Supplementary Information

The Pt/g-C₃N₄-CNS catalyst via in-situ synthesis process with excellent performance for methanol electrocatalytic oxidation reaction

Xiaolong Liang^{a,b}, Fang Dong^a, Zhicheng Tang^{a*}, Qingchun Wang^{b*}

(^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China ^b College of materials and metallurgical engineering, Inner Mongolia university of science and technology, Baotou 014010, China)

*Corresponding author:

Tel.: +86–931–4968083, Fax: +86–931–4968019, E-mail address: tangzhicheng@licp.cas.cn (Z. Tang).

**Corresponding author:

Tel.: +86–15184792170, Fax: +86–0472–5955961, E-mail address: qingchun0221@126.com

Preparation of carbon nanosheets:

The anhydrous sodium carbonate powder is used as the hard template, and the carbon nanosheets are prepared by the chemical vapor deposition method. First, the Na₂CO₃ powder is put into a ceramic boat, and the boat is placed in a tube furnace. The Ar was then passed into the tube furnace. The heating furnace is heated to 700 °C at a heating rate of 10 °C/min. Hydrogen (H₂) and acetylene (C₂H₂) with a flow ratio of 5:1 are introduced into the furnace to deposit carbon nanosheets. The deposition reaction was maintained for 40 minutes, and then the furnace was naturally cooled to room temperature in an Ar-H₂ environment. The deposited product was washed with deionized water. Finally, powdered carbon nanosheets were obtained by drying the product at 80 °C for 24 hours.

Activity calculation process

Specific activity (mA/cm^2) values were calculated from the effective area of the electrode (cm^2) and the measured current I (mA):

Specific activity = current density = I/V

Mass activity (mA/mg_{Pt}) values were calculated from the electrocatalyst loading m (mg) and the measured current density j (mA/cm^2) :

Mass activity = j/m

Fig. S1 XPS survey spectra of Pt/IS-g-C₃N₄-CNS, Pt/MS-g-C₃N₄-CNS and Pt/CNS.

Fig.S2 The XRD patterns of Pt/IS-g-C₃N₄-CNS, g-C₃N₄ and CNS.

Samples	C at.%	N at.%	O at.%	Pt at.%
Pt/IS-g-C ₃ N ₄ -CNS	90.09	3.57	5.31	1.02
Pt/MS-g-C ₃ N ₄ -CNS	90.36	2.89	5.62	1.13
Pt/CNS	93.18		5.58	1.24

Table S1 XPS elemental analysis of $Pt/g-C_3N_4$ -CNS samples.