal g-C₃N₄ Rods for Visible Light-Driven CO₂ Reduction

Wen-Feng Wang^a, Li-Qi Qiu^b, Kai-Hong Chen^b, Hong-Ru Li^b, Lie-Feng Feng ^{a*},

Liang-Nian He^{b*}

^a Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300350, China

^b State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

Corresponding author: Liefeng Feng; +86-18622730034; <u>fengliefeng@tju.edu.cn</u> Corresponding author: Liang-Nian He; +86-22-23503878; <u>heln@nankai.edu.cn</u>

Quantitative analysis of product gases

After the reaction, partial gaseous products (1 mL) were taken from the tube using a syringe, and then analyzed by gas chromatography (GC, FuLi 9790II) with a TCD detector to determine the moles of CO. Afterwards, the total moles of CO obtained in the photocatalytic CO₂ reduction was calculated with the headspace volume of the Schlenk tube.

$$V_{co} = (S_{co}/S_{co(1mL)}) / \left(\frac{S_{H_2}}{S_{H_2(1mL)}} + \frac{S_{co_2}}{S_{Hco_2(1mL)}} + \frac{S_{co}}{S_{co(1mL)}} \right) \cdot V_{tube}$$
(1)

$$V_{H_2} = \left(S_{H_2}/S_{H_2(1mL)}\right) / \left(\frac{S_{H_2}}{S_{H_2(1mL)}} + \frac{S_{co_2}}{S_{Hco_2(1mL)}} + \frac{S_{co}}{S_{co(1mL)}}\right) \cdot V_{tube}$$
(2)

$$n_{co} = P \cdot V_{co} / RT \tag{3}$$

$$n_{H_2} = P \cdot V_{H_2} / RT \tag{4}$$

$$Selectivity(S) = \left[\frac{n_{co}}{\left(n_{co} + n_{H_2}\right)}\right] \cdot 100\%$$
(5)

where ${}^{S_{H_2}}$, ${}^{S_{CO}}$, ${}^{S_{CO_2}}$ represent the integral areas in the gas chromatography spectra (Shown as Fig. S3) of H₂, CO and CO₂ for 1 mL gaseous products respectively. ${}^{S_{H_2(1\,mL)}}$, ${}^{S_{CO(1\,mL)}}$, ${}^{S_{CO_2(1\,mL)}}$ represent the integral areas for 1 mL pure H₂, 1 mL pure CO and 1 mL pure CO₂, respectively. In addition, ${}^{V_{tube}}(mL)$, ${}^{V_{CO}}(mL)$ and ${}^{V_{H_2}}(mL)$ is the headspace volume of the Schlenk tube and the volume of CO and H₂ in the total gaseous products. And ${}^{n_{co}}(\mu mol)$ and ${}^{n_{H_2}}(\mu mol)$ represent the total moles of CO and H₂ in the headspace of the Schlenk tube.

Quantum efficiency calculation

Measurement of the Number of Moles of Photons: To a 25 mL flask, Ru(bpy)₃Cl₂ (0.1 mM), 1,9-diphenylanthracene (DPA, 0.1 mM) and 25 mL acetonitrile were added. After that, the absorbance at 372 nm was recorded as $A_{INITIAL}$. Then, the sample was irradiated under 500 W Xenon long-arc lamp ($\lambda \ge 400$ nm) for 10 min and a new UV-Vis spectra of sample at 372 nm was recorded, which was denoted as A_{FINAL} . The equation below was used to calculate the moles of consumed DPA.

moles DPA consumed =
$$\left(\frac{A_{INITIAL} - A_{FINAL}}{\varepsilon_{372nm}l}\right) \times V$$

Where A_{INITIAL} and A_{FINAL} are the absorbance of the solution at 372 nm before and after irradiation, respectively; ε_{372nm} is the extinction coefficient of DPA at 372 nm in acetonitrile (11000 M⁻¹cm⁻¹), *l* is the path length of the cuvette (1 cm), and V is the volume of sample for which the absorption was measured (3 mL). Since the quantum yield (Φ) for Ru(bpy)₃Cl₂ is known to be 0.019, the moles of photons absorbed by our $\frac{Nh\nu}{t}$ were determined using the consumed moles of DPA hy

sample per unit time t were determined using the consumed moles of DPA by following equation:

$$\frac{\textit{Nhv}}{t} = \frac{\textit{moles of DPA consumed}}{\Phi t}$$

Where Φ is quantum yield of DPA consumption and *t* is the irradiation time (seconds).

To determine the Φ_{CO} in our reaction, we applied the equation:

$$\Phi_{CO}(\%) = \frac{\frac{\# \text{ moles of } CO}{t} \times 2}{\frac{Nhv}{t}} \times 100\%$$

Nhv

Where t' is the reaction time for photocatalytic CO₂ reduction and t' is the number of photons absorbed by the sample per unit time.

Effect of P-doping level and morphology of g-C₃N₄ on the activity

In order to further confirm the effect of P doping and morphology change on the performance g-C₃N₄, the P-doped g-C₃N₄ with different P contents were prepared in the same way as P-HCNR by changing the amount of phosphoric acid used in the preparation process. Specifically, 4 mL and 2 mL phosphoric acid were added to the melamine aqueous solution and the pH values of the resulting solutions were 2.5 and 3.5 respectively with vigorous stirring for 1 h. And then, the mixture was transferred into a 500 mL Teflon-lined stainless-steel autoclave for subsequent hydrothermal reaction at 180 °C for 6 h. The obtained mixture was filtered, washed with a small amount of deionized water and dried in an oven at 80 °C for 6 h. Finally, the obtained solid was calcined at 550 °C for 4 h in the tube furnace under argon atmosphere, affording the final product denoted as P-HCNR2 and P-HCNR3.

Moreover, the common P-doped $g-C_3N_4$ denoted as P-CN was also prepared. In detail, 3 g melamine and 6 mL phosphoric acid (85%) were dissolved in 300 mL deionized water and stirred for 1 h. Subsequently, the mixture was filtered and dried in

an oven at 80 °C for 6 h. Finally, the final P-CN was obtained by calcining at 550 °C for 4 h in the tube furnace under argon atmosphere.

Subsequently, the activities of photocatalytic CO_2 reduction were tested and compared. The activities of all samples were displayed in Table S2.

Fig. S1. 31 P MAS NMR spectra of P-HCNR and 31 P NMR of H₃PO₄ (162 MHz, CDCl3).

Fig. S2. Tauc plots of CN, HCNR and P-HCNR.

 $Fig. \ S3. \ {\rm Gas} \ chromatography \ of \ product \ gases.$

Figure. S4. Control experiments.

Figure. S5. XRD patterns of the P-HCNR before and after 10 hours' photocatalytic CO_2 reduction reaction.

Entry	CoCl ₂ (µmol)	CO(µmol/g∙h)	H ₂ (μmol/g·h)	Selectivity (%)
1	0	0	8.43	/
2	0.1	81.29	1.65	98
3	0.5	227.41	4.89	98
4	1	447.53	16.05	97
5	1.5	280.10	6.68	97
6	2	227.42	4.89	97
7	4	78.86	3.23	96

Table S1 Effect of $CoCl_2$ amount on CO/H_2 evolution and selectivity to CO.

Table S2 CO/H₂ evolution and selectivity to CO for CN $\,^{,}$ HCNR, P-HCNR, P-HCNR2 and P-HCNR3.

Entry	Sample	CO(µmol/g∙h)	$H_2(\mu mol/g \cdot h)$	Selectivity (%)
1	CN	67.01	3.55	94
2	HCNR	256.40	24.17	91
3	P-HCNR	447.53	16.05	96
4	P-CN	121.34	2.43	98
5	P-HCNR2	120.54	3.34	97
6	P-HCNR3	83.02	1.93	97

Table S3 Control experiments.

Entry	Condition ^a	CO(µmol/g·h)	$H_2(\mu mol/g \cdot h)$
1	no CoCl ₂	0	8.44
2	no bpy	0	0.69
3	no bpy +CoCl ₂	0	2.80
4	no catalyst	0	3.56
5	dark	0	0
6	Ar	0	5.62

^aDeviation from standard method

Materials	Cocatalyst	Products and Activity	Sacrificial agent	References
P-HCNR	[Co(bpy) ₃]Cl ₂	CO: 447.5 mol/g∙h Selectivity = 96%	TEOA	This work
C-doped BN nanosheet	[Co(bpy) ₃]Cl ₂	CO: 93 µmol/g·h Selectivity = 76%	TEOA	[1]
mtw-CNT	[Co(bpy) ₃]Cl ₂	CO: 253.3 μmol/g·h Selectivity = 96%	TEOA	[2]
Co ²⁺ doped 0D/2D TiO ₂ /g- C ₃ N ₄	[Co(bpy) ₃]Cl ₂	CO: 290 µmol/g∙h ∕	TEOA	[3]
TiO-CN	[Co(bpy) ₃]Cl ₂	CO: 283.9 µmol/g·h Selectivity = 89%	TEOA	[4]
P-doped inverse opal g-C ₃ N ₄	/	CO: 31.2 μmol/g·h Selectivity = 91%	H ₂ O (gas)	[5]
Ultra-thin porous g-C ₃ N ₄ (THCN)	/	CO: ~1.8 µmol/g·h CH₄: ~2.1 µmol/g·h	TEOA	[6]
Co ₁ -C ₃ N ₄ /α- Fe ₂ O ₃	/	CO: 14.9 μmol/g·h Selectivity > 99%	H ₂ O (gas)	[7]
WO_3/g - C_3N_4	/	CO: 41.47 μmol/g·h CH ₄ : 0.75 μmol/g·h	TEOA	[8]

Table S4 Comparison of photocatalytic CO_2 reduction performance with $\mathrm{C}_3\mathrm{N}_4$ based materials.

Reference:

[1] C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye, S. Lin, M. Antonietti, X. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, *Nat. Commun.*, 2015, **6**, 7698.

[2] Y. Chen, X. He, D. Guo, Y. Cai, J. Chen, Y. Zheng, B. Gao, B. Lin, J. Energy Chem., 2020, 49, 214–223.

[3] H. Shi, J. Du, J. Ho, W. Ni, C. Song, K. Li, G. G. Gurzadyan, X. Guo, *J. CO₂ Util.*, 2020, 38, 16–23.

[4] S. Tang, X. Yin, G. Wang, X. Lu, and T. Lu, Nano Res., 2019, 12, 457–462.

[5] X. Huang, W. Gu, S. Hu, Y. Hu, L. Zhou, J. Lei, L. Wang, Y. Liu and J. Zhang, *Catal. Sci. Technol.*, 2020, **10**, 3694–3700.

[6] B. Yang, J. Zhao, W. Yang, X. Sun, R. Wang, X. Jia, J. Colloid Interface Sci., 2021, 589, 179–186.

[7] B.-C. He, C. Zhang, P.-P. Luo, Y. Li, T.-B. Lu, Green Chem., 2020, 22, 7552–7559.

[8] X. Li, X. Song, C. Ma, Y. Cheng, D. Shen, S. Zhang, W. Liu, P. Huo, and H. Wang, ACS Appl. Nano Mater. 2020, 3, 1298–1306