Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic supplementary information

for

Room temperature ferroelectric copper(II) coordination polymers based on amino acid hydrazide ligands

Andreas Puškarić¹, Marko Dunatov¹, Ivanka Jerić¹, Igor Sabljić,^{1,2} and Lidija Androš Dubraja^{1,*}

¹Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia ²Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, SE-75651, Sweden

Email: Lidija.Andros@irb.hr

Figure S1. Room temperature XRD pattern and profile fitting results for $\{Cu_3(L2)_2(TPA)\}_n \times solvent$ (2).

Figure S2. ATR spectra of coordination polymers $\{Cu_3(L1)_2(TPA)\}_n \times solvent$ (1) and $\{Cu_3(L2)_2(TPA)\}_n \times solvent$ (2)

Figure S3. ATR spectra of coordination polymer $\{Cu_3(L1)_2(TPA)\}_n \times solvent (1) as-prepared and heated at 473 K.$

Figure S4. Solid state UV-visible diffuse reflectance spectrum of the $\{Cu_3(L1)_2(TPA)\}_n \times solvent$ (1) and $\{Cu_3(L2)_2(TPA)\}_n \times solvent$ (2)

Figure S5. DSC curves for heating and cooling cycles for compounds 1 (a) and 2 (b).

Figure S6. TG and DTA curves for compound **1** and **2** (orange and violet respectively) measured under a synthetic air atmosphere.

Figure S7. Frequency dependence of the real (closed symbols) and imaginary (open symbols) parts of the complex dielectric constant measured at different temperatures for compound **1**.

Cu1-N1	2.030(13)	Cu2–N2	1.865(15)	Cu3–N6	1.940(16)
Cu1-N4	2.003(14)	Cu2–N3	1.940(14)	Cu3–N7	2.037(14)
Cu1-N5	1.945(17)	Cu2-01	1.950(10)	Cu3-04	2.002(12)
Cu1-N8	1.943(15)	Cu2-05	1.924(11)	Cu3-07	1.874(15)

Table S1.Bond lengths (Å) involved in the first coordination sphere of copper(II) atoms in
 ${Cu_3(L1)_2(TPA)}_n \times solvent (1).$

Table S2.Selected angles (°) in the coordination spheres of copper(II) atoms in $\{Cu_3(L1)_2(TPA)\}_n \times solvent$ (1).

N1-Cu1-N4	79.4(6)	N2-Cu2-N3	82.6(7)	N6-Cu3-N7	85.8(7)
N1-Cu1-N5	178.6(5)	N2-Cu2-O1	82.1(5)	N6-Cu3-O4	79.5(6)
N1-Cu1-N8	97.5(6)	N2-Cu2-O5	171.9(5)	N6-Cu3-O7	170.2(6)
N4–Cu1–N5	99.5(6)	N3-Cu2-O1	163.4(6)	N7-Cu3-O4	162.1(5)
N4–Cu1–N8	176.3(6)	N3-Cu2-O5	104.9(6)	N7-Cu3-O7	103.5(6)
N5–Cu1–N8	83.5(6)	01–Cu2–O5	90.8(5)	04–Cu3–O7	92.0(5)
Cu2-01-C1	110.4(11)	Cu3-04-C13	111.0(10)	C25-O5-Cu2	128.1(10)

Table S3. Hydrogen-bonding geometry in $\{Cu_3(L1)_2(TPA)\}_n \times solvent (1).$

D-H…A	D-H/Å	H…A/Å	D…A/Å	D-H…A/°	Symm. op. on A
N3–H3C…O2	0.89	2.14	2.90(2)	142	1 + <i>x, y, z</i>
N7–H7B…O3	0.89	2.14	2.92(2)	146	-1 + <i>x, y, z</i>
N3–H3D…solvent	0.89				
N7–H7A…solvent	0.89				
N3–H3C…O6	0.89	2.51	2.88(2)	105	3 + x, -1 + y, z
C3–H3A…O1	0.97	2.57	2.914(19)	101	
C15–H15A…O4	0.97	2.52	2.87(2)	101	
C21–H21A…O3	0.97	2.56	3.24(2)	127	-1 + <i>x, y, z</i>
C28–H28…O7	0.93	2.49	2.80(2)	100	
C30–H30…O8	0.93	2.44	2.75(2)	100	