Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information

Qiang Guo^a, Ru-Fen Zhang*^a, Xue-Wen Hua^b, Qian-Li Li^a, Xiu-Mei Du^a, Jing Ru^a, Chun-Lin Ma*^a

a Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China. b College of Agriculture, Liaocheng University, 252000, Liaocheng, Shandong, China E-mail: macl856@163.com zhangrf856@163.com

Table of contents

1. X-ray crystallography Table S1. Selected bond lengths [Å] and angles [°] for complex 1 Table S2. Selected bond lengths [Å] and angles [°] for complex 2 Table S3. Selected bond lengths [Å] and angles [°] for complex 3 Table S4. Selected bond lengths [Å] and angles [°] for complex 4 Table S5. Comparison of Sn-O bond length of reported organotin(IV) complexes. 2. Percentage inhibition of complexes 2 and 4 Figure S1. Percentage inhibition of complex 2 Figure S2. Percentage inhibition of complex 4 3. ¹H NMR spectra of complexes 1-4 Figure S3-S6. ¹H NMR spectra data of complexes 1-4 Figure S7-S8. ¹H NMR spectra data of HL₁ and HL₂ 4. ¹³C NMR spectra of complexes 2-4 Figure S9-S11. ¹³C NMR spectra data of complexes 2-4 Figure S12-S13. ¹³C NMR spectra data of HL₁ and HL₂ 5. ¹¹⁹Sn NMR spectra Figure S14. ¹¹⁹Sn NMR spectra data of complexes 2 Figure S15. ¹¹⁹Sn NMR spectra data of complexes 3 Figure S16. ¹¹⁹Sn NMR spectra data of complexes 4 6. HSQC of complex 2-4 and ligands Figure S17. HSQC spectrum for complex 2 Figure S18. HSQC spectrum for HL₁ Figure S19. HSQC spectrum for complex 3 Figure S20. HSQC spectrum for complex 4 Figure S21. HSQC spectrum for HL₂ 7. ADPs of complexes 2-4 Figure S22. Molecular structure of complex 2 which the ellipsoids are represented at 30% probability Figure S23. Molecular structure of complex 3 which the ellipsoids are represented at 30% probability Figure S24. Molecular structure of complex 4 which the ellipsoids are represented at 30% probability

1. X-ray crystallography

Bond lengths (Å)			
Sn(1)-O(1) 2.33	5(5)	Sn(1)-C(4) 2.1	.08(8)
Sn(1)-C(3) 2.09	9(8)	Sn(1)-O(7) 2.0)75(5)
Sn(1)-O(7A) 2.0	022(5)	Sn(2)-O(4) 2.2	209(5)
Sn(2)-O(3) 2.49	9(5)	Sn(2)-O(1) 2.4	421(5)
Sn(2)-O(6) 2.32	1(5)	Sn(2)-C(7) 2.1	.05(8)
Sn(2)-C(6) 2.09	3(8)	Sn(2)-O(7A) 2	2.078(5)
O(7)-Sn(1A) 2.0	022(5)	O(7)-Sn(2A)	2.078(5)
	Bond an	gles (°)	
O(1)-Sn(1)-Sn(1A)	107.96(12)	C(4)-Sn(1)-Sn(1A)	110.2(2)
C(4)-Sn(1)-O(1)	90.9(3)	C(3)-Sn(1)-Sn(1A)	110.4(2)
C(3)-Sn(1)-O(1)	91.6(3)	C(3)-Sn(1)-C(4)	136.3(3)
O(7)-Sn(1)-Sn(1A)	36.71(13)	O(7A)-Sn(1)-Sn(1A)	37.83(13)
O(7)-Sn(1)-O(1)	144.57(17)	O(7A)-Sn(1)-O(1)	70.19(18)
O(7)-Sn(1)-C(4)	99.6(3)	O(7A)-Sn(1)-C(4)	112.7(3)
O(7)-Sn(1)-C(3)	103.2(3)	O(7A)-Sn(1)-C(3)	109.2(3)
O(7A)-Sn(1)-O(7)	74.5(2)	O(4)-Sn(2)-O(3)	147.91(16)
O(4)-Sn(2)-O(1)	142.47(16)	O(4)-Sn(2)-O(6)	76.43(17)
O(1)-Sn(2)-O(3)	69.61(15)	O(6)-Sn(2)-O(3)	71.49(17)
O(6)-Sn(2)-O(1)	141.04(17)	C(7)-Sn(2)-O(4)	94.5(3)
C(7)-Sn(2)-O(3)	84.1(3)	C(7)-Sn(2)-O(1)	87.7(3)
C(7)-Sn(2)-O(6)	86.4(3)	C(6)-Sn(2)-O(4)	96.6(3)
C(6)-Sn(2)-O(3)	81.1(3)	C(6)-Sn(2)-O(1)	89.6(3)
C(6)-Sn(2)-O(6)	86.4(3)	C(6)-Sn(2)-C(7)	165.0(3)
O(7A)-Sn(2)-O(4)	74.94(18)	O(7A)-Sn(2)-O(3)	137.15(17)
O(7A)-Sn(2)-O(1)	67.57(17)	O(7A)-Sn(2)-O(6)	151.36(18)
O(7A)-Sn(2)-C(7)	95.4(3)	O(7A)-Sn(2)-C(6)	97.2(3)
Sn(1A)-O(7)-Sn(2A)	123.4(2)	Sn(1)-O(7)-Sn(2A)	130.9(2)

Table S1. Bond lengths (Å) and Bond angles (°) of Complex 1.

Bond lengths (Å)				
Sn(1)-O(1)	2.094(3)	Sn(1)-O(3)	2.199(4)	
Sn(1)-O(6)	2.176(4)	Sn(1)-O(4)	2.099(4)	
Sn(1)-C(1)	2.146(7)	Sn(1)-C(7)	2.136(6)	
Bond angles (°)				
C(7)-Sn(1)-O(6)	162.9(2)	C(7)-Sn(1)-O(3)	87.3(2)	
C(7)-Sn(1)-C(1)	105.1(3)	O(1)-Sn(1)-O(4)	163.76(14)	
O(6)-Sn(1)-O(3)	76.89(14)	O(1)-Sn(1)-C(7)	99.3(2)	
O(1)-Sn(1)-O(6)	84.72(15)	O(1)-Sn(1)-O(3)	81.32(14)	
O(1)-Sn(1)-C(1)	91.5(2)	O(4)-Sn(1)-C(7)	91.3(2)	
O(4)-Sn(1)-O(3)	87.05(15)	C(1)-Sn(1)-O(3)	166.7(2)	
O(4)-Sn(1)-O(6)	81.62(15)	O(6)-Sn(1)-O(3)	87.05(15)	
O(4)-Sn(1)-C(1)	97.5(2)	C(1)-Sn(1)-O(6)	91.3(2)	
C(8)-C(7)-Sn(1)	120.8(5)	C(12)-C(7)-Sn(1)) 122.8(5)	
C(30)-O(6)-Sn(1)) 123.3(3)	C(13)-O(3)-Sn(1) 125.8(3)	
C(44)-O(1)-Sn(1)) 134.1(3)	C(28)-O(4)-Sn(1) 133.4(3)	
C(6)-C(1)-Sn(1)	119.3(3)	C(2)-C(1)-Sn(1)	123.2(3)	

Table S2. Bond lengths (Å) and Bond angles (°) of Complex 2.

Bond lengths (Å)				
Sn(3)-O(13)	2.024(9)	Sn(3)-O(14)	2.065(9)	
Sn(3)-C(37)	2.069(19)	Sn(3)-C(38)	2.039(15)	
Sn(2)-O(1) 2	Sn(2)-O(1) 2.353(11)		2.372(12)	
Sn(2)-O(7) 2	.339(12)	Sn(2)-O(9)	2.420(10)	
Sn(2)-O(13)	2.055(8)	Sn(4)-O(14)	2.094(9)	
Sn(2)-C(18)	2.071(17)	Sn(2)-C(19)	2.031(14)	
Sn(4)-O(4) 2	.375(11)	Sn(4)-O(6)	2.346(10)	
Sn(4)-O(12)	2.338(12)	Sn(4)-O(10)	2.342(10)	
Sn(4)-C(41)	2.011(16)	Sn(4)-C(42)	2.020(18)	
Sn(1)-O(13)	2.064(9)	Sn(1)-O(14)	1.991(10)	
Sn(1)-C(39)	2.045(17)	Sn(1)-C(40)	2.089(15)	
Sn(3)-O(7) 2	.575(9)	Sn(3)-O(10)	2.697(9)	
Sn(1)-O(1) 2	.733(10)	Sn(1)-O(4)	2.607(8)	
Bond angles (°)				
O(13)-Sn(3)-O(14)	75.6(4)	O(13)-Sn(3)-C(37	7) 106.5(7)	
O(13)-Sn(3)-C(38)	105.1(6)	O(14)-Sn(3)-C(37	7) 104.3(6)	
C(38)-Sn(3)-O(14)	106.1(5)	C(38)-Sn(3)-C(37	7) 140.4(8)	
O(1)-Sn(2)-O(3)	72.2(4)	O(1)-Sn(2)-O(9)	144.2(4)	
O(3)-Sn(2)-O(9)	72.9(4)	O(7)-Sn(2)-O(1)	143.7(4)	
O(7)-Sn(2)-O(3)	144.7(4)	O(7)-Sn(2)-O(9)	72.5(4)	
O(13)-Sn(2)-O(1)	72.5(4)	O(13)-Sn(2)-O(3)	144.4(4)	
O(13)-Sn(2)-O(7)	70.5(4)	O(13)-Sn(2)-O(9)	142.7(4)	
O(13)-Sn(2)-C(18)	95.6(5)	C(18)-Sn(2)-O(1)	90.6(7)	
C(18)-Sn(2)-O(3)	89.0(6)	C(18)-Sn(2)-O(7)	92.1(6)	
C(18)-Sn(2)-O(9)	81.3(6)	C(19)-Sn(2)-O(1)	96.8(6)	
C(19)-Sn(2)-O(3)	81.5(5)	C(19)-Sn(2)-O(7)	89.5(6)	
C(19)-Sn(2)-O(9)	85.4(5)	C(19)-Sn(2)-O(13	3) 98.6(5)	
C(19)-Sn(2)-C(18)	165.4(6)	O(14)-Sn(4)-O(4)	69.7(3)	
O(14)-Sn(4)-O(6)	142.6(4)	O(14)-Sn(4)-O(12	2) 144.7(4)	
O(14)-Sn(4)-O(10)	72.8(4)	O(6)-Sn(4)-O(4)	73.1(3)	

Table S3. Bond lengths (Å) and Bond angles (°) of Complex ${\bf 3}$

O(12)-Sn(4)-O(4)	145.4(3)	O(12)-Sn(4)-O(6)	72.6(4)
O(12)-Sn(4)-O(10)	72.0(4)	O(10)-Sn(4)-O(4)	142.5(4)
O(10)-Sn(4)-O(6)	144.0(4)	C(41)-Sn(4)-O(14)	96.3(5)
C(41)-Sn(4)-O(4)	90.9(5)	C(41)-Sn(4)-O(6)	88.4(6)
C(41)-Sn(4)-O(12)	84.0(5)	C(41)-Sn(4)-O(10)	94.8(5)
C(41)-Sn(4)-C(42)	169.0(7)	C(41)-Sn(4)-O(14)	94.8(5)
C(41)-Sn(4)-O(4)	93.0(6)	C(41)-Sn(4)-O(6)	82.8(6)
C(41)-Sn(4)-O(12)	87.0(6)	C(41)-Sn(4)-O(10)	88.4(6)
O(13)-Sn(1)-C(40)	108.4(5)	O(14)-Sn(1)-O(13)	76.3(4)
O(14)-Sn(1)-C(39)	106.4(6)	O(14)-Sn(1)-C(40)	107.9(6)
C(39)-Sn(1)-O(13)	105.7(6)	C(39)-Sn(1)-C(40)	136.1(6)
C(80)-O(1)-Sn(2)	136.8(11)	C(13)-O(3)-Sn(2)	133.3(11)
C(81)-O(7)-Sn(2)	136.7(14)	C(29)-O(9)-Sn(2)	137.3(11)
Sn(3)-O(13)-Sn(2)	127.2(5)	Sn(3)-O(13)-Sn(1)	103.4(4)
Sn(2)-O(13)-Sn(1)	129.3(5)	Sn(3)-O(14)-Sn(4)	126.6(5)
Sn(1)-O(14)-Sn(3)	104.6(4)	Sn(1)-O(14)-Sn(4)	128.8(4)
C(43)-O(4)-Sn(4)	141.3(11)	C(45)-O(6)-Sn(4)	135.1(10)
C(62)-O(12)-Sn(4)	136.1(11)	C(61)-O(10)-Sn(4)	137.3(11)

 $\label{eq:complex} \textbf{Table S4.} \ Bond \ lengths (\mathring{A}) \ and \ Bond \ angles (\circ) \ of \ Complex \ \textbf{4}.$

Bond lengths (Å)				
Sn(1)-O(1)	2.082(15)	Sn(1)-O(3)	2.143(12)	
Sn(1)-O(4)	2.120(2)	Sn(1)-O(6)	2.170(15)	
Sn(1)-C(1)	2.140(2)	Sn(1)-C(7)	2.160(19)	
Bond angles (°)				
O(1)-Sn(1)-O(3)	83.5(7)	O(1)-Sn(1)-O(4)	160.4(6)	
O(1)-Sn(1)-O(6)	81.5(7)	O(1)-Sn(1)-C(1)	96.0(9)	
O(1)-Sn(1)-C(7)	95.7(9)	O(3)-Sn(1)-O(6)	77.8(5)	
O(3)-Sn(1)-C(1)	89.6(6)	O(3)-Sn(1)-C(7)	168.2(7)	
O(4)-Sn(1)-O(3)	81.5(7)	O(4)-Sn(1)-O(6)	83.0(7)	
O(4)-Sn(1)-C(1)	96.4(9)	O(4)-Sn(1)-C(7)	96.4(10)	
C(1)-Sn(1)-O(6)	167.3(6)	C(1)-Sn(1)-C(7)	102.2(8)	
C(7)-Sn(1)-O(6)	90.4(7)	C(80)-O(1)-Sn(1) 130.0(16)	
C(13)-O(3)-Sn(1) 127.1(13)	C(31)-O(4)-Sn(1) 129.6(19)	
C(33)-O(6)-Sn(1) 122.4(15)	C(2)-C(1)-Sn(1)	118.6(16)	
C(6)-C(1)-Sn(1)	123.6(17)	C(8)-C(7)-Sn(1)	116.5(17)	
C(12)-C(7)-Sn(1) 124(2)			

 $\label{eq:solution} \textbf{Table S5}. \ Comparison of Sn-O \ bond \ length \ of \ reported \ organotin(IV) \ complexes.$

Organotin complexes	Bond length of Sn-O	Ref
$[(Me_2Sn)_2(O_2CCH_2S)_2C_2N_2S(l_3-O)]n$	2.011-2.288 Å	41
${[Me_2Sn(cycloCH_2)_2CHCOO]_2O}_2$	2.224-2.317 Å	42
[(CH ₃) ₂ Sn(OOCC ₆ H ₄ OH) ₂]	2.016-2.557 Å	48
$[(n-C_4H_9)_2Sn(OOCC_6H_4OH)_2]$	2.104-2.632 Å	
Bu ₂ Sn[HL ²] ₂ (L=4-(2-hydroxynaphthylazo)benzoic acid)	2.060-2.647 Å	49
$[(Me_2Sn)_4O_2(C_{16}H_{17}FN_3O_3)_4]$	2.075 -2.499Å	Complex 1
[Ph ₂ Sn(C ₁₆ H ₁₇ FN ₃ O ₃) ₂]	2.094-2.199 Å	Complex 2
$[(Me_2Sn)_4O_2(C_{18}H_{19}FN_3O_4)_4]$	1.991-2.420 Å	Complex 3
[Ph ₂ Sn(C ₁₈ H ₁₉ FN ₃ O ₄) ₂]	2.082-2.170 Å	Complex 4

2. Percentage inhibition of complexes 2 and 4

Figure S1. Percentage inhibition of complex 2

Figure S2. Percentage inhibition of complex 4

Figure S4. ¹H NMR spectra(CDCl₃, 500.00 MHz, ppm) data of complex 2

Figure S5. ¹H NMR spectra(CDCl₃, 500.00 MHz, ppm) data of complex 3

Figure S6. ¹H NMR spectra(CDCl₃, 500.00 MHz, ppm) data of complex 4

Figure S8. ¹H NMR spectra(CDCl₃, 500.00 MHz, ppm) data of HL₂

Figure S10. ¹³C NMR (CDCl₃, 125.7 MHz ppm) data of complex 3

Figure S12. ¹³C NMR (CDCl₃, 125.7 MHz ppm) data of HL₁

Figure S14. ¹¹⁹Sn NMR (CH₂Cl₂, 186.5 MHz ppm) spectra data of complexes 2

Figure S15. ¹¹⁹Sn NMR (CH₂Cl₂, 186.5 MHz ppm) spectra data of complexes 3

Figure S16. ¹¹⁹Sn NMR (CH₂Cl₂, 186.5 MHz ppm) spectra data of complexes 4

6. HSQC of HL_1 and complex 2

Figure S18. HSQC spectrum for HL₁

Figure S20. HSQC spectrum for Complex 4

Figure S21. HSQC spectrum for HL₂

7. ADPs of complexes 2-4

Figure S22. Molecular structure of complex 2 which the ellipsoids are represented at 30% probability

Figure S23. Molecular structure of complex 3 which the ellipsoids are represented at 30% probability

Figure S24. Molecular structure of complex 4 which the ellipsoids are represented at 30% probability