Supplementary Information

An efficient CuO/rGO/TiO₂ photocatalyst for the synthesis of benzopyranopyrimidine compounds under visible light irradiation

Maryam Mirza-Aghayan,^{1*} Mandana Saeedi,¹ Rabah Boukherroub²

¹ Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. BOX 14335-186,

Tehran, Iran

² Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France

Experimental details

Elmasonic P ultrasonic cleaning unit with a frequency of 37 kHz and ultrasonic homogenizer Bandelin Sonoplus HD 3100 with probe model MS 73 at 100% power were used for the synthesis of rGO/TiO₂ and CuO/rGO/TiO₂ nanocomposites. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) data were recorded using a VEGA3 LMU TESCAN SEM and MIRA III TESCAN FESEM. X-ray diffraction (XRD) patterns were acquired using a PW1730 (PHILIPS Company). FT-IR spectra were obtained using KBr disks with a Bruker Vector 22 FT-IR spectrometer. Copper content in CuO/rGO/TiO₂ catalyst was determined using ICP-OES Varian 735 ES configuration torch redial. Melting points were determined in evacuated capillaries with a Buchi B-545 apparatus. ¹H and ¹³C NMR spectra were performed on Bruker 300, 125 and 75 MHz spectrometers using tetramethylsilane as internal standard. X-ray photoelectron spectroscopy (XPS) measurements were carried out using a Bes Tec (Germany) instrument at a pressure of 10×10⁻¹⁰ mbar. High resolution transmission electron microscopy (HRTEM) analysis was acquired using FEI Tecnai G2 F20 SuperTwin TEM (accelerating voltage: 200 kV). Cyclic voltammetry (CV) analysis was performed by Ivium electrochemical

^{*} Corresponding author: <u>m.mirzaaghayan@ccerci.ac.ir</u> Tel.: +98 21 44787720; Fax: +98 2144787762

workstation. Photoluminescence (PL) measurements were recorded using a Varian Cary Eclipse Spectrometer (light source: Xenon Flash Lamp, Wavelength range: 200-900 nm).

Fig. S1. The FT-IR spectra of fresh and reused CuO/rGO/TiO₂ catalyst.

2-(4-Morpholino-5*H***-benzopyrano[2,3-***d***]pyrimidin-2-yl)phenol (1a): White powder; Mp = 192-194°C; ¹H NMR (300 MHz, DMSO-***d***₆) \delta (ppm) = 3.49 (t, 4H, ³***J***_{***HH***} = 4.3 Hz, 2CH₂), 3.78 (t, 4H, ³***J***_{***HH***} = 4.7 Hz, 2CH₂), 3.99 (s, 2H, CH₂), 6.88-6.93 (m, 2H, CH_{Ar}), 7.14-7.35 (m, 5H, CH_{Ar}), 8.24 (dd, 1H, ³***J***_{***HH***} = 9 and 1.5Hz, CH_{Ar}), 13.06 (s, 1H, OH).**

4-Bromo-2-(7-bromo-4-morpholino-5*H*-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1b): Yellow solid; Mp = 194-196°C; ¹H NMR (300 MHz, DMSO-*d*₆) δ (ppm) = 3.48 (t, 4H, ³*J*_{*HH*} = 4.1 Hz, 2CH₂), 3.78 (t, 4H, ³*J*_{*HH*} = 4.6 Hz, 2CH₂), 3.99 (s, 2H, CH₂), 6.87 (d, 1H, ³*J*_{*HH*} = 8.7 Hz, CH_{Ar}), 7.14 (d, 1H, ³*J*_{*HH*} = 8.7 Hz, CH_{Ar}), 7.41-7.57 (m, 3H, CH_{Ar}), 8.26 (d, 1H, ³*J*_{*HH*} = 2.5 Hz, CH_{Ar}), 13.09 (s, 1H, OH). **2-(4-(Piperidin-1-yl)-5***H***-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1c):** Yellow solid; Mp = 168-170°C; ¹H NMR (300 MHz, DMSO- d_6) δ (ppm) = 1.68 (s, 6H, 3CH₂), 3.47 (s, 4H, N(CH₂)₂), 3.98 (s, 2H, CH₂), 6.91 (t, 2H, ³*J*_{HH} = 9 Hz, CH_{Ar}), 7.14-7.39 (m, 5H, CH_{Ar}), 8.25 (dd, 1H, ³*J*_{HH} = 8.3 and 1.3 Hz, CH_{Ar}), 13.28 (s, 1H, OH).

4-Bromo-2-(7-bromo-4-(piperidin-1-yl)-5*H*- **benzopyrano**[**2**,**3**-d]**pyrimidin-2-yl)phenol (1d):** Yellow solid; Mp = 222-224°C; ¹H NMR (500 MHz, DMSO-*d*₆) δ (ppm) = 1.70 (m, 6H, 3CH₂), 3.48-3.50 (m, 4H, N(CH₂)₂), 4.05 (s, 2H, CH₂), 6.93 (d, 1H, ³*J*_{HH} = 5.25 Hz, CH_{Ar}), 7.2 (d, 1H, ³*J*_{HH} = 5.22 Hz, CH_{Ar}), 7.47 (dd, 1H, ³*J*_{HH} = 5.4 and 1.5 Hz, CH_{Ar}), 7.54 (dd, 1H, ³*J*_{HH} = 3 and 1.5 Hz, CH_{Ar}), 7.65 (d, 1H, ³*J*_{HH} = 1.4 Hz, CH_{Ar}), 8.34 (d, 1H, ³*J*_{HH} = 1.4 Hz, CH_{Ar}), 13.36 (s, 1H, OH).

2-(4-(4-Methylpiperidin-1-yl)-5*H***-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1e):** Yellow solid; Mp = 158-159°C; ¹H NMR (300 MHz, DMSO-*d*₆) δ (ppm) = 0.97 (d, 3H, ³*J*_{*HH*} = 6.2 Hz, CH₃), 1.25-1.37 (m, 2H, CH₂), 1.66-1.78 (m, 3H, CH and CH₂), 3.01 (t, 2H, ³*J*_{*HH*} = 12.6 Hz, N(CH₂)), 3.93-3.98 (broad, m, 4H, CH₂, N(CH₂)), 6.89-6.94 (m, 2H, CH_{Ar}), 7.12-7.39 (m, 5H, CH_{Ar}), 8.25 (dd, 1H, ³*J*_{*HH*} = 8.12 Hz, 1.3 Hz, CH_{Ar}), 13.26 (d, 1H, ⁴*J*_{*HH*} = 3.4 Hz, OH).

4-Bromo-2-(7-bromo-4-(4-methylpiperidin-1-yl)-5H-benzopyrano[2,3-d]pyrimidin-2-

yl)phenol (1f): Yellow solid; Mp = 233-235°C; ¹H NMR (300 MHz, DMSO-*d*₆) δ (ppm) = 0.96 (d, 3H, ³*J*_{HH}= 6.2 Hz, CH₃), 1.25-1.36 (m, 2H, CH₂), 1.66-1.78 (broad, m, 3H, CH and CH₂), 3.02 (t, 2H, ³*J*_{HH}= 11.9 Hz, N(CH₂)), 3.90-3.99 (broad, m, 4H, CH₂, N(CH₂)), 6.88 (d, 1H, ³*J*_{HH} = 7.8 Hz, CH_{Ar}), 7.15 (d, 1H, ${}^{3}J_{HH}$ = 8.6 Hz, CH_{Ar}), 7.42-7.52 (m, 2H, CH_{Ar}), 7.60 (s, 1H, CH_{Ar}), 8.28 (d, 1H, ${}^{3}J_{HH}$ = 2.1 Hz, CH_{Ar}), 13.32 (s, 1H, OH).

2-(4-(Dimethylamino)-5*H***-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1g):** Yellow solid; Mp = 178-180°C; ¹H NMR (300 MHz, DMSO-*d*₆) δ (ppm) = 3.31 (s, 6H, 2CH₃), 4.18 (s, 2H, CH₂), 6.88-7.35 (m, 7H, CH_{Ar}), 8.24-8.27 (m, 1H, CH_{Ar}), 13.37 (s, 1H, OH).

4-Bromo-2-(7-bromo-4-(dimethylamino)-5H-benzopyrano[2,3-d]pyrimidin-2-yl)phenol

(1h): Yellow solid; Mp = 195-197°C; ¹H NMR (500 MHz, DMSO- d_6) δ (ppm) = 3.19 (s, 3H, CH₃), 3.28 (s, 3H, CH₃), 4.17 (s, 2H, CH₂), 6.86 (d, 1H, ${}^{3}J_{HH}$ =8.8, CH_{Ar}), 7.10 (d, 1H, ${}^{3}J_{HH}$ = 8.8, CH_{Ar}), 7.41 (d, 1H, ${}^{3}J_{HH}$ = 8.65, CH_{Ar}), 7.47 (d, 1H, ${}^{3}J_{HH}$ = 8.8, CH_{Ar}), 7.51 (s, 1H, CH_{Ar}), 8.27 (s, 1H, CH_{Ar}), 13.36 (s, H, OH).

2-(4-(Butyl(methyl)amino)-5*H***-benzopyrano [2,3-d]pyrimidin-2-yl)phenol (1i):** Yellow solid; Mp = 150-152°C; IR (KBr): 3432, 2959, 2929, 1624, 1602, 1580, 1489, 1439, 1389, 1256, 1068, 761 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ (ppm) = 0.92 (t, 3H, ³*J*_{HH} = 7.3 Hz, CH₃), 1.28-1.41 (m, 2H, CH₂), 1.60-1.71 (m, 2H, CH₂), 3.22 (s, 3H, CH₃), 3.55 (t, 2H, ³*J*_{HH} = 7.6 Hz, CH₂), 4.15 (s, 2H, CH₂), 6.88-6.93 (m, 2H, CH_{Ar}), 7.10-7.38 (m, 5H, CH_{Ar}), 8.23 (dd, 1H, ³*J*_{HH} = 7.6 and 1.6 Hz, CH_{Ar}), 13.31 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃) (ppm) = 13.9, 20.0, 26.0, 29.9, 39.0, 52.5, 94.3, 116.9, 117.4, 118.5, 118.7, 119.2, 124.2, 128.1, 128.5, 129.1, 132.6, 150.3, 160.4, 161.4, 163.8; MS (EI) (70 ev), m/z (%): 363 (20) [M+2]⁺, 361 (77) [M]⁺, 346 (24), 332 (8), 318 (32), 304 (100), 290 (14), 275 (8), 171 (9), 151 (20), 128 (9), 102 (8).

4-Bromo-2-(7-bromo-4-(butyl(methyl)amino)-5*H***-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1j): Yellow solid; Mp = 226-228°C; IR (KBr): 3431, 2954, 2857, 1622, 1597, 1539, 1487, 1369, 1260, 1186, 1045, 817, 682 cm⁻¹; ¹H NMR (300 MHz, DMSO-***d***₆) \delta (ppm) = 0.94 (t, 3H, ³***J***_{***HH***} = 7.4 Hz, CH₃), 1.32-1.45 (m, 2H, CH₂), 1.60-1.71 (m, 2H, CH₂), 3.23 (s, 3H, CH₃), 3.54 (t, 2H, ³***J***_{HH} = 7.7 Hz, CH₂), 4.18 (s, 2H, CH₂), 6.92 (d, 1H, ³***J***_{HH} = 8.7 Hz, CH_{Ar}), 7.14 (d, 1H, ³***J***_{HH} = 8.7 Hz, CH_{Ar}), 7.42-7.61 (m, 3H, CH_{Ar}), 8.30 (d, 1H, ³***J***_{***HH***} = 8.7 Hz, CH_{Ar}), 13.33 (s, 1H, OH); ¹³C NMR (75 MHz, CDCl₃) (ppm) = 13.9, 20.0, 25.8, 29.8, 39.1, 52.7, 93.7, 110.8, 116.7, 119.5, 119.9, 121.2, 131.3, 135.4, 136.9, 146.8, 149.2, 159.4, 163.6, 165.3; MS (EI) (70 ev), m/z (%): 519 (100) [M+2]⁺, 517 (48.8) [M]⁺, 504 (17.6) [M+2-CH₃]⁺, 476 (28) [M+2-CH₃-(CH₂)₂]⁺, 462 (91) [M+2-CH₃-(CH₂)₃]⁺, 281 (30), 207 (67), 191 (30), 127 (22).**

2-(4-(Benzyl(methyl)amino)-5*H***-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1k):** Yellow solid; Mp = 168-170°C; IR (KBr): 3430, 3061, 2899, 1627, 1605, 1583, 1493, 1488, 1262, 1059, 947, 754, 692 cm⁻¹; ¹H NMR (300 MHz, DMS- d_6) δ (ppm) = 3.20 (s, 3H, CH₃), 4.19 (s, 2H, CH₂), 4.86 (s, 2H, CH₂), 6.85-6.88 (m, 2H, CH_{Ar}), 7.08-7.39 (m, 10H, CH_{Ar}), 8.19 (dd, 1H, ³*J*_{HH} = 8.1 Hz and 1.5 Hz, CH_{Ar}), 13.12 (s, 1H, OH); ¹³C NMR (125 MHz, DMSO-d6) δ (ppm) = 25.7, 39.1, 56.1, 94.5, 116.8, 117.6, 118.1, 119, 119.2, 124, 125.9,126.7, 127.1, 127.7, 128.3, 128.6, 128.9, 129.2, 133.0, 137.0, 150.0, 160.3, 164.2; MS (EI) (70 ev), m/z (%): 397 (8) [M+2]⁺, 395 (25) [M]⁺, 304 (100), 207 (8), 185 (9), 171 (5), 120 (5), 91 (16).

2-(4-(Benzyl(methyl)amino)-7-bromo-5H-benzopyrano[2,3-d]pyrimidin-2-yl)-4-

bromophenol (11): Yellow solid; Mp = 198-200°C; IR (KBr): 3433, 2896, 1615, 1561, 1545, 1434, 1180, 1056, 817, 802, 696 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ (ppm) = 3.26 (s, 3H, CH₃), 4.24 (s, 2H, CH₂), 4.85 (s, 2H, CH₂), 6.85 (d, 1H, ³ J_{HH} = 9 Hz, CH_{Ar}), 7.14 (d, 1H, ³ J_{HH} =

9 Hz, CH_{Ar}), 7.25-7.49 (m, 8H, CH_{Ar}), 8.21 (d, 1H, ${}^{3}J_{HH} = 9$ Hz, CH_{Ar}), 13.10 (s, 1H, OH); 13 C NMR (75 MHz, CDCl₃) (ppm) = 25.7, 38.9, 56.0, 94.5, 116.8, 117.5, 118.4, 118.7, 119.2, 124.3, 127, 128.1, 128.5, 128.9, 129.2, 132.8, 137.2, 150.1, 160.4, 161.3, 163.7, 164.2.

2-Imino-2*H***-benzopyran-3-carbonitrile (2a)** Yellow solid; Mp = 160-162°C; IR (KBr): 3340, 3294, 2226, 2196, 1647, 1600, 1453, 1417, 1220, 1191, 1060, 760 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆) δ (ppm) = 7.20 (d, 1H, ³*J*_{HH} = 8.8 Hz, CH_{Ar}), 7.27 (t, 2H, ³*J*_{HH} = 7.4 Hz, CH_{Ar}), 7.60 (d, 1H, ³*J*_{HH} = 5.6 Hz, CH_{Ar}), 8.38 (s, 1H, CH_{Ar}), 8.85 (s, 1H, NH).

4-Morpholino-2-(naphthalen-2-yl)-5*H***-benzopyrano[2,3-d]pyrimidine (3a):** Yellow solid; Mp = 182-183°C; IR (KBr): 2930, 2852, 1598, 1572, 1536, 1418, 1383, 1235, 1109, 929, 790, 755 cm⁻¹; 1H NMR (500 MHz, DMSO-*d*₆) δ (ppm) = 3.53 (t, 4H, 3*J*_{HH} = 5 Hz, 2CH₂), 3.80 (t, 4H, 3*J*_{HH} = 4.9 Hz, 2CH₂), 4.10 (s, 2H, CH₂), 7.16-7.20 (m, 2H, CH_{Ar}), 7.30 (t, 1H, 3*J*_{HH} = 8.2 Hz, CH_{Ar}) 7.40 (d, 1H, 3*J*_{HH} = 7.5 Hz, CH_{Ar}), 7.59-7.67 (m, 3H, CH_{Ar}), 8.02 (d, 1H, 3*J*_{HH} = 7.5 Hz, CH_{Ar}), 8.06 (d, 2H, 3*J*_{HH} = 7.5 Hz, CH_{Ar}), 8.78 (d, 1H, 3*J*_{HH} = 7Hz, CH_{Ar}); ¹³C NMR (125 MHz, DMSO-*d*₆) δ (ppm) = 25.2, 48.7, 66.7, 98.5, 116.7, 120.5, 124.8, 125.6, 126.3, 126.4, 127.1, 128.5, 128.8, 129.2, 129.5, 130.6, 130.9, 134.0, 135.6, 150.8, 163.2, 164.9, 165.8; MS (EI) (70 ev), m/z (%): 397 (4) [M+2]+, 395 (28) [M]+, 393 (100), 364 (16), 350 (22), 324 (16), 309 (28), 197 (8), 153 (13), 127 (12), 102 (9), 84 (24).

2-(Naphthalen-2-yl)-4-(piperidin-1-yl)-5*H***-benzopyrano[2,3-d]pyrimidine (3b): Yellow solid; Mp = 163-165°C; IR (KBr): 2843, 1598, 1575, 1423, 1386, 1231, 1119, 1011, 933, 759 cm⁻¹; ¹H NMR (500 MHz, DMSO-***d***₆) δ (ppm) = 1.70 (s, 6H, 3CH₂), 3.47 (s, 4H, N(CH₂)₂), 4.06**

(s, 2H, CH₂), 7.15-7.22 (m, 2H, CH_{Ar}), 7.29 (t, 1H, ${}^{3}J_{HH} = 8$ Hz, CH_{Ar}), 7.40 (d, 1H, ${}^{3}J_{HH} = 7.7$ Hz, CH_{Ar}), 7.56-7.58 (m, 2H, CH_{Ar}), 7.62 (t, 1H, ${}^{3}J_{HH} = 7.8$ Hz, CH_{Ar}), 8.01 (d, 1H, ${}^{3}J_{HH} = 6.8$ Hz, CH_{Ar}), 8.05 (d, 2H, ${}^{3}J_{HH} = 7.7$ Hz, CH_{Ar}), 8.78 (d, 1H, ${}^{3}J_{HH} = 7$ Hz, CH_{Ar}); 13 C NMR (125 MHz, DMSO- d_{6}) δ (ppm) = 24.5, 25.5, 26.3, 49.5, 97.9, 116.7, 120.9, 121.5, 124.7, 125.8, 126.4, 126.9, 128.5, 128.7, 129.0, 129.5, 130.8, 130.9, 134.0, 135.8, 163.0, 165.0, 166.5; MS (EI) (70 ev), m/z (%): 395 (12.8) [M+2]⁺, 393 (45.6) [M]⁺, 309 (13), 281 (52), 207 (100), 191 (12), 153 (8), 96 (80), 84 (13), 73 (11).

4-Morpholino-2-(thiophen-2-yl)-5*H***-benzopyrano[2,3-d]pyrimidine (3c):** Yellow solid; Mp = 210-212°C; IR (KBr): 2854, 1600, 1575, 1531, 1427, 1246, 1013, 920, 780 cm⁻¹; ¹H NMR (500 MHz, DMSO-*d*₆) δ (ppm) = 3.51 (t, 4H, ³*J*_{*HH*} = 4.4 Hz, 2CH₂), 3.78 (t, 4H, ³*J*_{*HH*} = 5 Hz, 2CH₂), 4.00 (s, 2H, CH₂), 7.13-7.19 (m, 3H, CH_{Ar}), 7.28 (t, 1H, ³*J*_{*HH*} = 7.25Hz, CH_{Ar}) 7.35 (1H, d, ³*J*_{*HH*} = 7.3 Hz, CH_{Ar}), 7.71 (d, 1H, ³*J*_{*HH*} = 6.1 Hz, CH_{Ar}), 7.86 (d, 1H, ³*J*_{*HH*} = 6.1 Hz, CH_{Ar}); ¹³C NMR (125 MHz, DMSO-*d*₆) δ (ppm) = 25.2, 48.6, 54.9, 66.5, 97.8, 116.7, 120.5, 124.8, 128.5, 128.7, 129.5, 130.7, 150.5, 157.5, 165.5, 184.2, 186.3; MS (EI) (70 ev), m/z (%): 353 (9) [M+2]⁺, 351 (100) [M]⁺, 319 (11), 306 (48), 293 (61), 281 (28), 265 (25), 207 (42), 191 (6), 155 (15), 130 (16), 119 (22), 102 (16), 77 (8).

N-Benzyl-N-methyl-2-(naphthalen-2-yl)-5*H***-benzopyrano[2,3-d]pyrimidin-4-amine (3d):** Yellow solid; Mp = 225-227°C; IR (KBr): 3087, 3044, 2694, 1622, 1598, 1536, 1383, 1235, 1109, 929, 790, 735 cm⁻¹; ¹H NMR (500 MHz, DMSO- d_6) δ (ppm) = 3.23 (s, 3H, CH₃), 4.26 (d, 2H, $^4J_{HH}$ = 30 Hz, CH₂), 4.88 (d, 2H, $^4J_{HH}$ = 9.5 Hz, CH₂), 6.90 (t, 1H, $^3J_{HH}$ = 7.8 Hz, CH_{Ar}), 7.12-7.18 (m, 3H, CH_{Ar}), 7.28-7.40 (m, 6H, CH_{Ar}), 7.52 (t, 1H, $^3J_{HH}$ = 8.6 Hz, CH_{Ar}), 7.58 (t, 1H, ${}^{3}J_{HH} = 8.6$ Hz, CH_{Ar}), 7.96-8.03 (m, 2H, CH_{Ar}), 8.22 (d, 1H, ${}^{3}J_{HH} = 8.4$ Hz, CH_{Ar}), 8.69 (d, 1H, ${}^{3}J_{HH} = 8.5$ Hz, CH_{Ar}); 13 C NMR (125 MHz, DMSO- d_{6}) δ (ppm) = 25.5, 31.1, 55.7, 94.9, 116.5, 117.8, 119.2, 124.5, 125.5, 126.2, 126.4, 126.8, 127.5, 127.6, 129.0, 129.1, 129.5, 133.9, 138.2, 138.7, 150.6, 160.2, 175.4, 181.6; MS (EI) (70 ev), m/z (%): 431 (2) [M+2]⁺, 429 (16) [M]⁺, 338 (100), 281 (8), 207 (16), 185 (8), 91 (16).

2-(4-Morpholino-5*H*-benzopyrano[2,3-*d*]pyrimidin-2-yl)phenol (1a)

4-Bromo-2-(7-bromo-4-morpholino-5*H*-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1b)

2-(4-(Piperidin-1-yl)-5*H*-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1c)

4-Bromo-2-(7-bromo-4-(piperidin-1-yl)-5*H*-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1d)

Expanded ¹H NMR spectrum

3.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 f1 (ppm)

2-(4-(4-Methylpiperidin-1-yl)-5*H*-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1e)

4-Bromo-2-(7-bromo-4-(4-methylpiperidin-1-yl)-5*H*-benzopyrano[2,3-d]pyrimidin-2yl)phenol (1f)

2-(4-(Dimethylamino)-5H-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1g)

4-Bromo-2-(7-bromo-4-(dimethylamino)-5*H*-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1h)

Expanded ¹H NMR spectrum

2-(4-(Butyl(methyl)amino)-5H-benzopyrano [2,3-d]pyrimidin-2-yl)phenol (1i)

FTIR spectrum

Mass spectrum

4-Bromo-2-(7-bromo-4-(butyl(methyl)amino)-5H-benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1j)

FTIR spectrum

Mass spectrum

2-(4-(Benzyl(methyl)amino)-5*H*- benzopyrano[2,3-d]pyrimidin-2-yl)phenol (1k)

¹H NMR spectrum

FTIR spectrum

Mass spectrum

2-(4-(Benzyl(methyl)amino)-7-bromo-5*H*-benzopyrano[2,3-d]pyrimidin-2-yl)-4bromophenol (11)

FTIR spectrum

2-Imino-2*H*-benzopyran-3-carbonitrile (2a)

Expanded ¹H NMR spectrum

FTIR spectrum

Mass spectrum

4-Morpholino-2-(naphthalen-2-yl)-5*H*-benzopyrano[2,3-d]pyrimidine (3a)

FTIR spectrum

Mass spectrum

2-(Naphthalen-2-yl)-4-(piperidin-1-yl)-5*H*-benzopyrano[2,3-d]pyrimidine (3b)

Expanded ¹H NMR spectrum

FTIR spectrum

Mass spectrum

4-Morpholino-2-(thiophen-2-yl)-5*H*- benzopyrano[2,3-d]pyrimidine (3c)

Expanded ¹H NMR spectrum

FTIR spectrum

Mass spectrum

N-Benzyl-N-methyl-2-(naphthalen-2-yl)-5*H*-benzopyrano[2,3-d]pyrimidin-4-amine (3d)

FTIR spectrum

Mass spectrum

