Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Materials

Fluorinated tolane-based fluorophores bearing a branched flexible unit with aggregation-induced emission enhancement characteristics

Shigeyuki Yamada,* Masaya Sato, Eiji Uto, Mitsuki Kataoka, Masato Morita and Tsutomu Konno

Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

*Correspondence: syamada@kit.ac.jp; Tel: +81-75-724-7517

1. Experimental	••••	S-2
2. NMR Spectra	••••	S-5
3. X-ray crystallographic analysis	••••	S-15
4. DFT Calculation	••••	S-16
Cartesian coordinate	••••	S-18
5. Photophysical Characteristis		
Solution state	••••	S-23
Crystalline state	••••	S-23
AIEE characteristics	••••	S-24

Table of Contents:

1. Experimental

1.1. Genral

The progress of the reactions was monitored via thin-layer chromatography (TLC), which was performed on silica gel TLC plates (Merck, Silica gel, 60F₂₅₄; New Jersey, NJ, USA). Column chromatography was performed using silica gel (Fujifilm Wako Pure Chemical Corporation, Wako-gel® 60N, 38–100 μ m; Osaka, Japan). ¹H nuclear magnetic resonance (NMR) (400 MHz), ¹³C NMR (100 MHz), and ¹⁹F NMR (376 MHz) spectra were acquired using an AVANCE III 400 NMR spectrometer (Bruker, Rheinstetten, Germany) in chloroform-*d* (CDCl₃) solution. The chemical shifts in ¹H and ¹³C NMR spectra were reported in parts per million (ppm) based on the residual proton or carbon in the NMR solvent. The chemical shift in ¹⁹F NMR spectra were also reported in ppm based on the internal standard, CFCl₃ ($\delta r = 0$ ppm). Infrared (IR) spectra were recorded using the KBr method using an FTIR-4100 type A spectrometer (JASCO, Tokyo, Japan). IR spectra are reported in wavenumber (cm⁻¹) units. High-resolution mass spectra (HRMS) were recorded on a JMS700MS spectrometer (JEOL, Tokyo, Japan) using the fast atom bombardment (FAB) method.

1.2. Synthesis

Fluorinated tolane-based fluorophores **1a**, **2a–c**, and **3c** were readily synthesized from the corresponding phenylacetylenes **4a** and **5a–c** bearing a suitable flexible unit at the *para*-position. According to the reported literature, the precursors **4a** and **5a–c** were prepared from easily available 2-bromoethanol for **4a** and methyl lactate for **5a**, ethyl mandelate for **5b**, and 3-hydroxytetrahydrofuran for **5c**. The detailed experimental procedures and structural characterization for the synthesis of **1a**, **2a–c**, and **3c** were described below.

Scheme S1. Synthetic procedure of fluorinated tolane-based fluorophores 1a, 2a–c, and 3c.

1.2.1. Typical synthetic procedure for 2,3,4,5,6-pentafluoro-1-[2-[4-(methoxyethoxy)phenyl]ethyn-1-yl]benzene (**1a**) via Pd(0)-catalyzed Sonogashira cross-coupling reaction

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirrer bar and reflux condenser, was placed 4-methoxyethoxyphenyl acetylene (1.55 g, 5.3 mmol), Cl₂Pd(PPh₃)₂ (0.19 g, 0.3 mmol), PPh₃ (0.07 g, 0.3 mmol), bromopentafluorobenzene (1.6 g, 0.8 mL, 7.6 mmol), and Et₃N (15 mL). To the resultant solution was added CuI (0.10 g, 0.5 mmol) and Et₃N (5 mL), and the whole was stirred at 100 °C overnight. After being stirred at the temperature for 18 h, precipitate formed in the reaction mixture was separated by atmospheric filtration and the filtrate was

poured into saturated aqueous NH₄Cl solution (30 mL). Crude product was extracted with EtOAc (30 mL, three times) and organic layer combined was washed with brine (once). The collected organic layer was dried over anhydrous Na₂SO₄, which was separated by filtration. The filtrate was evaporated in vacuo and subjected to silica-gel column chromatography (eluent: hexane/EtOAc = 15/1), followed by recrystallization from CH₂Cl₂/MeOH (v/v = 1/1), to obtain the title compound in 71% (0.70 g, 1.5 mmol) as a white crystal.

2,3,4,5,6-Pentafluoro-1-[2-{4-(methoxyethoxy)phenyl}ethyn-1-yl]benzene (1a)

Yield: 71%; M.p.: 86.1–87.3 °C; ¹H NMR (CDCl₃): δ 3.45 (s, 3H), 3.76 (t, *J* = 4.8 Hz, 2H), 4.14 (t, *J* = 4.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 59.2, 67.4, 70.8, 71.9 (q, *J* = 3.6 Hz), 100.6 (td, *J* = 19.0, 3.6 Hz), 101.8 (q, *J* = 3.0 Hz), 113.8, 114.7, 133.4, 136.0–139.2 (dm, *J* = 240.5 Hz), 139.5–142.6 (dm, *J* = 256.7 Hz), 145.5–148.4 (dm, *J* = 252.2 Hz), 159.9; ¹⁹F NMR (CDCl₃): δ –137.06 (dd, *J* = 21.8, 6.8 Hz, 2F), –154.19 (t, *J* = 21.8 Hz, 1F), –162.68 (ddd, *J* = 21.8, 21.8, 6.8 Hz, 2F); IR (KBr): *v* 3002, 2878, 2809, 2223, 1604, 1444, 1415, 1289, 1247, 1122, 1058, 987 cm⁻¹; HRMS: (FAB+) *m*/*z* [M]⁺ calcd for C₁₇H₁₁F₅O₂: 342.0679; found: 342.0690.

2,3,4,5,6-Pentafluoro-1-[2-{4-(1-methoxy-2-propoxy)phenyl}ethyn-1-yl]benzene (2a)

Yield: 70%; M.p.: 45.5–46.2 °C; ¹H NMR (CDCl₃): δ 1.33 (d, *J* = 6.4 Hz, 3H), 3.41 (s, 3H), 3.45–3.53 (m, 1H), 3.56–3.62 (m, 1H), 4.54–4.64 (m, 1H), 6.92 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 16.6, 59.3, 71.8, 73.1, 75.7, 100.6 (td, *J* = 18.3, 3.6 Hz), 101.9 (q, *J* = 2.9 Hz), 113.5, 115.9, 133.4, 136.1–139.2 (dm, *J* = 247.9 Hz), 139.5–142.6 (dm, *J* = 255.9 Hz), 145.4–148.5 (dm, *J* = 248.0 Hz), 159.1; ¹⁹F NMR (CDCl₃): δ –136.9 to –137.2 (m, 2F), –154.0 to –154.4 (m, 1F), –162.5 to –162.8 (m, 2F); IR (KBr): *v* 3089, 2982, 2933, 2223, 1602, 1523, 1500, 1446, 1247, 1116, 989, 837 cm⁻¹; HRMS: (FAB+) *m*/*z* [M]⁺ calcd for C18H13F5O2: 356.0836; found: 356.0839.

2,3,4,5,6-Pentafluoro-1-[2-{4-(2-methoxy-1-phenylethoxy)phenyl}ethyn-1-yl]benzene (2b)

Yield: 57%; M.p.: 92.6–93.4 °C; ¹H NMR (CDCl₃): δ 3.48 (s, 3H), 3.68 (dd, *J* = 10.8, 3.2 Hz, 1H), 3.86 (dd, *J* = 10.8, 7.6 Hz, 1H), 5.42 (dd, *J* = 7.6, 3.6 Hz, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 7.28–7.46 (m, 7H); ¹³C NMR (CDCl₃): δ 59.3, 71.8 (q, *J* = 3.7 Hz), 76.9, 79.6, 100.6 (td, *J* = 18.3, 3.6 Hz), 101.8 (q, *J* = 2.9 Hz), 113.7, 116.1, 126.2, 128.1, 128.6, 133.2, 136.0–139.1 (dm, *J* = 248.6 Hz), 137.8, 139.4–142.6 (dm, *J* = 256.7 Hz), 145.4–148.4 (dm, *J* = 248.0 Hz), 159.0; ¹⁹F NMR (CDCl₃): δ –137.05 (dd, *J* = 21.8, 6.8 Hz, 2F), –154.22 (t, *J* = 21.8 Hz, 1F), –162.66 (td, *J* = 21.8, 21.8, 6.8 Hz, 2F); IR (KBr): *v* 3000, 2904, 2829, 2220, 1600, 1497, 1447, 1285, 1243, 1174, 1019, 964, 834 cm⁻¹; HRMS: (FAB+) *m*/*z* [M]⁺ calcd for C₂₃H₁₅F₅O₂: 418.0992; found: 418.0983.

2,3,4,5,6-Pentafluoro-1-[2-{4-[(tetrahydrofuran-3-yl)oxy]phenyl}ethyn-1-yl]benzene (2c)

Yield: 85%; M.p.: 106.1–107.9 °C; ¹H NMR (CDCl₃): δ 2.10–2.19 (m, 1H), 2.19–2.30 (m, 1H), 3.88–3.95 (m, 1H), 3.95–4.04 (m, 3H), 4.92–4.98 (m, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 32.9, 67.1, 72.1 (q, *J* = 3.6 Hz), 72.9, 77.5, 100.5 (td, *J* = 17.6, 3.6 Hz), 101.6 (q, *J* = 2.9 Hz), 113.8, 115.4, 133.5, 136.1–139.1 (dm, *J* = 250.8 Hz), 139.5–142.8 (dm, *J* = 256.8 Hz), 145.5–148.4 (dm, *J* = 252.3 Hz), 158.4; ¹⁹F NMR (CDCl₃): δ –137.01 (dd, *J* = 21.8, 6.8 Hz, 2F), 154.02 (t, *J* = 20.3 Hz, 1F), –162.59 (ddd, *J* = 21.8, 20.3, 6.8 Hz, 2F); IR (KBr): *v*2991, 2959, 2864, 2229, 1604, 125, 1496, 1252, 1176, 1075, 987, 837 cm⁻¹; HRMS: (FAB+) *m*/z [M]⁺ calcd for C18H11F5O2: 354.0679; found: 354.0681.

1.2.1. Synthetic procedure for 2,3,5,6-tetrafluoro-4-[2-{4-{(tetrahydrofuran-3-yl)oxy}phenyl}ethyn-1-yl]benzonitrile (**3c**) via a nucleophilic aromatic substitution reaction

In a two-necked round-bottomed flask, equipped with a Teflon®-coated stirrer bar, was placed 4-{(tetrahydrofuran-3-yl)oxy}phenylaetylene (0.38 g, 2.0 mmol), and THF (20 mL). To the solution was added slowly a hexane solution of *n*-BuLi (1.6 mol L⁻¹; 1.4 mL, 2.2 mmol) at 0 °C, and stirred at the temperature for 0.5 h. To the resultant solution was added pentafluorobenzonitrile (3.4 g, 2.2 mL, 34.8 mmol) and the whole was stirred room temperature for 18 h. After 18 h, the resultant solution was poured into saturated aqueous NH₄Cl solution (20 mL) and the crude product was extracted with EtOAc (30 mL, three times) and organic layer combined was washed with brine (once). The collected organic layer was dried over anhydrous Na₂SO₄, which was separated by filtration. The filtrate was evaporated in vacuo and subjected to silica-gel column chromatography (eluent: hexane/EtOAc = 5/1), followed by recrystallization from CH₂Cl₂/MeOH (v/v = 1/1), to obtain the title compound in 68% (0.49 g, 1.36 mmol) as a white crystal.

2,3,5,6-Tetrafluoro-4-[2-{4-{(tetrahydrofuran-3-yl)oxy}phenyl}ethyn-1-yl]benzonitrile (3c)

Yield: 68%; M.p.: 157.4–158.1 °C; ¹H NMR (CDCl₃): δ 2.11–2.20 (m, 1H), 2.20–2.31 (m, 1H), 3.92 (td, *J* = 8.4, 4.4 Hz, 1H), 3.96–4.05 (m, 3H), 4.97 (tq, *J* = 4.4, 4.0 Hz, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃): δ 32.9, 67.2, 72.9, 73.1 (q, *J* = 3.7 Hz), 77.6, 92.9 (t, *J* = 17.6 Hz), 107.3 (t, *J* = 3.7 Hz), 107.5 (t, *J* = 3.6 Hz), 111.6 (q, *J* = 17.6 Hz), 112.9, 115.6, 134.1, 146.3 (ddt, *J* = 254.5, 12.5, 4.0 Hz), 147.0 (ddt, *J* = 260.4, 15.4, 3.7 Hz), 159.2; ¹⁹F NMR (CDCl₃): δ – 133.60 (ddd, *J* = 24.4, 15.0, 6.8 Hz, 2F), –134.54 (ddd, *J* = 24.4, 16.6, 6.8 Hz); IR (KBr): ν 3065, 2975, 2874, 2245, 2216, 1646, 1601, 1490, 1331, 1249, 1075, 984 cm⁻¹; HRMS: (FAB+) *m*/*z* [M]⁺ calcd for C₁₉H₁₁F₄NO₂: 361.0726; found: 361.0734.

2. NMR Spectra

Figure S1. ¹H NMR spectrum of 1a (400 MHz, CDCl₃)

Figure S2. ¹³C NMR spectrum of 1a (100 MHz, CDCl₃)

Figure S3. ¹⁹F NMR spectrum of 1a (376 MHz, CDCl₃, CFCl₃)

Figure S4. ¹H NMR spectrum of 2a (400 MHz, CDCl₃)

Figure S5. ¹³C NMR spectrum of 2a (100 MHz, CDCl₃)

Figure S6. ¹⁹F NMR spectrum of 2a (376 MHz, CDCl₃, CFCl₃)

Figure S7. ¹H NMR spectrum of 2b (400 MHz, CDCl₃)

Figure S8. ¹³C NMR spectrum of 2b (100 MHz, CDCl₃)

Figure S9. ¹⁹F NMR spectrum of 2b (376 MHz, CDCl₃, CFCl₃)

Figure S10. ¹H NMR spectrum of 2c (400 MHz, CDCl₃)

Figure S11. ¹³C NMR spectrum of 2c (100 MHz, CDCl₃)

Figure S12. ¹⁹F NMR spectrum of 2c (376 MHz, CDCl₃, CFCl₃)

Figure S13. ¹H NMR spectrum of 3c (400 MHz, CDCl₃)

Figure S14. ¹³C NMR spectrum of 3c (100 MHz, CDCl₃)

Figure S15. ¹⁹F NMR spectrum of 3c (376 MHz, CDCl₃, CFCl₃)

3. X-ray Crystallographic Analysis

Single crystal X-ray diffractions were recorded on an XtaLab AFC11 diffractometer (Rigaku). The reflection data were integrated, scaled, and averaged using CrysAlisPro (ver. 1.171.39.43a, Rigaku). Empirical absorption corrections were applied using the SCALE 3 ABSPACK scaling algorithm (CrysAlisPro). The structure were identified by a direct method (SHELXT-2018/2) and refined using a full matrix least square method (SHELXL-2014/7) visualized by Olex2. The crystallographic data were deposited into the Cambridge Crystallographic Data Centre (CCDC) database. These data can be obtained free of charge from the CCDC via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	1a	2a	2b	3c	
CCDC #	2118480	2118481	2118482	2118483	
Empirical Formula	C17H11F5O2	C18H13F5O2	C23H15F5O2	C19H11F4NO2	
Formula weight	342.26	356.28	418.35	361.29	
Temperature [K]	299	293	299	298	
Crystal Color /	Colorless / Block	Colorless / Block	Colorless / Block	Colorless / Block	
Habit					
Crystal Size [mm]	0.94 x 0.67 x 0.26	0.55 x 0.48 x 0.43	0.55 x 0.48 x 0.43	0.52 x 0.34 x 0.20	
Crystal System	Monoclinic	Triclinic	Triclinic	Monoclinic	
Space Group	<i>P1 21/c 1</i>	Р –1	P –1	<i>P1 2</i> ₁ / <i>n 1</i>	
<i>a</i> [Å]	8.9965(3)	7.5715(6)	8.9679(5)	6.1206(3)	
<i>b</i> [Å]	7.9831(3)	10.6727(6)	9.2898(4)	22.0913(10)	
<i>c</i> [Å]	21.5960(9)	11.9855(7)	11.8018(5)	11.8054(6)	
<i>α</i> [°]	90	65.696(6)	88.321(4)	90	
$\beta[^{\circ}]$	94.474(4)	71.888(6)	83.008(4)	97.582(5)	
γ[°]	90	76.943(6)	84.421(4)	90	
<i>V</i> [Å ³]	1546.30(10)	833.57(11)	971.12(8)	1582.28(13)	
Ζ	4	2	2	4	
$R [F^2 > 2\sigma(F^2)]^{[a]}$	0.0510	0.1432	0.0447	0.0485	
$wR_2 (F^2)$ [b]	0.1624	0.5001	0.1381	0.1503	

Table S1. Crystallographic data of 1a, 2a, 2b, and 3c

 $[a] R = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. [b] wR = \{[\Sigma w(|F_{o}| - |F_{c}|)] / \Sigma w |F_{o}|\}^{1/2}.$

4. DFT calculation

All computations were performed using the Gaussian 16 software package (Revision B.01). Geometry optimizations were carried out using the CAM-B3LYP hybrid functional and the 6-31+G(d) basis set with an implicit solvation model (conductor-like polarizable continuum model; CPCM) for CH₂Cl₂. The vertical excitation energies and dipole moments of the optimized structures were calculated using the time-dependent self-consistent field approximation at the same level of theory.

Figure S16. Optimized geometry, HOMO and LUMO distributions for 1a, 2a-c, and 3c at So state.

Table S2. Energy (hartree) and dipole moment (debye) of 1a, 2a–c, and 3c at S₀ state.

	E(RCAM-B3LYP) [hartree]	Dipole moment (debye)
1a	-1303.82476447	X= -6.1818/ Y= -1.8659/ Z= -1.4624/ Tot= 6.6208
2a	-1343.12614784	X= 4.8136/ Y= 0.7952/ Z= 1.0909/ Tot= 4.9994
2b	-1534.79588633	X= -4.5082/ Y= 1.2126/ Z= -1.3888/ Tot= 4.8706
2c	-1341.92350211	X= -2.7877/ Y= 1.3028/ Z= -0.0075/ Tot= 3.0780
3c	-1334.90603360	X= 7.2520/ Y= -1.0002/ Z= -0.0879/ Tot= 7.3212

Table S3. Theoretical vertical transition behavior calculated by TD-DFT calculation.

	Transition	Transition Energy (eV)	Theoretical Absorption	Oscillator strength
			(nm)	/ <i>f</i>
1a	$HOMO \rightarrow LUMO$	4.1422	299.32	1.3106
2a	$HOMO \rightarrow LUMO$	4.1375	299.66	1.3205
2b	$HOMO \rightarrow LUMO$	4.1424	299.30	1.4127
2c	$HOMO \rightarrow LUMO$	4.1484	298.87	1.3183
3c	$HOMO \rightarrow LUMO$	3.7157	333.68	1.4966

	Atom	Туре	Coordi	inates (Angstr	roms)		18	1	0	-3.721218	-2.028557	-0.164
NO.	No.		x	У	z		19	6	0	5.805044	-0.029489	0.119
1	8	0	-5.203326	0.256400	-0.357394		20	6	0	0.368940	0.060387	-0.112
2	9	0	3.044482	-2.345669	0.050790		21	6	0	-1.793459	-1.104108	-0.13
3	9	0	5.736243	-2.384312	0.166235		22	1	0	-1.273990	-2.053927	-0.06
4	9	0	7.137053	-0.052237	0.176137		23	6	0	1.577332	0.042016	-0.06
5	9	0	3.129055	2.379295	-0.045803		24	6	0	3.749555	1.195638	0.00
6	9	0	5.820602	2.326158	0.069924		25	6	0	-6.010546	-0.917129	-0.31
7	6	0	-3.856030	0.130249	-0.291407		26	1	0	-5.823210	-1.465389	0.61
8	8	0	-7.825354	0.138468	0.815661		27	1	0	-5.773032	-1.564169	-1.16
9	6	0	-3.128852	1.326994	-0.328413		28	6	0	5.131536	1.181100	0.064
10	1	0	-3.669092	2.264932	-0.403283		29	6	0	-7.457291	-0.501549	-0.38
11	6	0	-1.748967	1.304921	-0.270004		30	1	0	-7.611230	0.172547	-1.242
12	1	0	-1.192389	2.235994	-0.299119		31	1	0	-8.072628	-1.399997	-0.544
13	6	0	2.995963	0.018339	-0.001015		32	6	0	-9.169302	0.577830	0.808
14	6	0	-1.056918	0.084556	-0.172633		33	1	0	-9.341440	1.308062	0.00
15	6	0	3.707054	-1.183833	0.054577		34	1	0	-9.359925	1.050836	1.773
16	6	0	5.088648	-1.216445	0.114044	_	35	1	0	-9.860064	-0.266362	0.675
17	6	0	-3.182585	-1.089816	-0.194678							

Table S4. Cartesian coordinate for 1a at the optimized geometry in S₀ state.

No	Atom	Туре	Coordinates (Angstroms)				19	6	0	-1.761056	-0.215441	-0.079901
INO.	No.		x	У	z		20	6	0	1.400673	-1.853119	0.064927
1	8	0	4.947143	-1.279564	-0.294053		21	1	0	0.746058	-2.690226	0.284577
2	9	0	-2.960945	2.269344	-0.585529		22	6	0	5.936142	-0.280603	-0.583798
3	9	0	-7.268236	0.555491	0.146469		23	1	0	5.550676	0.407130	-1.343187
4	9	0	-3.551640	-2.282563	0.542631		24	6	0	-5.948872	0.370578	0.090938
5	6	0	-3.166494	-0.019055	-0.024870		25	6	0	-5.410386	-0.880781	0.348186
6	6	0	3.624913	-0.972092	-0.263955		26	6	0	-5.110775	1.429041	-0.224305
7	9	0	-6.217040	-1.902021	0.652102		27	6	0	6.241554	0.492340	0.695380
8	6	0	0.848470	-0.582617	-0.172666		28	1	0	5.313068	0.862025	1.153201
9	9	0	-5.628328	2.635837	-0.472901		29	1	0	6.733473	-0.175143	1.419109
10	6	0	3.089456	0.297181	-0.498328		30	6	0	7.145060	-1.011773	-1.131703
11	1	0	3.723189	1.148742	-0.711042		31	1	0	7.506105	-1.749104	-0.407391
12	6	0	-4.040548	-1.063837	0.288843		32	1	0	7.948094	-0.298489	-1.333544
13	6	0	1.712479	0.481331	-0.453646		33	1	0	6.892500	-1.527986	-2.061898
14	1	0	1.302837	1.469486	-0.636266		34	8	0	7.085285	1.573876	0.365454
15	6	0	-3.743194	1.228611	-0.279229		35	6	0	7.447071	2.349168	1.492081
16	6	0	2.768381	-2.043587	0.019732		36	1	0	7.995328	1.743788	2.226471
17	1	0	3.200754	-3.022291	0.199670		37	1	0	6.559471	2.779136	1.975737
18	6	0	-0.563826	-0.382303	-0.123986	<u>.</u>	38	1	0	8.090448	3.155375	1.136221

Table S5. Cartesian coordinate for **2a** at the optimized geometry in S₀ state.

_

Atom		Type Coordinates (Angstroms)					23	1	0	-4.247963	0.910628	0.854644
INO.	No.		x	у	z		24	6	0	7.271533	0.100671	0.170252
1	8	0	-3.714414	-0.705217	-0.339212		25	6	0	6.668937	-1.058433	-0.293921
2	9	0	4.379697	2.125493	0.896651		26	6	0	6.487220	1.171653	0.570261
3	9	0	8.600786	0.185344	0.231593		27	6	0	-4.814847	1.252986	-1.194426
4	9	0	4.737587	-2.268937	-0.806667		28	1	0	-3.833437	1.599363	-1.548133
5	6	0	4.468392	-0.077461	0.040802		29	1	0	-5.294629	0.699128	-2.014211
6	6	0	-2.372676	-0.501629	-0.256506		30	8	0	-5.607788	2.348471	-0.800567
7	9	0	7.423660	-2.091345	-0.680426		31	6	0	-5.851531	3.255336	-1.859341
8	6	0	0.423123	-0.329585	-0.138967		32	1	0	-6.390806	2.764562	-2.680546
9	9	0	7.066742	2.289549	1.017937		33	1	0	-4.911199	3.670216	-2.246822
10	6	0	-1.763753	0.688942	0.146519		34	1	0	-6.464066	4.063405	-1.456699
11	1	0	-2.344998	1.562723	0.412870		35	6	0	-5.925411	-0.332153	0.444018
12	6	0	5.289203	-1.137654	-0.354391		36	6	0	-6.513696	0.004409	1.661753
13	6	0	-0.376996	0.765272	0.204575		37	6	0	-6.547232	-1.280192	-0.372352
14	1	0	0.090572	1.692711	0.518774		38	6	0	-7.710367	-0.589300	2.059444
15	6	0	5.108940	1.075651	0.503268		39	1	0	-6.035361	0.737960	2.305290
16	6	0	-1.581360	-1.603010	-0.605507		40	6	0	-7.737299	-1.880320	0.025333
17	1	0	-2.071536	-2.519485	-0.916720		41	1	0	-6.093877	-1.558149	-1.319471
18	6	0	1.846350	-0.240175	-0.076669		42	6	0	-8.323882	-1.533876	1.242185
19	6	0	3.052476	-0.166969	-0.023431		43	1	0	-8.158647	-0.315655	3.009931
20	6	0	-0.203421	-1.519409	-0.547854		44	1	0	-8.209117	-2.619355	-0.615478
21	1	0	0.401111	-2.378972	-0.818306	_	45	1	0	-9.254275	-2.001038	1.551152
22	6	0	-4.640436	0.332745	0.013314							

Table S6. Cartesian coordinate for **2b** at the optimized geometry in S₀ state.

Ne	Atom	Туре	Coordi	inates (Angstr	oms)	18	1	0	-3.392814	-2.660364	0.125672
NO.	No.		x	У	z	19	6	0	0.518548	-0.228911	-0.072184
1	9	0	3.416456	-2.366132	0.123979	20	6	0	-1.704331	0.786828	-0.316167
2	9	0	5.728198	2.548625	-0.062987	21	1	0	-1.238004	1.758958	-0.438857
3	9	0	3.042434	2.339054	-0.125104	22	6	0	1.723908	-0.134475	-0.038350
4	9	0	6.101202	-2.142178	0.185298	23	6	0	-3.090383	0.686323	-0.358809
5	8	0	-5.036189	-0.781509	-0.237621	24	1	0	-3.677389	1.583978	-0.506497
6	8	0	-8.230855	0.276904	0.079540	25	6	0	-5.927004	0.303089	-0.524791
7	6	0	3.139150	-0.020828	-0.002850	26	1	0	-5.537280	0.856271	-1.382602
8	6	0	-0.903793	-0.342252	-0.113789	27	6	0	-7.305020	-0.318566	-0.822164
9	6	0	-3.696940	-0.562437	-0.202606	28	1	0	-7.655367	-0.125350	-1.837385
10	6	0	5.941115	0.205308	0.061314	29	1	0	-7.247362	-1.402008	-0.658086
11	6	0	3.963667	-1.146724	0.077095	30	6	0	-6.186471	1.196119	0.697908
12	6	0	5.342864	-1.044457	0.109148	31	1	0	-5.365023	1.160810	1.416961
13	6	0	5.153032	1.343209	-0.017479	32	1	0	-6.323469	2.233604	0.378222
14	6	0	-1.528263	-1.591350	0.048399	33	6	0	-7.496170	0.639114	1.246432
15	1	0	-0.922288	-2.477412	0.206973	34	1	0	-7.322206	-0.246917	1.873416
16	6	0	3.775355	1.222963	-0.048554	35	1	0	-8.091112	1.361769	1.806938
17	6	0	-2.904920	-1.698849	0.004828	36	9	0	7.269778	0.312729	0.091660

Table S7. Cartesian coordinate for 2c at the optimized geometry in S₀ state.

Atom	Atom	Туре	Coordinates (Angstroms)			19	6	0	-0.309465	0.241216	-0.088235
No.	No.		x	У	z	20	6	0	1.905106	-0.793523	-0.296783
1	9	0	-3.188937	2.389880	0.134412	21	1	0	1.433331	-1.766291	-0.389306
2	9	0	-5.504752	-2.514775	-0.088141	22	6	0	-1.515978	0.151961	-0.052914
3	9	0	-2.835455	-2.314104	-0.157968	23	6	0	3.290764	-0.701200	-0.340375
4	9	0	-5.857703	2.180696	0.203095	24	1	0	3.874101	-1.605457	-0.458767
5	8	0	5.241460	0.760565	-0.261570	25	6	0	-7.170674	-0.281360	0.098081
6	8	0	8.430344	-0.294364	0.105363	26	7	0	-8.323075	-0.370102	0.129484
7	6	0	-2.927095	0.044443	-0.014014	27	6	0	6.129566	-0.337132	-0.509041
8	6	0	1.110656	0.346705	-0.131369	28	1	0	5.740046	-0.917117	-1.348902
9	6	0	3.902970	0.549778	-0.222195	29	6	0	7.510663	0.269268	-0.822672
10	6	0	-5.748940	-0.172218	0.059558	30	1	0	7.865042	0.036579	-1.828177
11	6	0	-3.744957	1.175945	0.078996	31	1	0	7.455558	1.358298	-0.700219
12	6	0	-5.120621	1.072651	0.114686	32	6	0	6.381187	-1.188187	0.744481
13	6	0	-4.941760	-1.306897	-0.033166	33	1	0	5.556332	-1.127787	1.457955
14	6	0	1.740213	1.598352	-0.007581	34	1	0	6.518123	-2.235969	0.460454
15	1	0	1.137818	2.491484	0.121751	35	6	0	7.689073	-0.614767	1.280286
16	6	0	-3.566548	-1.198970	-0.068712	36	1	0	7.513622	0.292529	1.875620
17	6	0	3.116679	1.697165	-0.051943	37	1	0	8.279664	-1.318851	1.868304
18	1	0	3.610051	2.659030	0.039444						

Table S8. Cartesian coordinate for 3c at the optimized geometry in S₀ state.

5. Photophysical Characteristics

Figure S17. UV-vis and PL spectra of **1a**, **2a–c**, and **3c** in CH₂Cl₂ solution. Concentration: 1.0×10^{-5} mol L⁻¹ for UV-vis and 1.0×10^{-6} mol L⁻¹ for PL.

Figure S18. Excitation and PL spectra of **1a**, **2a**–**c**, and **3c** in crystalline state. Excitation spectra were obtained by monitoring PL at the maximum PL wavelength (λ_{em} = 418 nm for **1a**, 449 nm for **2a**, 453 nm for **2b**, 390 nm for **2c**, and 444 nm for **3c**).

Figure S19. PL spectra and AIE characteristics of 2c and 3c in THF/H2O mixed solvent system.

	2c (λ_{ex} = 296 nm)		3c (λ_{ex} = 347 nm)	
Water ratio [%]	$\lambda_{\rm PL}$ [nm]	PL intensity	$\lambda_{\rm PL}$ [nm]	PL intensity
0	402	32.56	444	136.37
10	419	39.69	462	75.60
20	423	37.01	473	56.90
30	428	37.87	476	47.81
40	430	40.93	480	37.73
50	429	31.47	485	37.52
60	433	38.53	490	26.84
70	434	23.00	493	21.40
80	382	111.91	459	105.14
90	390	290.50	473	232.03
95	381	238.89	479	40.55

Table S9. Photophysical data of 2c and 3c in THF/H2O mixed solvent system.